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ABSTRACT: DNA double-strand break repair via non-

homologous end joining (NHE]) is involved in recombi-
nation of immunoglobulin and T-cell receptor genes. Mu-
tations in NHE] components result in syndromes that
are characterized by microcephaly and immunodeficiency.
We present a patient with lymphopenia, extreme ra-
diosensitivity, severe dysmaturity, corpus callosum agene-
sis, polysyndactily, dysmorphic appearance, and erythema,
which are suggestive of a new type of NHE] deficiency.
We identified two heterozygous mutations in LIG4. The
p-S205LfsX29 mutation results in lack of the nuclear lo-
calization signal and appears to be a null mutation. The
second mutation p.K635RfsX10 lacks the C-terminal re-
gion responsible for XRCC4 binding and LIG4 stability
and activity, and therefore this mutant might be a null mu-
tation as well or have very low residual activity. This is
remarkable since Lig4 knockout mice are embryonic lethal
and so far in humans no complete LIG4 deficiencies have
been described. This case broadens the clinical spectrum
of LIG4 deficiencies.
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The non-homologous end joining (NHE]) pathway is involved in
the repair of the DNA double-strand breaks. These can be gener-
ated during DNA replication, exposure to exogenous agents such as
ionizing radiation (IR), or physiologically during V(D)J recombi-
nation, as happens during the early stages of B- and T-cell differen-
tiation to generate antigen-specific B- and T-cell receptors. Defects
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in NHE] factors result in IR sensitivity, and in defects in V(D)J
recombination leading to immunodeficiency. Genetic defects have
been described in several NHE] genes, including DCLREIC (MIM
#605988), PRKDC (MIM #600899), NHEJ1 (MIM #611290), and
LIG4 (MIM #601837) [Moshous et al., 2001; Noordzij et al., 2003;
O’Driscoll et al., 2004; van der Burg et al., 2009; van der Burg et al.,
2006]. To date, 16 LIG4 deficient patients have been described [Ben-
Omran etal., 2005; Buck et al., 2006; Enders et al., 2006; Grunebaum
et al., 2008; O’Driscoll et al., 2001; Riballo et al., 1999; Toita et al.,
2007; Unal et al., 2009; van der Burg et al., 2006; Yue et al., 2013]
(summarized in Supp. Table S1). All patients were IR sensitive, but
clinically they can be divided into five distinct disease categories:
(1) leukemia, (2) LIG4 syndrome (MIM #606593), (3) Dubowitz
syndrome (MIM #223370), (4) Omenn syndrome (MIM #603554),
and (5) radiosensitive severe combined immunodeficiency (MIM
#602450). Here, we present a male patient with a new clinical pheno-
type of LIG4 deficiency characterized by microcephalic primordial
dwarfism and neurological abnormalities.

The patient was born with extreme dysmaturity after 37 weeks
of gestational age. At the age of 3 months, his height was 43 cm
(-7.4 SD), weight was 1870 g (-8.9 SD), and head circumference
was 29 cm (-8.9 SD). Besides the dysmaturity, the patient had sev-
eral dysmorphisms (Fig. 1A and B) including hypotelorism, small
viscerocranium, flat philtrum, thin upper lip, preaxial polydactyly
(duplication of distal phalanx of left thumb), brachymesophalangy
of the digits V on both hands, and partial cutaneous syndactyly of
digits II-V of both feet (Fig. 1C and D), dysplastic kidneys with
bilaterally vesicourethral reflux and urethral valves. Additionally,
the patient had the neurological abnormalities, corpus callosum
dysgenesia, and colpocephaly. At the age of 2 and 4 months, he
suffered from a Pseudomonas aeruginosa and Enterococcus faecalis
urinary tract infection, respectively, and he tested positive for P
aeruginosa, P. jiroveci, rhinovirus, norovirus, astrovirus, Clostrid-
ium difficile, and Candida. Besides the infectious complications, the
first 3 months of life were characterized by feeding difficulties, diar-
rhea, failure to thrive, cholestatic icterus, tubulopathy, generalized
erythema, and very dry cracked skin. Initially the patient seemed to
recover from the opportunistic infections, but a second episode of
an acute sepsis-like syndrome with respiratory insufficiency compli-
cated by severe gastrointestinal bleeding—probably due to the de-
velopment of thrombocytopenia—could not be successfully treated;
the patient died at the age of 6 months.
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Figure 1. Dysmorphic features of the face, hand, and feet and ion-
izing radiation sensitivity. The patient presented with facial dysmpor-
phisms including beaked nose (A), hypotelorism, small viscerocranium,
flat philtrum, and thin upper lip (B). In addition, the patient had a duplica-
tion of distal phalanx of left thumb, brachymesophalangy of the digits V
on both hands (C), and partial cutaneous syndactyly of digits IV of both
feet (D). Clonogenic survival assay of wild-type (C5R0) fibroblasts and
patients’ fibroblasts deficient for Artemis, DNA—-PKcs, XLF, or LIG4 (LIG4
SCID). The patient was extremely sensitive for ionizing radiation. Each
curve represents the mean of at least two independent experiments.
Error bars represent SEM (E).

