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Abstract: Total polyphenol content and antioxidant capacity were estimated in various food and
nutraceutical samples, including cranberries, raspberries, artichokes, grapevines, green tea, coffee,
turmeric, and other medicinal plant extracts. Samples were analyzed by using two antioxidant assays—
ferric reducing antioxidant power (FRAP) and Folin–Ciocalteu (FC)—and a reversed-phase high-
performance liquid chromatography (HPLC), with a focus on providing compositional fingerprints
dealing with polyphenolic compounds. A preliminary data exploration via principal component
analysis (PCA) revealed that HPLC fingerprints were suitable chemical descriptors to classify the
analyzed samples according to their nature. Moreover, chromatographic data were correlated
with antioxidant data using partial least squares (PLS) regression. Regression models have shown
good prediction capacities in estimating the antioxidant activity from chromatographic data, with
determination coefficients (R2) of 0.971 and 0.983 for FRAP and FC assays, respectively.

Keywords: polyphenols; antioxidant capacity; high-performance liquid chromatography; ferric
reducing antioxidant power; Folin–Ciocalteu; principal component analysis; partial least squares

1. Introduction

Polyphenols are ubiquitously present in plants, as secondary metabolites, with one
or more phenolic rings in their structures. Thousands of polyphenols can be found in
plant-based products, and most of them can be classified, depending on their structures, as
phenolic acids, flavonoids, stilbenes, lignans, or tannins [1–3].

One of the most important effects of polyphenols, due to their great antioxidant ca-
pacity, is their ability to eliminate toxic products that harm organisms through oxidative
reactions. Several studies have proven the protective effects of plants against cancers or
cardiovascular diseases; these studies have investigated the role of polyphenols. Exper-
imental research has proven that polyphenols, in addition to preventing diseases, could
also impact propagation, even in healing.

The separation and determination of polyphenols are difficult tasks, due to the high
number of polyphenolic molecules and the matrix complexities of different food samples.
Analytical separation methodologies, such as high-performance liquid chromatography
(HPLC) and capillary electrophoresis (CE), coupled with several detection systems, includ-
ing UV–Vis, fluorescence, and mass spectrometry (MS), have been described. The latter is
presently the most powerful system used for the identification of polyphenols.
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While HPLC is the most common technique used for separating and quantifying indi-
vidual polyphenols, there are many spectrophotometric assays used to determine the total
polyphenol content and, consequently, the antioxidant capacity [4,5]. These spectrophoto-
metric assays are based on chemical reactions, some involving single electron transfer (SET)
processes, such as Folin–Ciocalteu (FC) and ferric reducing antioxidant power (FRAP) meth-
ods, while others rely on hydrogen atom transfer (HAT) mechanisms (e.g., oxygen radical
absorbance capacity (ORAC)), or a combination of the two types (e.g., 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic) acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH)
methods) [6–8]. Moreover, antioxidant capacity can also be estimated by electrochemical
techniques, especially via differential pulse voltammetry (DPV) [1,5].

Focusing on the redox methods evaluated in this work—FC is based on the reduction
of Mo (VI) to Mo (V), yielding a blue product often measured at 765 nm. As a drawback,
other reducing agents apart from polyphenols—such as ascorbic acid, some sugars, and
amino acids—can interfere with the determination, so the content of phenolic compounds
may be overestimated [9]. In a similar way, FRAP relies on the reduction of Fe(III) to
Fe(II) by the action of the antioxidants. In the presence of 2,4,6-tripyridyl-S-triazine (TPTZ),
Fe(II) forms a colored complex that absorbs at 595 nm. Although the assay is simple, the
absorption slowly increases over the reaction time and several hours may be required to
reach a steady state for some polyphenols (caffeic acid, tannic acid, ferulic acid, ascorbic
acid, and quercetin) [10,11].

