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Abstract

Real-time functional magnetic resonance imaging (rtfMRI) is a recently emerged technique that demands fast data
processing within a single repetition time (TR), such as a TR of 2 seconds. Data preprocessing in rtfMRI has rarely involved
spatial normalization, which can not be accomplished in a short time period. However, spatial normalization may be critical
for accurate functional localization in a stereotactic space and is an essential procedure for some emerging applications of
rtfMRI. In this study, we introduced an online spatial normalization method that adopts a novel affine registration (AFR)
procedure based on principal axes registration (PA) and Gauss-Newton optimization (GN) using the self-adaptive b
parameter, termed PA-GN(b) AFR and nonlinear registration (NLR) based on discrete cosine transform (DCT). In AFR, PA
provides an appropriate initial estimate of GN to induce the rapid convergence of GN. In addition, the b parameter, which
relies on the change rate of cost function, is employed to self-adaptively adjust the iteration step of GN. The accuracy and
performance of PA-GN(b) AFR were confirmed using both simulation and real data and compared with the traditional AFR.
The appropriate cutoff frequency of the DCT basis function in NLR was determined to balance the accuracy and calculation
load of the online spatial normalization. Finally, the validity of the online spatial normalization method was further
demonstrated by brain activation in the rtfMRI data.
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Introduction

Real-time functional magnetic resonance imaging (rtfMRI) is a

recently emerged technique that permits the online observation of

brain activity during recording. This technique is essential for a

variety of applications, such as neurofeedback, in which subjects

are trained to self-regulate the local blood oxygen level dependent

(BOLD) response in specific brain areas to improve their

behavioral performance [1,2]. Such types of applications demand

that the image data is acquired in each repetition time (TR), and

preprocessing and statistical analysis should be promptly per-

formed in a short time period, which is usually shorter than a

single TR. In many rtfMRI softwares, such as Turbo-BrainVoya-

ger (TBV, http://www.brainvoyager.com/) and the real-time

process modules of Analysis of Functional NeuroImages (AFNI,

http://afni.nimh.nih.gov/) [3], the real-time preprocessing pri-

marily consists of head motion correction [4,5] and spatial

smoothing [6,7], while spatial normalization is an optional

preprocessing procedure that alleviates the inter-individual ana-

tomical variance by normalizing the individual image into a

stereotactic space [8,9], such as Talairach space [10,11] and

Montreal Neurological Institute (MNI) space [12].

In offline fMRI applications, spatial normalization is usually

used as a standard procedure when an accurate identification of

specific functional regions is needed. In many rtfMRI applications,

such as the clinical brain operation [13,14,15], the accurate

functional localization of brain regions is also an indispensable pre-

requisite condition for reducing subjectivity. Online spatial

normalization provides an accurate position from the stereotactic

atlas, such as Automated Anatomical Labeling (AAL) [16] and

Brodmann’s Area (BA), in rtfMRI localization, even if the disabled

patients are unable to perform the localization task [17]. Recently,

application of the rtfMRI technique on the self-regulation of brain

connectivity and network activities has become an attractive topic

[18,19,20,21]. In these applications, spatial normalization may be

an essential procedure prior to network analysis, such as semi-

blind independent component analysis (ICA) [22,23], when

template masks are used or when the image needs to be analyzed

in a stereotactic space. For example, the default mode network

(DMN) [24] of the individual may be automatically measured

using a DMN template from MNI space [22].

