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Artificial intelligence (AI) has the potential to improve healthcare and patient safety and is currently 
being adopted across various fields of medicine and healthcare. AI and in particular computer vision 
(CV) are well suited to the analysis of minimally invasive surgical simulation videos for training and 
performance improvement. CV techniques have rapidly improved in recent years from accurately 
recognizing objects, instruments, and gestures to phases of surgery and more recently to remembering 
past surgical steps. Lack of labeled data is a particular problem in surgery considering its complexity, 
as human annotation and manual assessment are both expensive in time and cost, and in most cases 
rely on direct intervention of clinical expertise. In this study, we introduce a newly collected simulated 
Laparoscopic Surgical Performance Dataset (LSPD) specifically designed to address these challenges. 
Unlike existing datasets that focus on instrument tracking or anatomical structure recognition, the 
LSPD is tailored for evaluating simulated laparoscopic surgical skill performance at various expertise 
levels. We provide detailed statistical analyses to identify and compare poorly performed and well-
executed operations across different skill levels (novice, trainee, expert) for three specific skills: stack, 
bands, and tower. We employ a 3-dimensional convolutional neural network (3DCNN) with a weakly-
supervised approach to classify the experience levels of surgeons. Our results show that the 3DCNN 
effectively distinguishes between novices, trainees, and experts, achieving an F1 score of 0.91 and an 
AUC of 0.92. This study highlights the value of the LSPD dataset and demonstrates the potential of 
leveraging 3DCNN-based and weakly-supervised approaches to automate the evaluation of surgical 
performance, reducing reliance on manual expert annotation and assessments. These advancements 
contribute to improving surgical training and performance analysis.
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Minimally invasive surgery (MIS) offers numerous patient and organizational advantages, such as reduced pain 
post-operatively, lower incidence of operative and post-operative major complications, less scarring, smaller 
incisions, lower immune system stress, and faster recovery times1–4. However, it is not without risk; a study in the 
UK and Ireland found 47% of surgeons reported performing an error during MIS in the preceding 12 months, 
while 75% knew of a surgical colleague who had5. There are similar findings in the US, where 8.9% of surgeons 
reported making a major error in the previous 3 months4. Surgical complications occur most frequently during 
the first 10 procedures that trainee MIS surgeons perform5. For example, bile duct injuries from MIS, which are 
associated with a threefold increase in mortality in one year, cost over $1 billion in the US alone, with increased 
hospital stays and litigation. The rate of bile duct injuries has not improved over the last three decades, and the 
rate of incidence is three times higher in MIS compared to open surgery6. Furthermore, surgical technical errors 
are a leading cause of preventable patient harm, with a 2016 review finding that if medical errors were classified 
as a disease in the US, it would be the third leading cause of death7.

Mastering MIS skills is a significant undertaking, and requires skill acquisition well beyond those of open 
surgery3. Unlike open surgery, MIS lacks direct tactile tissue palpation, degrading tactile feedback as the surgeon 
is using instruments through trocar ports or robot manipulators. There is an inversion of the perceptual-motor 
correlation, due to the fulcrum effect posed by the patient’s abdominal wall, as the surgeon moves their hand 
in one direction the working end of the instrument moves in the opposite direction. There is also a loss of 
binocularity, as the surgeon must form impressions of 3D anatomical structures while tracking instruments, 
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devices, and other hidden structures from available 2D images from the monitor3,4. These are difficult, time-
consuming skills to master, and are prone to error, especially for trainee surgeons6.

However, a significant portion of teaching and learning occurs in the operating theatre, often following 
on from a period of simulation-based training using VR simulators or surgical box trainers where skills such 
as suturing, knot tying, needle passing, and instrument handling are honed8. The acquisition of high-quality 
surgical skills is a time-intensive process for experts with regard to both supervision and evaluation throughout 
the entire training pathway. Tools such as the objective structured assessment of technical skills (OSATS) were 
developed to reduce subjectivity, but it remains a time-consuming manual assessment9. Trainees must master 
basic skills such as instrument handling and tissue manipulation, then demonstrate competence in suturing and 
knot-tying before moving on to more complex tasks6,10. The use of video can be a powerful assessment tool for 
both discrete surgical skills and an entire surgical procedure. In fact, a positive correlation has been demonstrated 
between video-based surgical skill assessment and postoperative patient outcomes11,12. The automation of skills 
assessment potentially offers massive benefits in surgery, through computer vision techniques.