The lack of solid equivalences between the different indices is a major shortcoming
of the spectrophotometric assay, regarding the estimation of the total antioxidant capacity.
These discrepancies may be attributed to differences in the mechanisms of the reactions
involved, and in sensitivity of each compound towards the index. Furthermore, the great
complexities of the food matrices result in potential sources of matrix effects and other
chemical interferences [1]. In this regard, chromatographic methods could be of great
interest to estimate both the overall and the individual phenolic content of the samples, to
try to establish correlations with the antioxidant features. For example, Alén-Ruiz et al.
evaluated the influence of major polyphenols on the antioxidant activities of twenty-two
Ribeiro red wines made from two different grape varieties. In the study, the correlations
between antioxidant activity measured by DPPH and the levels of the different polyphenols
obtained by HPLC were poor. This finding was attributed to the strong contribution to the
antioxidant activity of wines of the polymerized polyphenols, a fraction of which was not
detected by HPLC [12]. Similar results were obtained by Šeruga et al., who determined the
polyphenolic content in Croatian wines by reverse-phase HPLC and the antioxidant activity
by the FC method. The values obtained by HPLC were lower than those obtained by the
FC method, because some compounds, such as proanthocyanidins and various oligomeric
phenolics, were likely undetected by the chromatographic method. However, a very good
correlation was obtained between the results measured by HPLC and by the FC method,
expressed as mg gallic acid equivalents (GAE) [4]. Alonso et al. studied the antioxidant
activity of wine by-products and its correlation with specific polyphenolic content [13].
No correlation was found between the polyphenols studied and the antioxidant activity
of the different samples. This finding suggests that antioxidant activity is related to the
total polyphenolic content, despite some individual polyphenolic compounds contributing
more than others [13]. Studies performed to correlate different antioxidant assays, includ-
ing the FC method, and HPLC determinations of polyphenol cocoa content of Serbian
chocolates, showed very strong correlations between the antioxidant activity obtained from
all tested assays and the polyphenolic content determined by HPLC [14]. Hawryl et al.
studied the relationships between the chromatographic data and total polyphenolic content
(FC method) of different basil varieties using the PLS technique. The high value of the
determination coefficient (R2 = 0.9884) revealed a strong correlation between the content
of the phenolic compounds estimated by liquid chromatography and the total phenolic
content obtained spectrophotometrically [15]. It can be deduced from the referred studies
that the correlations among chromatographic and antioxidant data may depend on the ex-
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perimental circumstances as well as on the nature of the sample, suggesting that additional
research will be needed to draw more solid conclusions.

In this research, we compared the total polyphenolic content estimated from a global
chromatographic area at 280 nm with the antioxidant capacity of a wide variety of functional
foods and nutraceuticals. Samples were analyzed by HPLC–UV and two spectrophotomet-
ric indices (FC and FRAP) to evaluate the antioxidant power. A tentative identification of
the main individual contributors to the antioxidant capacity was carried out; we also used
HPLC coupled to mass spectrometry (HPLC–MS). The resulting data were characterized by
PCA and other chemometric methods to find out sample patterns related to compositional
features. Subsequently, HPLC fingerprints were correlated with antioxidant indices by
partial least square (PLS) regression.

2. Materials and Methods
2.1. Reagents and Solutions

The chemicals used in the extraction process, the spectrophotometric assays, and the
HPLC method, were methanol and acetonitrile (99.9%, UHPLC Supergradient, PanReac,
Barcelona, Spain), formic acid (≥95%, Sigma-Aldrich, St. Louis, MO, USA), hydrochloric
acid (37%, PanReac, Barcelona, Spain), Fe (III) chloride and sodium carbonate (Merck,
Darmstadt, Germany), FC reagent (PanReac, Barcelona, Spain), and 2,4,6-tripyridyl-S-
triazine (TPTZ) (Alfa Aesar, Kandel, Germany). Purified water was generated with an Elix
3 coupled to a Milli-Q system (Bedford, MA, USA). The extraction solvent consisted of
MeOH/H2O/HCl (70:29:1, v:v:v).

The standards used for spectrophotometric assays were: gallic acid (97.5%) purchased
from Sigma Aldrich (St. Louis, MO, USA) and 6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid (Trolox) purchased from Carbosynth (Berkshire, UK). Solutions of the
standards were prepared at 1000 mg L−1 (stored in amber vials at 4 ◦C) using dimethyl
sulfoxide (DMSO) as the solvent. The solutions for the calibration were prepared with
water to obtain concentrations in the range of 1 to 18 mg L−1 gallic acid and 0.2 to 9 mg L−1

Trolox, for FC and FRAP, respectively.