Some commomly used offline spatial normalization methods

generally cannot be accomplished in a single TR on a current

typical personal computer. One such method [3] registers the

image into Talairach space by manually identifying the anterior

commissure (AC) and posterior commissure (PC) to acquire the

normalization parameters, which limits the reliability of these

methods [8] and its application in rtfMRI. Another type of method

aims at minimizing a cost function which could be least squares,

mutual information and so on, such as the spatial mornalization in

SPM (http://www.fil.ion.ucl.ac.uk/spm/), 3dAllineate and

3dQwarp in AFNI. These methods automatically registers the

image to a stereotactic space using a non-rigid transformation that

normally requires a very time-consuming iterative registration

process that is longer than one TR to estimate the optimal

normalization parameters [8]. Using the method in SPM, the

source image is often selected as the mean image over all of the

realigned images, which also hinders its application in rtfMRI.
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To take advantage of regional localization in stereotactic space,

a few studies have attempted to apply spatial normalization in

rtfMRI [25,26]. One method is derived from SPM99, which has

been integrated into the TurboFIRE software [27]. This method

uses a preparatory run to estimate the normalization parameters

offline, generates a lookup table to map the coordinates in the

source image space to MNI space, and acquires the Talairach

coordinates in subsequent online runs [26]. The second method is

based on SPM2, which is used online to measure and display

BOLD signal changes from the user-selected areas labeled with

AAL and BA nomenclature [25]. Specifically, the normalization

parameters by which the individual’s images are fitted to the

anatomical templates of AAL and BA are estimated offline from a

preparatory run and are used in images transformed in the

following online runs. In these methods, the image registration

determines the normalization parameters offline in a preparatory

run. However, the inter-run motion gradually accumulates and

may grow quite large in the subsequent runs; even the sudden

large head motions may occur in an on-going run or during the

interval between runs. These factors can result in an underesti-

mation of image registraion [5] and make the previous normal-

ization parameters unsuitable for the images in subsequent online

runs. In addition, the magnetic field inhomogeneities change over

time in fMRI, which result in shape distortions in the brain images

that cannot be corrected using a rigid body transformation

[28,29].

Based on these findings, we advanced the offline spatial

normalization method in SPM8 and implemented an online

spatial normalization method that can be accomplished in a time

interval shorter than a TR (such as 2 s). This method consists of

procedures of affine registration (AFR) and nonlinear registration

(NLR) [30], which is based on discrete cosine transform (DCT).

First, we proposed an AFR method based on principal axes

registration (PA) [31,32,33] and Gauss-Newton optimization (GN)

[30] using a self-adaptive b parameter, termed as PA-GN(b) AFR.

Second, we verified PA-GN(b) AFR using both simulation and real

data, and the results were compared with those obtained using

traditional AFR. Third, to balance the accuracy and runtime of

our spatial normalization method, an appropriate cutoff frequency

of DCT basis function in NLR was selected using the bisection

method. Finally, we applied the online spatial normalization to

rtfMRI data from a finger-tapping experiment to further validate

its efficacy in brain activation analysis. These results were also

compared with those obtained using the offline spatial normali-

zation.

Materials and Methods

Data Acquisition
Real data were acquired from a finger tapping run in an rtfMRI

experiment, which consisted of eight on-going runs [34]. Twenty

volunteers (age 22.361.6, 8 females) participated in the exper-

iment, which was approved by the Institutional Review Board

(IRB) of the State Key Laboratory of Cognitive Neuroscience and

Learning in Beijing Normal University; all of the subjects signed

informed consent prior to scanning. The data are available from

the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.

1642b. The run, which lasted 4.5 min, consisted of five rest blocks

and four task blocks, of which each block lasted 30 s. During the

rest blocks, a text cue ‘‘REST’’ was shown in the center of the

screen and the subjects were instructed to take a rest. In the task

blocks, a text cue ‘‘PUSH’’ was shown, and the subjects were

instructed to tap their right-hand fingers. In addition, the subjects

were instructed to hold their heads as still as possible and keep

their eyes open during the entire run.

Brain scans was performed at the MRI Center of Beijing

Normal University using a 3.0-T Siemens MRI scanner. A single-

shot T2*-weighted gradient-echo, echo-planar imaging (EPI)

sequence (TR/TE/flip angle = 2000 ms/40 ms/90u, matrix

size = 64664, voxel size = 3.163.164.8 mm3, slice thick-

ness = 4 mm, slice gap = 0.8 mm) was used to acquire each image

with 32 axial slices in the interleaved order. The subjects’ heads

were cushioned to reduce their head movements.