Immunologic evaluation showed normal numbers of NK cells,
very low B-cell numbers, and increased T-cell numbers (Supp.
Table S2 and Supp. Materials and Methods). The increase in the
number of T cells was mainly caused by an increase in the CD8+
T cells probably related to a viral infection. The presence of maternal
T cells was excluded. Immunoglobulin (Ig) G was decreased, which
was not secondary to malabsorption, whereas IgM and IgA were
normal (Supp. Table S2) and Ig substitution therapy was initiated
at the age of 4.5 months.

The clinical presentation, especially the immunodeficiency to-
gether with microcephaly was suggestive for a NHE] defect. There-
fore, the patient’s fibroblasts were tested in a clonogenic survival
assay (Supp. Materials and Methods). These were extremely IR sen-
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sitive by an order of magnitude, c.f. the control at 10% survival
(Fig. 1E) and even more sensitive than those of LIG4 and XLF de-
ficient patients (three times more sensitive than the control at 10%
survival), which are normally more IR sensitive than fibroblasts from
Artemis and DNA-PKcs deficient patients (Fig. 1E). This result was
indicative for a severe NHE] defect.

Sequencing of the LIG4 gene (Supp. Materials and Methods)
showed the presence of two heterozygous single-nucleotide dele-
tions in the LIG4 gene (c.613delT and c.1904delA) (submitted
to www.lovd.nl/LIG4). The first deletion was inherited from the
mother and resulted in a frameshift and a premature stop codon in
the DNA-binding domain (p.S205LfsX29). This mutation was re-
cently described in the LIG4 patient presenting with the Dubowitz
syndrome [Yue et al., 2013]. The mutant LIG4 protein lacks the
nuclear localization signal (NLS), the active site, the adenylation
domain, the oligo-binding domain, both BRCT motifs and the
XRCC4-binding site (Fig. 2A). Since LIG4 exerts its function in the
nucleus, we investigated the localization of the mutant LIG4 proteins
by using green fluorescent protein (GFP)-tagged LIG4 expression
constructs (Fig. 2A and Supp. Material and Methods). In contrast
to wild-type LIG4, the S205LfsX29 LIG4 mutant was only expressed
in the cytoplasm (Fig. 2B), which indicates that the S205LfsX29
mutant represents a null mutation.

The second paternally inherited deletion resulted in a frameshift,
changing the last four amino acids of the NLS (Kg35Ks36 V371635
— Reg35Ke36Le37L63s) without affecting the charge, and a premature
stop codon (p.K635RfsX10). In this mutant, part of the NLS is
retained, but it lacks both BRCT motifs and the XRCC4-binding
site, which are necessary for the interaction with Cernunnos/XLF
[Critchlow et al., 1997]. LIG4 interacts with XRCC4 and forms a
1:2 complex [Sibanda et al., 2001]. The interaction with XRCC4 is
important since it stabilizes LIG4 protecting it from degradation
[Bryans et al., 1999]. This implies that the p.K635RfsX10 mutant
has probably very low residual activity or might even be a null
mutant.

In our overexpression system, this mutant was still expressed in
the nucleus (Fig. 2B) and is therefore consistent with the results
of Girard et al. (2004) who found that deleting both BRCT motifs
and the XRCC4-binding domain (A653-911) still resulted in nu-
clear expression of the mutant LIG4 protein (Girard et al., 2004).
None of the reported LIG4 mutations in patients retains the NLS
but lacks the XRCC4 interaction domain (Supp. Table S1 and Supp.
Fig. S1). The p.R814X mutant lacks the BRCT 2 motif, but the
NLS and XRCC4-binding site are present [Ben-Omran et al., 2005;
O’Driscoll, et al., 2001]. This mutant is expressed in the nucleus
and retained ~10%—15% residual double-strand ligation activity,
but was barely detectable in the patient [O’Driscoll et al., 2001].
The estimated residual activity of this mutant is <1% [Girard et al.,
2004]. The p.R580X mutant lacks the NLS and the XRCC4 inter-
action domain. Since this mutant is not stably expressed, does not
interact with XRCC4, and does not enter the nucleus, it is con-
sidered to be a null mutant. Similar to the p.R580X mutant, the
p.K635R£sX10 mutant lacks XRCC4-interacting domain [Critchlow
etal., 1997], which is necessary for LIG4 stability and protection of
LIG4 from degradation [Bryans, et al., 1999]. Based on these data
and the severity of the clinical phenotype of the patient, we expect
that this mutant has even less residual activity than the LIG4 mu-
tants described before and might represent a null mutation. This
is remarkable since LIG4 is considered to be essential for humans
and Lig4 knockout mice are embryonic lethal [Barnes et al., 1998;
Frank et al., 1998]. This study shows that LIG4 mutations affect
the immune system or neurological development with different
severity.
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Figure 2.

LIG4 mutants and their expression. Schematic representation of the LIG4 protein (NM_001098268.1) and the GFP-LIG4 expression

constructs. The different domains, active site (K273), and mutations identified in the patient are indicated. The nuclear localization signal (NLS1
[Pg23 QEKKRKg9] and NLS2 [Ag30APKMKKVIg3g] [Girard, et al., 2004]) is indicated in black. The numbers between brackets indicated the amino acid
position (A). Localization of GFP-LIG4 wild type and mutants after transient transfection of U20S cells (B).
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