2.2. Instruments and Apparatus

An Agilent Series 1100 HPLC chromatograph (Agilent, Technologies, Palo Alto, CA,
USA) was used, equipped with a binary pump (G1312A), an autosampler (G1379A), a
degasser system (G1379A), diode array (DAD, G1315B), and fluorescence (FLD, G1321A)
detectors. The separation was carried out with a Kinetex C18 (150 mm length × 4.6 mm
I.D, 2.6 µm particle size).

The LC–MS system used for the tentative identification of polyphenols was an Agilent
1100 Series liquid chromatograph coupled to an Applied Biosystems 4000 QTRAP hybrid
triple quadrupole/linear ion trap mass spectrometer (AB SCIEX, Framingham, MA, USA).

A Lambda 19 double-beam UV–VIS–NIR spectrophotometer (Perkin Elmer, Waltham,
MA, USA) was used for the spectrophotometric assays. Measurements were performed
with 10-mm path length cells (QS quartz glass, Hellma, Müllheim, Germany). The ab-
sorbance was recorded at 765 nm for the FC assay and at 595 nm for the FRAP assay.

Complementary laboratory equipment comprised an ultrasonic bath (Branson 5510,
Danbury, CT, USA) and the Labofuge 400 centrifuge (Heraeus, Hanau, Germany).

2.3. Samples

A total of 53 samples from nutraceuticals, foods, and beverages were purchased from
supermarkets and herbalist shops in Barcelona (Spain) and Gdansk (Poland). Six types
of nutraceuticals (cranberry, cranberry with others, raspberry, black grape (seeds), black
grape (peel) with others and grapevine, and artichoke) under the pharmaceutical form
of gelatin capsules, 10 types of food products (turmeric, curry, pepper, chocolate, coffee,
tea, fruit juice, wine, beer, and sparkling wine) were analyzed. Table S1 summarizes the
characteristics of the samples.
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2.4. Sample Treatment

Two different procedures were followed, depending on the type of sample. Liquid
samples (juice, wine, beer, and sparkling wine) were filtered with a syringe through a nylon
membrane of a 0.45 µm pore size (20 mm diameter, Macherey-Nagel, Düren, Germany).
Filtrates were directly analyzed by HPLC or spectrophotometrically (antioxidant indices)
and data were expressed in milligrams of gallic acid or Trolox per liter of sample.

The extraction of polyphenols from solid samples relied on a solvent extraction pro-
cedure with an acidified methanolic solution, as described by Vidal-Casanella et al. [16].
Briefly, 0.2 g of sample were mixed with 10 mL of MeOH/H2O/HCl (70:29:1, v:v:v) in
15-mL conical tubes. Analytes were recovered by sonication for 30 min at room tempera-
ture. Afterwards, the extracts were centrifuged for 15 min at 3200 g and filtered through
nylon membranes of a 0.45 µm pore size. Extractions were carried out in triplicate. As
above, the resulting solutions were analyzed by HPLC and antioxidant index methods,
and concentrations were expressed in milligrams of gallic acid or Trolox per kilogram
of sample.

2.5. Spectrophotometric Indices

Folin–Ciocalteu (FC): 250 µL of FC reagent and 1 mL of water in an amber vial. After
8 min, 113 µL of a sodium carbonate aqueous solution 7.5% (w:v) and the appropriate
volume of the sample/standard in the calibration range (e.g., 1 to 18 mg L−1 gallic acid)
were added. The reaction was developed for 2 h. Finally, water was added (up to 5 mL);
after 2 h, the absorbance was measured at 765 nm using reagent blank as the reference.
The antioxidant capacity was expressed as a gallic acid equivalent. Determinations were
carried out in triplicate.

FRAP assay: the FRAP reagent was prepared by mixing 20 mmol L−1 FeCl3, 10 mmol L−1

TPTZ (with 50 mmol L−1 HCl), and 50 mmol L−1 formic acid aqueous solution in the ratio
of (1:2:10, v:v:v). The assay was performed by mixing 300 µL of the FRAP reagent with the
appropriate volume of the sample/standard in the calibration range (e.g., 0.2 to 9 mg L−1

Trolox). Then, water was added to obtain a final volume of 2.5 mL; after 5 min, the
absorbance was measured at 595 nm using reagent blank as the reference. The antioxidant
capacity was expressed as a Trolox equivalent. Determinations were carried out in triplicate.