PA-GN(b) Affine Registration
Affine registration (AFR) is normally the first step of spatial

normalization (Figure 1), in which the optimal twelve-parameter

vector q derived from the affine transformation matrix M is

estimated to fit the source image (f) to the reference image (g). The

Gauss-Newton optimization (GN) algorithm is used to minimize

the cost function (CF), which is selected as the mean squared

differences between images f and g [8]. The iterative GN

procedure starts with the initial estimate q(0); at the nth iteration,

the value of q(n) is updated according to the following rule [35]:

q nz1ð Þ~q nð Þzd,n~1,2,3, � � � ð1Þ

where d is the iteration step.

Initial Estimate Provided by Principle Axes

Registration. In spatial normalization, the AFR from a random

individual image space to a standard stereotactic space is relatively

complex; this makes GN a tedious iterative process, particularly

when meeting an inappropriate initial estimate [33]. In traditional

AFR, the initial estimate for GN is extracted from the unit matrix,

which does not provide any prior information for registration.

Here, using the coarse-to-fine model, the principal axes registra-

tion (PA) [33], which is fast and simple, is used to provide a coarse

Figure 1. The workflow of spatial normalization (left) and
advanced affine registration (right). The image registration
includes affine registration (AFR) and nonlinear registration (NLR),
which are used to estimate the optimal normalization parameters. The
image transformation is then used to transform the source images to a
stereotactic space using the estimated parameters; tri-linear interpola-
tion is used in this study. The PA-GN(b) AFR method is advanced based
on traditional AFR, in which the PA provides a better initial estimate for
GN with the self-adaptive b parameter for the iteration step adjustment.
doi:10.1371/journal.pone.0103302.g001
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but more appropriate initial estimate for GN than the unit matrix

in the traditional AFR (Figure 1).

At first, images f and g are downsampled by 50% to reduce the

amount of data and save time. For image f, the mass of the voxel i
with the coordinates ui = (xi, yi, zi) is f(ui). The centroid of image f,
Cf = (xc, yc, zc), is then calculated using Equation (2) [32], and the

inertia matrix If is calculated using Equation (3a) [31].

Cf~

P
i

f uið ÞuiP
i

f uið Þ
: ð2Þ

If~

m020zm002 {m110 {m101

{m110 m200zm002 {m011

{m101 {m011 m200zm020

2
64

3
75, ð3aÞ

where

mpsr~
X

i

f uið Þ xi{xcð Þp yi{ycð Þs zi{zcð Þr: ð3bÞ

Three eigenvectors of If are the principal axes: ex = [e11 e21

e31]T, ey = [e12 e22 e32]T, ez = [e13 e23 e33]T; these axes lie closest to

the x-axis, y-axis, and z-axis of the Cartesian coordinate system

and point in the respective positive direction of the corresponding

axis. Next, the eigenvector matrix Ef = [ex ey ez] is obtained [31].

Similarly, the centroid Cg and eigenvector matrix Eg of image g,

where vi is the coordinate of voxel i, are calculated and saved to

avoid a repeated calculation due to duplicate templates in the

spatial normalization. To align the image f to image g, the PA is

used to superpose the centroids and principal axes of images f and

g, which can be defined using the following equation [32]:

ui~R vi{Cg

� �
zCf~M{1

PA vi, ð4aÞ

R~Ef E
{1
g : ð4bÞ

The parameter vector derived from the matrix MPA is the

optimized initial estimate, q(0), for GN.