The rest of the paper is organized as follows. Section 1 will give background, related works, and their 
limitations. Section 2 will explain the methodology, and describe LSPD data acquisition, augmentation, and the 
proposed DL model. Experiments and their analysis are given in Section 3, the results are presented in section 4. 
Finally, Section 5 will conclude the paper.

Background and related works
Literature review: A literature review was undertaken to gain an understanding of the current use and state-
of-the-art CV for training and assessment in MIS. The search terms used in Google Scholar were initially 
‘Computer Vision’ and ‘Laparoscopic Surgery’ which yielded results across a spectrum of journals from surgery 
and computer science. Further terms such as ‘Neural Networks’, ‘Artificial Intelligence’, and ‘Machine Learning’ 
were used with combinations of ‘Laparoscopy’, ‘Laparoscopic’, and ‘Minimally Invasive Surgery’. The search was 
also widened to include ‘Robotic Surgery’ and ‘Robot Assisted Surgery’, as this is a form of computer and robotic-
assisted laparoscopic surgery. On each iteration, the journals were examined and fell across several domains, 
namely surgery, computer vision, and to some extent biomedical engineering. The search continued using 
Scimago to check both the H-index and Scimago Journal Rank (SJR) of each of the journals identified. Scimago 
was also used to identify other journals of relevance in similar categories not yet identified. Mostly the journals 
identified had high SJR scores of Q1. There were several with a lower score of Q2 and one with a score of Q3, 
however, several papers were identified in these journals that may be of use for the literature review. Once the 
SJR score was identified for specific journals, searches were widened further to include Scopus (n=169) and 
PubMed (n=69) for medical/surgical journals (Fig. 1). Further searches were carried out on IEEE for conference 
papers. Ninety-one papers were then selected from the first sweep of reading the title, and abstract. The abstract, 
conclusion, and main findings were then scrutinized to determine which papers to retain for the literature 
review based on relevance, reducing the final number in the literature review to fifty.

The literature reveals that AI and CV demonstrates considerable promise in the surgical field, particularly 
in the analysis of high-definition surgical video, which can contain up to 25 times the volume of data found 
in a high-resolution CT scan13. The use of AI and CV techniques in surgery has primarily focused on object 
detection and gesture recognition, with the aim of augmenting the process of surgical training and performance 
evaluation. Despite their potential, the lack of suitable, high-quality annotated data for training machine 
learning models remains a significant challenge, as manual annotation requires expert involvement, which is 
both time-consuming and costly. This bottleneck is especially problematic in complex surgical tasks, where 
expert annotation is necessary for accurate skill classification.

Several efforts have been made to mitigate this issue. For instance, crowdsourcing of annotations and the 
use of semi-supervised and unsupervised machine learning methods have been explored14. However, expert 

Fig. 1. Literature selection process.
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knowledge remains central for accurately assessing surgical performance, and these methods are not always 
sufficient for nuanced skill classification, particularly in laparoscopic surgery.

Most open-source laparoscopic datasets, such as Cholec80, SurgAI, Heidelberg Colorectal, LapGyn4, and 
Dresden Surgical Anatomy, are designed for detecting surgical phases, tracking anatomical structures, or 
instrument identification15–19. These datasets, while valuable for instrument tracking and phase recognition, 
do not lend themselves easily to classifying laparoscopic surgical performance skill levels (i.e., novice, trainee, 
expert) in the simulated environment. Similarly, while the JIGSAWS dataset was designed for surgical robotic 
gesture and skill assessment, it does not provide the necessary annotations or features to evaluate laparoscopic 
surgical skills in a simulated setting20. As such, there is still a significant need for datasets that can easily lend 
themselves to the task of automating the classification of surgical skill performance levels.