2.6. Chromatographic Method

To obtain chromatographic fingerprints of the representative polyphenolic compounds
in the samples, an analysis via HPLC–UV/FLD was developed. The compounds were
separated by RP mode in a Kinetex C18 (150 mm length × 4.6 mm I.D, 2.6 µm particle
size) from Phenomenex (Torrance, CA, USA) using 0.1% (v/v) HCOOH and ACN as the
components of the mobile phase. The elution gradient was as follows: 20% to 40% ACN,
from 0 to 12 min (linear increase); 40% to 60% ACN, from 12 to 22 min (linear increase);
60% to 20% ACN, from 22 to 22.1 min (linear decrease). The column was conditioned with
20% ACN for 5 min before the next run. The volume of injection was 5.0 µL and the flow
rate was 1 mL min−1. The chromatograms were recorded by UV at 280 nm and by FLD at
280 and 330 nm as the excitation and emission wavelengths, respectively.

A quality control (QC) prepared by mixing 25 µL of each sample extract was analyzed
every 10 sample injections to assess both the repeatability of the chromatographic data and
the quality of the PCA model.

For identification purposes, the LC–MS/MS (MRM mode) chromatogram of samples
were compared to that of polyphenol standards. Chromatographic conditions were as
above. Regarding mass spectrometry parameters, polyphenols were detected in negative
mode. The ion spray voltage was set at −2500 V and the source temperature was 700 ◦C.
Nitrogen was used as a nebulizer and auxiliary gas and was set at 20, 50, and 50 arbitrary
units for the curtain gas, the ion source gas 1, and the ion source gas 2, respectively.
Declustering potential (DP), collision energy (CE), collision exit cell potential (CXP), and
ion transitions pairs were optimized for each available standard (Table S2).
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2.7. Data Analysis

A PLS-Toolbox (Eigenvector Research, Manson, WA, USA) with MATLAB was used
for the exploratory and classification studies of the 53 samples from nutraceuticals, foods,
and beverages.

Principal component analysis (PCA) was used for sample characterization using the
chromatographic fingerprints of samples. For the HPLC–UV analysis, the X-matrix con-
sisted of 177 samples × 3721 absorbance data, including 53 samples analyzed in triplicate
plus 18 QCs, and the time range was 1.15 to 25.95 min. The chromatographic segments cor-
responding to the front and the cleaning steps were removed since no relevant information
dealing with phenolic/antioxidant species was present. For the HPLC–FLD analysis, the
X-matrix consisted of 177 samples × 3330 fluorescence intensities within the working time
window. The chromatographic segments corresponding to the front and the cleaning steps
were removed from the analysis, since no relevant data dealing with phenolic/antioxidant
species were present. The plots of scores showing the distributions of the samples on
the first and second principal components (PCs) were used to differentiate the samples
according to their matrix. The loading plot allowed to identify the most discriminant
polyphenolic compounds.

Partial least squares (PLS) regression was applied to predict the response in the an-
tioxidant indices (Y-matrix) as a function of the chromatographic data obtained (X-matrix).
Theoretical information about the chemometric methods can be found elsewhere [17–19].

3. Results and Discussion
3.1. HPLC and MS Analysis

A reverse-phase HPLC method was used to analyze the wide variety of samples
(nutraceuticals, foods, and beverages). The optimization was focused on obtaining com-
positional profiles of the samples under study—as rich as possible at a minimum running
time. For this purpose, the QC sample was used as a representative average sample. A
suitable elution gradient based on previous studies is given in the experimental section. The
chromatogram of the QC sample obtained under these conditions is depicted in Figure 1.
Since sample extracts consisted of complex mixtures of a wide range of compounds with
different spectroscopic features and polarity, a gradient profile increasing the ACN percent-
age from 20% to 60% in 22 min (total running time, 27 min, including separation, cleaning,
and stabilization steps) was applied to achieve a reasonable separation of the compounds.