Iteration Step Adjustment using the Self-adaptive b

Parameter. In addition to the initial estimate, the iteration

step has a large effect on the convergence speed of GN. In a

previous GN(a) method [35], the a parameter, which allows the

adaptive change of the iteration step, is adopted to make the GN

converge more rapidly. However, the linear search method used to

determine the a parameter that fits the Wolfe conditions [36] is

relatively complex and time-consuming. To meet the real-time

requirement of rtfMRI and improve the GN performance, a newly

defined b parameter, which also meets the Wolfe conditions, is

introduced to self-adaptively adjust the iteration step d in Equation

(1) as follows:

q nz1ð Þ~q nð Þzb nð Þd,n~1,2,3, � � � ð5Þ

where b(n) is b at the nth iteration (Figure 1). Here, the iterative

procedure is repeated until the change rate D(n) of the cost function

CF(n) reaches the following condition:

D nð Þ~
CF n{1ð Þ{CF nð Þ

CF n{1ð Þ v10{2,n~1,2,3, � � � ð6Þ

The iteration step d is closely linked to D(n). If the cost function

changes rapidly (e.g., at the beginning of the iteration), d could be

increased, and vice-versa (e.g., near the end of the iteration). The b
parameter related to D(n) is defined as follows:

b nð Þ~
1zl n~0

1zD nð Þ|l nw0

�
,0vlv1, ð7Þ

where l is the constraint factor that prevents excessive increments

in the step. If l is more than 1, then b(n) might be undesirable for

the Wolfe conditions. To ensure that b(n) adaptively adjusts d and

keeps the iteration process stable, l should meet the following

criteria: (1) the average number of iterations is as small as possible

and (2) the CF change curves and their iterations are smooth.

Here, it is recommended that l be set to 0.5 according to the

experimental results.

Nonlinear Registration with Appropriate Cutoff
Frequency

Following AFR, the nonlinear registration (NLR) procedure is

often used to reduce the gross shape differences that are not

accounted for by linear deformation (Figure 1). Here, the NLR

method is modeled by the combination of a series of discrete

cosine transform (DCT) basis functions, and the GN algorithm is

used to determine the optimal coefficients describing the nonlinear

deformations [30]. To save time in the context of maintaining

accuracy, the iteration stops when the change rate of CF is less

than 1022 same as the condition of Equation (6).

The number N of the coefficients is largely determined by the

cutoff frequency of DCT basis function, and it directly affects the

accuracy and runtime of NLR, which is defined by the following

equation:

N~
Lx|Ly|Lz

Lc
3

|3, ð8Þ

where Lx, Ly, and Lz are the Euclidean lengths of the reference

image in the x-axis, y-axis, and z-axis, respectively, and Lc

(measured in millimeters (mm) determines the cutoff frequency. In

the offline spatial normalization of SPM, the default Lc of 25 mm,

which is also sufficient for the structural MRI spatial normaliza-

tion, makes the runtime much longer than a TR. Thus,

considering fMRI images with a relatively lower spatial resolution

than the structural MRI image, appropriately increasing Lc is

reasonable and necessary for the online process.

Using the bisection method, the value of N with a default Lc of

25 mm is reduced by half of the previous value over three

instances. Determined by Equation (8), the corresponding Lcs are

31, 40, and 50 mm. The appropriate range of Lc is discussed to

balance the runtime and accuracy of spatial normalization, where

the accuracy is described using the mean squared error (MSE)

[37,38].
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Assessment Scheme of Online Spatial Normalization
The assessment consisted of two steps and was performed on a

personal computer with an Intel Core CPU (Intel(R) Core(TM) i7-

3770 CPU @ 3.4 GHz). First, compared with traditional AFR, the

accuracy and runtime of the proposed PA-GN(b) AFR were

validated in both simulation and real data. As described in

Figure 2, the simulation data were constructed based on each

subject’s first image using the given parameters in Table 1 to assess

the accuracy of AFR. The maximum distance Dmax(1,2), the matrix

correlation coefficient between two transformation matrices M1

and M2, and MSE were used to compare the difference between

the traditional AFR and PA-GN(b) AFR. The Dmax(1,2) was

defined as follows:

Dmax 1,2ð Þ~ max
i

Dmi,1{mi,2D
� �

, ð9Þ

where the coordinates mi,1, mi,2 were the resampled positions of

voxel i in the reference image transformed by M1 and M2,

respectively. In addition, the convergence rate and iteration

number were used to further assess the performance of PA-GN(b)

AFR.