Many previous studies in the past have described successful systems for assessing surgical training involving 
tracking instruments, navigation, gesture recognition, and real-time knowledge of their pose with respect to 
underlying anatomy and tissue. These systems have employed techniques such as electromagnetic tracking, 
optical tracking, and robot kinematics21–23. In the early 2000s, CV approaches for instrument tracking were 
introduced, using pre-processing, feature extraction, and filtration methods24. Other techniques like Continuous 
Adaptive Mean Shift (CamShift) have aimed to replicate the actions of surgeons during simulator-based 
training19. A common approach is tracking, which has been framed as an object detection problem in which 
image features are used to estimate the position and orientation of instruments. Instrument tracking and gesture 
recognition in laparoscopic surgery have generally relied on traditional CV techniques, including the use of 
colour and gradient features to detect instruments and surgical gestures26–28. While reasonably effective, these 
techniques suffer from limitations due to lighting reflections and occlusions during surgery, which can distort the 
appearance of instruments and interfere with tracking accuracy1,26. As a result, some researchers have turned to 
semantics-based approaches, which use classification algorithms to identify surgical objects based on pixel-level 
features24. However, these traditional approaches still struggle with capturing the temporal dynamics inherent in 
surgical procedures, which requires an approach capable of modelling both spatial and temporal data. Automated 
classification of MIS skills has been described using spatiotemporal motion approaches like HOG and histogram 
of flow (HOF). Hidden Markov models (HMMs) have been used to represent surgical motion flow25,26. Other 
approaches include linear dynamical systems and bag of features (BOF), which extract features from images 
to build a visual vocabulary or bag of visual words27,28. Support vector machines and random forests are also 
common machine-learning techniques in MIS29–31. With the introduction of Deep Learning (DL), significant 
improvements have been made in surgical phase identification and instrument detection. The first successful 
application of DL in MIS was in 2016 with the development of EndoNet, a convolutional neural network (CNN) 
used for phase detection in laparoscopic surgery32. CNNs have proven to be particularly effective in recognizing 
surgical objects and gestures, although they are typically more suited to still images than video sequences, which 
require the ability to model temporal dependencies. Researchers in the EndoNet paper augmented a CNN with 
a HMM technique to improve temporal modelling and identification consistency33. Other researchers have 
since reported the successful use of combining CNNs and HMMs, as well as CNNs and gradient-boosting 
techniques34,35. Gradient boosting is an ensemble technique using decision trees. This led to further research 
in improving temporal learning in MIS with the addition of long short-term memory (LSTM) neural networks, 
which allows for more efficiency in identifying phases of surgery and tracking surgical instruments. Combining 
a CNN and LSTM gives the advantage of more efficiently identifying phases of surgery and tracking surgical 
instruments36,37. The EndoNet researchers published follow-up research comparing a CNN with HMM versus 
a CNN with LTSM37. Jaccard scores for the CNN with LSTM were 0.64, versus 0.62 for the CNN with HMM. 
Accuracy for the CNN with LSTM was 80.7% versus 71.1% for the CNN with HMM. A significant shortcoming 
of the HMM is its Markov assumption, which is that the current state depends solely on the previous state. 
The LSTM, a special type of recurrent neural network (RNN), differs from standard deep neural networks as it 
has a “memory” function, whereas standard feed-forward deep neural networks work on the assumption that 
outputs depend solely on their current input, whereas the output of an RNN depends on the sequence of prior 
information. However, traditional RNN architectures struggle with long-term dependencies, causing an RNN 
model to have difficulty accurately predicting the current state in longer sequences. LSTMs handle these long-
term dependencies by using memory blocks and gates to control the flow of selected useful information to the 
next cell, discarding irrelevant information38.

Some efforts have improved surgical phase identification accuracy using CNNs and LSTMs, with rates 
between 85-90%39–42. These rates are similar to, or slightly better than, inter-rater agreements between expert 
surgeons when annotating the same images. Deep neural networks have been used for detecting and tracking 
surgical instruments with an average precision of 91%43. However, tool detection and surgical phase have been 
reported separately in most works using CNNs and LSTMs. The first successful report using a CNN and LSTM 
to identify surgical phases and instruments in MIS was in 2020 by Jin et al.44, who reported precision of 86.9, 
recall of 88.0, and accuracy of 89.0% when identifying surgical phases, and 89.1 mean average precision for 
identification of surgical instruments. A recent study by Bamba et al.45 used a YOLO V3 CNN which attained 
good but slightly less impressive results with 80% precision, recall of 92%, and accuracy of 83%. Others reported 
using a CNN and LSTM architecture to identify instruments and phases of surgery, with a mean average precision 
of 89.1% and 87.4%, respectively46. Some researchers have demonstrated distinguishing between novices and 
experts using traditional CV methods including background subtraction, thresholding, Hough transform, and 
straight-line detection for tasks such as suturing, knot tying, needle passing and instrument handling, mostly 
using simulators or surgical box trainers47. One study successfully differentiated experts from novices using 
performance metrics like task completion time, velocity, work density, and instrument cross-time. Experts 
consistently outperformed novices across all metrics and showed greater use of their left hand47. Other research 
has focused on systems for detecting and tracking instruments while calculating performance metrics through 
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motion analysis parameters48. Although, these systems showed promise in distinguishing novice from expert 
laparoscopic surgeons, a key limitation was that instrument tips were occasionally obscured by other objects, 
affecting the accuracy of position data.