Representative chromatograms of each sample type recorded by UV and FLD are
depicted in Figure S1 (see Supplementary Materials). As can be seen, noticeable differences
depending on the nature of the sample can be found in both types of fingerprints. This
finding suggests that given products could be discriminated from each other based on the
differences in composition. In the case of UV chromatograms recorded at 280 nm, they
mainly contained information dealing with phenolic acids and some flavonoid families, so
that the overall areas could be reasonable indices of the global phenolic content closely re-
lated to the global antioxidant activity [20]. In contrast, FLD fingerprints were more specific
of flavanol and flavanone species, while the contributions of other phenolic compounds,
such as hydroxybenzoic and hydroxycinnamic acids, were negligible [21].

A tentative identification of some major phenolic components in each type of sample
relied on HPLC–MS (see Table S3). A targeted study using standards revealed that, in the
case of chocolate—epicatechin, catechin, gallic acid, procyanidin C1, and procyanidin B1
were major phytochemicals. The most significant flavonoids in tea were epigallocatechin,
quercetin, rutin, myricetin, and hesperidin. Moreover, caffeic and related compounds,
such as chlorogenic acid, caftaric, and coumaric acids, and 3,4-dihydroxybenzoic acid
and 4-hydroxybenzoic acid, were also important. Coffee extracts were rich in hydroxycin-
namic acids, such as ferulic and caffeic acid, and their derivatives, especially chlorogenic
acids. In the case of turmeric and curry, the most significative compounds were curcumi-
noids, including curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which is of
great interest because of their anti-inflammatory and antineoplastic activities; caffeic acid,
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coumaric acid, ferulic acid, 4-hydroxybenzoic acid, vanillic acid, and vanillin were also
abundant. Cranberry-based extracts were rich in flavanols—epicatechin, procyanidin C1,
and procyanidin B1—among which, procyanidin A2 stands out, due to its antibacterial
activity. For grape and wine products—caffeic, caftaric, and coutaric acid were the major
species, with gallic acid, ethyl gallate, epicatechin, and chlorogenic acid also occurring
at high levels. Raspberry showed some components similar to other berries, comprising
flavanols, such as epigallocatechin, epicatechin, and catechin, flavonols, such as quercetin,
and phenolic acids, such as caffeic and gallic acids. The main phenolic compounds in
artichoke extract were hydroxycinnamic acids (e.g., ferulic, coumaric, and caffeic acids),
and multiple hydroxybenzoic acids (e.g., gallic, 3,4-dihydroxybenzoic, 4-hydroxybenzoic,
vanillic acid and 2,5-dihydroxybenzoic acids). Finally, pepper samples contained some
flavonoids (e.g., quercetin) and phenolic acids (e.g., caffeic and 3,4-dihydroxybenzoic acids).
These results agree with previous studies that focused on the characterization of each
particular matrix [16,20–26].

Figure 1. Chromatogram of the QC recorded by UV at 280 nm.

3.2. Sample Characterization by PCA

Regarding polyphenolic fingerprinting, the data under study consisted of sample
chromatograms recorded by UV at 280 nm, in the working range of 1.15 to 25.95 min,
in which the most significant components were eluted, especially those corresponding
to phenolic acids and flavonoids. Moreover, to obtain additional information for the
compositional profiles, chromatograms recorded by FLD at 280 and 330 nm as the excitation
and emission wavelengths, respectively, in the working range of 1.22 to 25.19 min, were also
examined. The data pretreatment consisted of a correction of the baseline, standardization
by the sample mass, normalization, and autoscaling. Then, chemometric analyses by
the PCA of UV and FLD data were conducted. The UV model (Figure 2) showed that
QCs appear clustered, nearly in the middle of the model; therefore, this indicates a good
reproducibility of chromatographic data and suitability of the model built. PC1 mainly
discriminated among turmeric-based (on the right side) and other samples (on the left).
According to the information provided by PCA loadings, curry, especially turmeric samples,
were highly differentiated from the others by the content of curcuminoids, which presented
high retention times (22–23 min) because of their lower polarity compared with other
polyphenols. Conversely, those samples on the left side displayed more polar molecules,
such as hydroxycinnamic acids regarding wines and some berries. PC2 discriminated
samples as a function of the overall phenolic content, with the richest extracts located
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in the upper part of the graph (e.g., cranberry and grape-based products) while the less
concentrated ones were at the bottom (juices and other beverages).
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Figure S2 shows the characterization of the samples by PCA from FLD data recorded
at 280 and 330 nm as the excitation and emission wavelengths. The principal difference
between the UV and FLD model is that, in the first, the cranberry samples are more
dispersed than in the FLD model and mixed with samples made of black grape (peel) with
others and grapevine. Moreover, the variance explained with two PCs by the UV model
is higher than that captured by the FLD counterpart—51.25% and 45.04%, respectively.
Eventually, the results obtained by UV were considered better than by FLD. This finding
was attributed to the higher richness of the UV fingerprints, containing information from a
wide range of phenolic acid and flavonoid families, while FLD data were more limited to
flavanols and flavanones [21].