Second, after integrating PA-GN(b) AFR and NLR with an

appropriate Lc, the accuracy of online spatial normalization was

assessed by brain activation in a finger-tapping task, compared

with the offline spatial normalization derived from SPM8. The

individual activation maps in the MNI space were obtained using

online and offline spatial normalizations, respectively; other

processes included realign, smooth using a Gaussian kernel in

which the full width at half maximum (FWHM) was 8 mm, and

general linear model (GLM) analysis. Both AFR and NLR of

spatial normalization were only performed for the first image in

real data. Next, using the estimated parameters, the image

transformation was performed to normalize the subsequent images

in this run, which had been realigned to the first image prior to

spatial normalization. To quantify the difference in the activation

maps made using the online and offline spatial normalizations, the

activation coverage rate and the activation center distance of the

whole brain and the defined ROIs were summarized. The

activation coverage rate g was defined as follows:

Table 1. Estimated affine parameters, differences between the two transformation matrices, MSE and runtime using two AFR
methods in simulation data.

Given Parameters Traditional AFR PA-GN(b) AFR

Translation/mm x 10 10.022310760.0179137 10.022311160.0179141

y 212 212.003475460.0124250 212.003475760.0124249

z 215 215.087436960.0374636 215.087436260.0374632

Rotation/6 x 10 10.006431560.0184493 10.006433160.0184481

y 220 220.029839760.0251481 220.029842360.0251474

z 30 29.983393860.0308602 29.983395060.0308604

Zoom x 1.1 1.099527260.0001853 1.099527260.0001853

y 1.2 1.198591860.0003134 1.198591860.0003134

z 0.9 0.903913560.0005948 0.903913560.0005948

Shear x 20.01 20.009795260.0003445 20.009795260.0003445

y 20.02 20.018838060.0005639 20.018838060.0005639

z 0.03 0.029360560.0003499 0.029360460.0003499

The maximum distance Dmax(r,e)/mm 0.154759060.0204909 0.154756560.0204910

The matrix correlation coefficient 0.999996160.0000026 0.999996160.0000026

Mean squared error (MSE) 0.009034860.0013417 0.009034860.0013418

Runtime (sec.) 0.433749660.0381319 0.331828360.0153614

Figure 2. Construction of simulation data. The source image (F) was the first image in the real data, which was zoomed 0.7 times in advance.
The reference image (G) was the source image transformed using the given parameters (Table 1).
doi:10.1371/journal.pone.0103302.g002
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g~
N1

N0
, ð10Þ

where N0 was the number of activation voxels using offline spatial

normalization and N1 was the number of co-activation voxels by

online and offline spatial normalization. The activation center A
was defined as (similar to the definition of centroid in Equation

(2)).

A~

X
i

tiai

X
i

ti

, ð11Þ

where ai was the Euclidean coordinate of activation voxel i and ti
was the t-value of the activation voxel i. The activation center

distance was the Euclidean distance (mm) between the activation

center following either online or offline spatial normalization.

Results

Comparison of Traditional AFR and PA-GN(b) AFR in
Simulation Data

The AFR parameters estimated using traditional AFR and PA-

GN(b) AFR, which fitted the image F to image G (Figure 2), were

both similar to the given parameters; the difference between each

pair was less than 1025 (Table 1). The maximum distance

(Dmax(r,e)) between the referenced matrix (Mr), which consisted of

the given parameters, and the matrix (Me), which consisted of the

parameters estimated using traditional AFR or PA-GN(b) AFR,

was much less than a voxel size (3.163.164.8 mm3) for both AFR

methods. In addition, the correlation coefficients of Mr with Me

derived from the two AFR methods were both almost 1 (Table 1).