Limitations and key findings: Despite the reported success of DL in detecting surgical phases and tracking 
instruments, there is a notable gap in the literature regarding the automated classification of laparoscopic surgical 
skill levels in simulated settings. There is also a gap in existing datasets to automate this problem. To fill this 
gap, we introduce the Laparoscopic Surgical Performance Dataset (LSPD), a newly collected dataset specifically 
designed to classify simulated laparoscopic surgical skill levels. The LSPD dataset addresses the lack of datasets 
that can classify skill levels in laparoscopic surgery training and represents a significant advancement in the field. 
Unlike existing datasets, which focus on tracking instruments or recognizing phases of surgery, the LSPD dataset 
is specifically tailored to evaluate skill performance in laparoscopic surgery at different levels of expertise: novice, 
trainee, and expert. This dataset is designed for weakly-supervised learning, reducing the reliance on highly 
detailed frame-level annotations, a major bottleneck in surgical AI development14,49. Furthermore, this study 
explores the application of 3D Convolutional Neural Networks (3DCNNs) for classifying simulated laparoscopic 
surgical skill levels based on the LSPD dataset. While 3DCNNs have been successfully used in medical imaging 
to analyze volumetric data such as CT and MRI scans, their application to spatiotemporal feature learning for 
skill classification in laparoscopic surgery is novel. To our knowledge, this is the first study to apply 3DCNNs 
to spatiotemporal learning in the context of surgical skill classification, and we argue that this approach has the 
potential to overcome many of the challenges faced by traditional CV and deep learning methods in this domain. 
By combining the LSPD dataset with a 3DCNN architecture, we aim to demonstrate a promising new approach 
to automatically classify performance skill levels based on simulated laparoscopic surgery, with minimal expert 
annotation. This weakly-supervised approach represents a significant step forward in the development of 
scalable, automated systems for evaluating surgical skills, which could ultimately streamline the training and 
assessment of laparoscopic surgeons, and other healthcare professionals.

Methodology
Laparoscopic surgical performance dataset (LSPD) -data acquisition
A new dataset was acquired and analyzed to assess simulated laparoscopic surgical performance. The LSPD was 
created to address a deficiency in the available resources for evaluating surgical skills in laparoscopic simulation 
training. Unlike existing datasets, which are largely focused on detecting and tracking surgical instruments, 
identifying anatomical structures, or analyzing surgical phases and robotic gestures, the LSPD is specifically 
designed to assess the procedural fluency and technical proficiency of surgeons within simulated laparoscopic 
environments. This specialization makes the LSPD an essential tool for advancing research in surgical skill 
assessment and simulation-based training programs. The participants for data collection were recruited from 
local doctor-in-training programs and consultant-level doctors. The study aims to automatically classify 
performance levels into novice, trainee, and expert groups, and assess the ability of a deep learning model to 
discriminate skill performance in laparoscopic surgical training skills. Novices are intern doctors with less 
than 12 months of experience, trainees are those in specialist training programs, and experts are consultant-
level surgeons and gynecologists, or senior registrars who have completed their specialist training. All novices, 
trainees, and experts were recruited voluntarily from university-affiliated teaching hospitals in the Cork City 
region. Ethical approval was obtained from the Social Ethics Committee (SREC) at University College Cork, and 
the study followed all guidance and regulations as set out by SREC.