As a conclusion, PCA models revealed interesting information on the composi-
tions of the samples from both qualitative and quantitative points of view; they were
mainly distributed depending on the polarities of their phenolic components as well as
their concentrations.

3.3. Determination of the Antioxidant Capacity of Different Sample Classes by
Spectrophotometric Indices

The 53 samples from nutraceuticals, foods, and beverages were also analyzed via FC
and FRAP methods to assess the polyphenol content expressed as the antioxidant capacity
(g standard per Kg or L of sample). Under the current circumstances, the FC method was
linear in the range 1 to 18 mg L−1 gallic acid (determination coefficient, R2 = 0.994) and
the FRAP method was linear between 0.2 and 9 mg L−1 Trolox (R2 = 0.998). Figure S3
shows a comparison of the antioxidant capacities of different sample classes by FC and
FRAP indices.
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Based on these indices, samples with higher antioxidant activities were tea and berry
extracts (e.g., from cranberry, black grape, and raspberry), while beverages, such as beer,
peach juice, and sparkling wine showed lower activities. The comparison of results from
the different indices reveal that the antioxidant power of each sample type depended
on the FC or FRAP method because the sensitivities towards each type of polyphenol
were different [12]. For example, even though FC and FRAP reactions follow the same
antioxidant HAT mechanism and the redox potentials of both systems are similar, the
FC index is more sensitive in cranberry and raspberry samples, and the FRAP index in
artichoke, coffee, and tea samples. These discrepancies can be easily visualized in the
plot of FC versus FRAP data (Figure 3), in which, despite the correlation, was statistically
significant (R2 = 0.8259); some samples differed from the general trend.
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Figure 3. Correlation of the antioxidant capacity between Folin–Ciocalteu (FC) and FRAP.

The antioxidant power by FC and FRAP were also compared with the total polyphe-
nolic content estimated by HPLC–UV. This parameter, relying on the total area of chromato-
graphic peaks detected at 280 nm, was found to be an excellent descriptor of the overall
phenolic concentration, so we expected a reasonable correlation with the antioxidant ca-
pacity of the samples. Figure S4 shows the correlation studies of FC versus HPLC and
FRAP versus HPLC–UV data. In the two cases, correlations were statistically significant
(p < 0.05), with determination coefficients of 0.8595 and 0. 7755, respectively. These findings
suggested that the vast majority of compounds detected at 280 nm displayed phenolic
moieties in their structures that, eventually, provided antioxidant capacity. In this case,
the redox processes involved were mainly related to the oxidation of phenolic groups
to quinones.

3.4. Correlation between HPLC Fingerprints and Spectrophotometric Indices by PLS

PLS was applied to investigate the possibility of estimating the antioxidant capacity
from the chromatographic data. The PLS analysis was conducted with HPLC–UV finger-
prints at 280 nm as the X-matrix and the antioxidant capacities of the samples for FC or
FRAP indices in the Y-matrix. As indicated above, UV chromatograms at 280 nm were
taken in the working range of 1.15 to 25.95 min, in which those relevant compounds were
eluted, while avoiding interferences from the chromatographic front and cleaning range. In
any case, a PCA model was built to remove the outliers from the exploration of the graphics
of Q residuals vs. Hotelling’s T2.