A paired t-test between the MSE of traditional AFR and PA-

GN(b) AFR across subjects showed that there was no significant

difference (p = 0.9999).

The mean cost function change with the number of iterations

across subjects showed the convergence rate of the optimization

process using GN with or without different modifications (Figure 3,

left). The b parameter induced a faster GN convergence, and the

Figure 3. Simulation: convergence condition (left) and the required iteration number (right). (A) AFR without improvements; (B) AFR
with b parameter only; (C) AFR with PA only; (D) PA-GN(b) AFR. The mean iteration number using the traditional AFR was 14.0561.24, while that using
the PA-GN(b) AFR was 9.5060.50̧ which is approximately two-thirds of the traditional AFR requirement. Each dot represented a subject in the right
figure, and there were fourteen dots overlapping with the six dots, as shown.
doi:10.1371/journal.pone.0103302.g003

Figure 4. Real data: convergence condition (left) and the required iteration number (right). (A) AFR without improvements; (B) AFR with
the b parameter only; (C) AFR with PA only; (D) PA-GN(b) AFR. The mean iteration number using the traditional AFR was 15.7561.58, while that using
the PA-GN(b) AFR was 8.6061.07, which is approximately 50% of the traditional AFR requirement. Each dot represented a subject in the right figure,
and there were six dots overlapping with the fourteen dots, as shown.
doi:10.1371/journal.pone.0103302.g004
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PA provided an initial estimate for GN that significantly reduced

the cost function. The iteration numbers obtained using traditional

AFR and PA-GN(b) AFR for each subject were compared

(Figure 3, right) and showed that many fewer iterations were

required for PA-GN(b) AFR compared with traditional AFR.

Moreover, the runtime of PA-GN(b) AFR was 0.1 s less than that

of traditional AFR (Table 1).

Comparison of Traditional AFR and PA-GN(b) AFR in Real
Data

In real data, the first image was affine registered to the EPI

template of SPM8, in which the AFR parameters were also

estimated using both PA-GN(b) AFR and the traditional AFR.

The maximum distance (Dmax) between the matrices estimated

using traditional AFR and PA-GN(b) AFR was

0.131760.2293 mm, which was much less than one voxel size,

while the matrix correlation coefficient of the two matrices was

0.9999560.00014. Before AFR, the MSE between the first image

of real data and the EPI template was 0.730160.0701. After

traditional AFR, the MSE was reduced to 0.285160.0148, and

after PA-GN(b) AFR, the MSE was reduced to 0.285460.0152. A

paired t-test between the MSE of traditional AFR and PA-GN(b)

AFR across subjects showed that there was no significant

difference (p = 0.9582). In real data, the results of the convergence

rate and the iteration number were similar to the findings in the

simulation data (Figure 4); the runtime of PA-GN(b) AFR was

0.328560.0349 s, which was 0.2 s less than that of traditional

AFR (0.518760.0498 s).

Integration of PA-GN(b) AFR and NLR with Different
Cutoff Frequencies

After PA-GN(b) AFR, NLR with different Lcs was adopted in

real data to complete the online spatial normalization. The MSEs

were compared with those obtained using offline spatial normal-

ization via a paired t-test across subjects (Table 2). With an Lc of

50 mm, the MSE was significantly increased (p = 0.0497), whereas

there was no significant difference in MSE when Lc was 40 mm

(p.0.1). Thus, 40 mm was considered the maximum Lc. The

runtime was also summarized in Table 2. With an Lc of 25 mm,

the total runtime was more than one TR (2 s), while the runtime

with an Lc of 31 mm was less than one TR but was still slow over

the entire rtfMRI process. Thus, 31 mm was considered the

minimum Lc; Lc for online spatial normalization was in the 31–

40 mm range, and 35 mm was selected as the typical Lc value that

could maintain a balance between accuracy and runtime (Table 2).