Three laparoscopic surgical simulation training skills were identified using the LaparoTM laparoscopic 
surgical simulator. Participants watched three short LaparoTM training videos on how to perform the skills 
before attempting each skill54. They could re-watch the videos, ask questions, familiarise themselves with the 
instruments, or practice a separate skill before attempting any of the three skills. Many researchers have a time 
limit for attempting a skill, however, this leaves the less experienced at a significant disadvantage, can introduce 
significant measurement bias, and lastly, time as a metric for performance is controversial55. Short videos were 
collected of participants performing basic laparoscopic surgical simulation skills within the LaparoTM system, 
from its camera connected to a laptop computer. The three skills varied from relatively easy to very difficult.

The study involved 40 participants, including 8 experts, 12 trainees, and 20 novices. The three tasks were: 
(1) bands, moving elastic bands onto pegs (Fig. 2, left); (2) stack, stacking balls on stacks (Fig. 1, center); (3) 
tower aligning rubber triangles into a tower (Fig. 1, right). Videos were collected from each group, with some 
performing all three skills multiple times. Some videos were discarded due to obstructed views, to reduce bias 
in the system. The number of videos was, for the expert group: bands=4, stack=9, and tower=6; for the trainee 

Fig. 2. Skills: Bands (left), Stack (center), Tower (right).
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group: bands=10, stack=11, and tower=18; and for the novice group: bands=8, stack=21, and tower=19. This 
resulted in a total of 106 videos. OpenCV was used to edit the videos to remove noise at the beginning and end 
while preserving participant actions56. The last 60 seconds of each of the video clips in the dataset was used for 
the analysis due to computational constraints.

Training a deep learning-based video classifier can be challenging due to the need for a large amount of data 
to avoid over-fitting and to have a generalized model. Data augmentation increases the size and diversity of 
the training dataset by applying various transformations to the original dataset. It creates new instances of the 
data with minor alterations while preserving the semantic content of the images57. Data augmentation acts as a 
form of regularisation, preventing over-fitting by introducing variations in the dataset, increasing the model’s 
robustness and ability to generalize to unseen data. It also minimizes the model’s sensitivity to small changes 
in input videos58. Data augmentation exposes the model to a wider range of data changes, including noise, 
occlusions, and varying lighting conditions. Hence, it reduces bias in training data by introducing more diverse 
samples, leading to a more balanced and representative dataset58.

For this dataset, the specific forms of data augmentation we applied were: (1) Gaussian blur; (2) adjustments 
to brightness and contrast; (3) salt and pepper noise; (4) horizontal flipping. Gaussian blur of σ = 0.2 is applied 
to each pixel using a weighted average, determined by a Gaussian kernel, achieving a slight blur but retaining 
essential spatial information59. The brightness α was adjusted to 1.2 to increase the brightness level in the 
samples. The contrast was adjusted to β = 1.2 to enhance the difference between light and dark areas of video 
frames, making edges and features more pronounced resulting in a noticeable but not overly drastic increase in 
contrast transformation in the samples60. In addition, salt and pepper noise was added to about 2% of the pixels 
in each frame, to prevent excessive distortion of the original data. The final data augmentation technique was 
horizontal flipping, creating a mirrored version of each frame. This technique doubled again the transformed 
dataset and made the model invariant to horizontal orientation61. The final dataset contained 2244 videos in 
total.

A weakly supervised approach was taken to discriminating between surgical performance levels using video 
classification. In this approach, a machine learning model is trained with coarse or noisy labels, rather than 
fully annotated data. In this case, the labels provided during training do not correspond directly to specific 
frames or segments of the video but instead indicate general performance levels across entire procedures. 
General annotation is achieved from the folder-based organization of videos representing different surgical 
skills and operator levels. This contrasts with fully-supervised learning, where precise labels are available for 
each frame or action within the video which may be datapoints that pinpoint moments or actions within videos 
that contributed to the overall performance assessment. Therefore, a weakly-supervised video classifier must 
infer relevant features from the data, often relying on global cues rather than fine-grained, frame-by-frame 
information. This might involve recognizing overall procedural fluency, movement smoothness, or the time 
taken to complete specific steps, rather than detecting individual errors or successes. The absence of detailed 
annotations can potentially introduce ambiguity between classes, however,  there are clear benefits to this 
approach in significantly reducing expert annotation time and effort.