For the regression model using FC results, six LVs were found optimal to carry out the
calibration, as was deduced by cross validation (CV) under a Venetian blind approach. In
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these circumstances, the variance explained was 77.53% for the X-block and 99.63% for the
Y-block. Figure 4a shows the scatter plot of FC indices measured vs. FC indices predicted
by cross-validation using PLS. As can be seen, the prediction was accurate, with a R2 of CV
of 0.983.
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For the FRAP prediction, a PLS model using HPLC fingerprints and FRAP results
was built in a similar way, as in the case of FC. Four LVs were found optimal in this case,
with a variance explained of 73.50% for the X-block and 98.16% for the Y-block. Figure 4b
shows the measured FRAP values vs. CV-predicted FRAP values, in which the R2 of CV
was 0.971. Again, these results indicate a good prediction with the two models, having a
high correlation with the HPLC data.

Figure S5 shows the regression vector for the prediction of antioxidant indices from
the chromatographic fingerprints by the FC and FRAP models. As observed, the differences
between the two indices depend principally on the sensitivities to different polyphenolic
compounds, since the same zones on the chromatograms positively affect both indices.

4. Conclusions

Chromatographic fingerprints recorded by HPLC–UV and HPLC–FLD demonstrated
great value in characterizing samples according to polyphenolic components. By comparing
the performance of the two approaches, HPLC–UV at 280 nm seemed to be more effective
than HPLC–FLD at 280/330 nm (excitation/emission wavelengths) when dealing with
the discrimination of food and nutraceutical samples. Hence, exploratory studies by
PCA using HPLC–UV fingerprints showed excellent sample clustering according to their
compositional fingerprints.

On the other hand, the analysis of the samples by FC and FRAP spectrophotometric
indices exhibited some differences in the antioxidant capacity, depending on the type of
sample. This finding was attributed to the different sensitivities of components (or samples)
toward each index. Despite these differences, similar overall conclusions were drawn from
both FC and FRAP results, showing that, regardless of the index, the sample extracts with
higher antioxidant capacities were berries (cranberry and raspberry), black grapes, and tea.

The potential relationship between chromatographic fingerprints and antioxidant
capacity was also investigated. In general, it was found that the overall chromatographic
areas of both UV and FLD profiles positively correlated with the FC or FRAP data. As a
result, the antioxidant capacity of a sample, in terms of either FC or FRAP equivalents,
was estimated by PLS using the chromatographic profile as the source of information.
In the two cases, a good predictive performance was obtained, which indicated that
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chromatograms could be successfully used to estimate the antioxidant capacities of these
food or nutraceutical extracts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11020324/s1. Table S1. List of samples analyzed and their
characteristics; Table S2. MRM transitions for the detection of polyphenols by LC–ESI–MS/MS;
Table S3. Principal polyphenols identified in the different types of samples; Figure S1. Chromato-
graphic profiles of a representative sample of each type: (a) UV (λ = 280 nm); (b) FLD (λex = 280 nm,
λem = 330 nm); Figure S2. Characterization of nutraceuticals, foods and beverages by PCA us-
ing the chromatographic fingerprints by FLD at 280 and 330 nm as the excitation and emission
wavelengths in the time range 1.22 to 25.19 min as the data. Scatter plot of scores of PC1 vs. PC2.
Classes identification: 1 = cranberry; 2 = cranberry with others; 3 = raspberry; 4 = black grape
(seeds); 5 = black grape (peel) with others and grapevine; 6 = artichoke; 7 = turmeric; 8 = curry;
9 = coffee; 10 = pepper; 11 = tea; 12 = juice; 13 = wine; 14 = beer; 15 = sparkling wine; 16 = chocolate;
Figure S3. Determination of antioxidant capacity by FC and FRAP indices as acid gallic or Trolox
equivalents, respectively, on different samples classes. Error bars indicate the standard deviation
from three independent replicates; Figure S4. Correlation studies: (a) FRAP versus HPLC–UV; (b)
FC versus HPLC–UV; Figure S5. Regression vector for the prediction of the antioxidant index vs.
variables (chromatographic range): (a) FC; (b) FRAP.
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