Validation of Online Spatial Normalization via Brain
Activation

Comparison of the individual activation maps using online and

offline spatial normalization showed no significant differences

across subjects (paired t-test, FWE (family wise error) correction,

p.0.05). Furthermore, group activation maps obtained using a

one-sample t-test (p,0.001, cluster size .20) showed that the

supplementary motor area (SMA), premotor cortex (PMA),

primary motor cortex (M1) and cerebellum (Cere) were all

activated in the finger-tapping task using different spatial

normalization methods (Figure 5). Six regions defined in the

AAL atlas as the regions of interest (ROIs) were selected using the

WFU_PickAtlas tool [39], and the activation coverage rate and

activation center distance of each ROI were summarized (Table 3).

Table 2. Accurary and runtime of online spatial normalization with different cutoff frequencies.

Lc/mm Accurary Runtime (sec.)

MSE* Image registration Image transformation Total

25 0.262660.0135 2.052060.2475 0.082760.0083 2.134760.2453

31 0.264160.0135 1.273360.1126 0.080160.0066 1.353460.1149

35 0.265660.0136 1.037660.0860 0.079460.0064 1.117160.0850

40 0.266760.0138 1.004660.1038 0.080360.0067 1.084960.1040

50 0.271660.0143 0.859860.0705 0.078960.0054 0.938760.0734

*The MSE using offline spatial normalization with default Lc of 25 mm was 0.262460.0135.
doi:10.1371/journal.pone.0103302.t002

Table 3. Activation coverage rate and activation center distance in different brain regions.

ROI AAL Atlas Activation Coverage Rate Activation Center Distance

Rate (%) Subject Number Distance/mm Subject Number

Whole Brain – 94.5664.51 18/20 0.698660.6425 18/20

SMA Supp_Motor_Area 95.9464.05 18/20 0.488460.2586 20/20

Left PMA Precentral_L 96.8563.04 18/20 0.455460.3155 20/20

Right PMA Precentral_R 91.9569.22 16/20 0.716760.3644 20/20

Left M1 Postcentral_L 97.6761.36 20/20 0.366060.3238 20/20

Right M1 Postcentral_R 95.8864.84 18/20 0.686760.5081 20/20

Right Cere Cerebelum_6_R 96.8663.79 19/20 0.182160.1705 20/20

doi:10.1371/journal.pone.0103302.t003
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The mean activation coverage rates of the whole brain and the

defined ROIs were all greater than 90%, and most of the subjects’

coverage rates were greater than 90%. The activation center

distances were all within the size of the resampled voxel

(36364 mm3) and were predominantly less than 2 mm.

Discussion

The proposed online spatial normalization significantly im-

proved the performance of traditional AFR using PA and the self-

adaptive b parameter, while the accuracy was maintained the

same as with the traditional AFR. In addition, the proposed

method provided a reasonable way to determine the appropriate

cutoff frequency of the DCT basis function in NLR. Overall, the

proposed method completed within one TR and reached the

runtime requirement of rtfMRI on the current typical personal

computer, while its accuracy was relatively close to the offline

spatial normalization method.

The PA, which has coarse but global properties, is a rigid

registration method based on the shape and intensity of the entire

brain image. Without a suitable initial estimate, the GN method

would require a large number of iterations and might not reach

the global optimum [40]. It has been shown that the initial

estimate provided by PA could significantly decrease the iteration

number of GN, and it can be inferred the PA might have the

potential to reduce the probability that GN cannot find the global

optimum. However, there are some practical issues in PA. First, if

the scan orientation of the source image is not identical to the

Figure 5. The group activation maps using offline spatial normalization (left) and online spatial normalization (right). There were
slight differences, such as the areas indicated in the blue circles, but no significant differences were observed between the activation patterns.
doi:10.1371/journal.pone.0103302.g005

Figure 6. The negative effects of inter-run motion accumulation avoided using online spatial normalization. The images were
obtained from one subject’s first image in each of eight on-going runs of an rtfMRI experiment, which lasted approximately 90 mins. A. The same
slices of source images in different runs showed that the inter-run motion accumulated, and the image in the last run was different from the image in
the first run by almost one slice. B. The corresponding slices in the normalized images using offline spatial normalization. The normalization
parameters were estimated only in the first run, which simulated the processes of the previous spatial normalization methods [25,26,42]. It was
evident that the inter-run motion negatively affected the accuracy of the normalized images in the subsequent runs. C. The corresponding slices in
the normalized images by online spatial normalization using the parameters estimated in each run. The inter-run motion was effectively avoided, and
the normalized images were nearly the same.
doi:10.1371/journal.pone.0103302.g006
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orientation of the reference image (e.g., a sagittally scanned source

image and an axially scanned reference image), the estimate

obtained using PA will be incorrect [31]. To eliminate the

constraint on scan orientation, higher moments can be introduced

into the PA [41], which would cause extra computational loads.

Second, the PA requires whole brain information; if the brain is

partially scanned, the estimate by PA could deviate. The whole

brain scan is required by this method in practice.

The self-adaptive b parameter can improve the performance of

GN while maintaining stability and accuracy. The b parameter,

which is dependent on the change rate of cost function, could

achieve the same effect as the a parameter [35] on the self-

adaptive adjustment of the iteration step using the l constraint

factor to limit the adjustment extent. Moreover, the definition of l
is related to the complexity of the registration method. For

example, l should be smaller in a rigid registration.

As a real-time algorithm in rtfMRI, the proposed method can

also avoid the negative effect of inter-run motion on the accuracy

of the normalized images and ROI position. During the rtfMRI

experiment, which commonly consists of a series of runs and may

last a long time, it is impossible for the subject to keep his head

immobile; the inter-run motion thus accumulates and sometimes

cannot be ignored in the continuous runs (Figure 6A). The

accuracy of the normalized images using previous methods

[25,26,42] can be reduced by the inter-run motions along with

on-going runs (Figure 6B) because the normalization parameters

estimated in the previous run could be imprecise for the moved

brain images acquired in the following online runs. Furthermore,

in most rtfMRI experiments [20,21,43,44], the ROI spatial

position selected in only one previous run could also be biased

by the inter-run motion. The proposed online spatial normaliza-

tion can be performed in each run; it has the benefit of avoiding

these limitations (Figure 6C).

Online spatial normalization can be valuable for investigations

and applications of rtfMRI, but some details need to be specified

and improved when applying it in rtfMRI. In each run, the images

are normally aligned to the first image by head motion correction

before the normalization, which makes the rigid differences

between these realigned images relatively small. Thus, both AFR

and NLR can be only performed for the first image in each run.

Then using the estimated parameters, the image transformation is

performed to normalize the subsequent images in the same run,

which have been realigned to the first image prior to spatial

normalization. In addition, considering the DCT basis functions

are lack of physical meaning with respect to inter-subject

anatomical variability, other alternative NLR method with lower

computational loads could be used for online spatial normaliza-

tion. The improvement on NLR methods needs further investi-

gations.
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31. Bülow H, Dooley L, Wermser D (2000) Application of principal axes for

registration of NMR image sequences. Pattern Recognition Letters 21: 329–336.

32. Dhawan AP, Arata LK, Levy AV, Mantil J (1995) Iterative principal axes

registration method for analysis of MR-PET brain images. Biomedical

Engineering, IEEE Transactions on 42: 1079–1087.

Online Spatial Normalization for Real-Time fMRI

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e103302



33. Alpert NM, Bradshaw JF, Kennedy D, Correia JA (1990) The principal axes

transformation-A method for image registration. J Nucl Med 31: 1717–1723.

34. Zhao X, Zhang H, Song S, Ye Q, Guo J, et al. (2013) Causal interaction

following the alteration of target region activation during motor imagery training

using real-time fMRI. Frontiers in Human Neuroscience 7: 1–8.
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