Proposed 3DCNN architecture
Standard 2D-CNNs use a two-dimensional filter to perform convolutions, moving the kernel in two directions. 
There are also 1D and 3D variants. 1D-CNNs slide kernels along one dimension and are generally used with 
time-series data. 3DCNNs perform convolutions in three dimensions and are mainly used for video analysis 
or volumetric data processing, such as MRI or CT scan analysis62,63 (Fig. 3). Kernels are small tensors that 
perform convolution operations on input images, defining a specific pattern or transformation applied to extract 

Fig. 3. Spatial and temporal kernel sliding in a 3DCNN. [figure from www.keras.io].
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features59. Each element of the kernel is a weight, which is learned during the training process through back-
propagation. They are good at detecting simple features like edges, corners, and textures63. Each kernel in a CNN 
layer is responsible for detecting different aspects of the input data.

The 3DCNN model structure, with four 3D convolution layers (Fig. 4), is optimized for classifying videos. The 
first, second, third and fourth layer have 64, 128, 256, and 512 kernels of size 3x3x3, respectively. Following each 
layer, there is a batch normalization, max-pooling, and dropout layer to normalize and reduce the complexity of 
the model. The final output layer has either one or three neurons depending on whether it is working as a binary 
classifier or a multi-class classifier. The image size was reduced from its original 1280 x 720 to an input of size 128 
x 128 for computational efficiency; however, the essential spatial information was retained at these dimensions 
(Fig. 5, left). Zero-padding was used to ensure all frames were the same length. Frames were normalized by 
dividing the pixel values by 255 to bring them within the range [0, 1].

The ReLU activation function is used which introduces non-linearity to networks, enabling them to model 
complex relationships in video frames with diverse patterns and features64. It does not suffer from vanishing 
gradients, which occur when the gradients of activation functions become very small or close to zero. This 
results in slow or stalled learning in the early layers. ReLU may lead to more efficient learning and generalization 
through sparse activation, as activated neurons are either fully active when the input is positive or completely 
inactive when the input is negative65,66.

A batch normalization layer is introduced after each 3D convolutional layer to improve network training 
and convergence. This layer normalizes and stabilizes intermediate activations within the network during each 
training batch, reducing the risk of slow convergence, vanishing, or exploding gradients. Batch normalization 
standardizes the mean and variance of each feature across a batch, bringing the data closer to a standard Gaussian 
distribution66. It also reduces internal covariate shift, allowing the network to focus on learning higher-level 
features. Batch normalization can reduce dependence on hyperparameters for performance, such as learning 
rate, and accelerate model training. Generally, networks trained using batch normalization converge faster than 
those without. Batch normalization introduces a small amount of noise to the network, similar to dropout or 
weight decay, which helps prevent the network from relying too heavily on specific activations and encourages 
learning more robust features. This layer can be effective when used in combination with other regularisation 
methods67.

Following each batch normalization layer is a max-pooling layer that uses a 2x2x2 window to slide over 
the input feature map, which down-sample the spatial dimensions of the feature maps while preserving the 
most important features (Fig. 5, right). This process reduces computational complexity and improves translation 
invariance66–68.

Fig. 5. Feature maps, left: input image, centre: conv layer, right: max pooling layer.

 

Fig. 4. Model architecture.
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Following each max-pooling layer, dropout layers are introduced which are a regularisation technique that is 
used to prevent overfitting and improve generalization of the network. The first three dropout layers have small 
dropout rates of 0.1 and 0.2, while the final two have a rate of 0.5, reflecting approximately half of the neurons 
in that layer being dropped out in that training iteration. During the inference or prediction phase, no neurons 
are dropped out, but the weights of the remaining neurons are scaled down by the dropout rate to account for 
more neurons being active68.

The input in the network is then converted into a one-dimensional array through a flatten operation, which 
reshapes the multidimensional tensor into a one-dimensional vector while maintaining its order. This process is 
a transition between convolutional layers and fully connected layers, as it takes the multi-dimensional tensor as 
input and outputs a one-dimensional vector to the fully connected layers. The flatten layer in a neural network 
serves as a transition between these layers, ensuring all elements are laid out sequentially in a single row66–70. The 
first fully connected layer has 1024 neurons, while the second has 512 neurons. The final fully connected layer is 
the output layer, which consists of three neurons representing each class, expert, trainee, and novice after passing 
it through the sigmoid activation function.

It uses binary cross entropy as the loss function, optimized with Adam, and accuracy measure as a 
performance metric. The goal is to predict the correct class label for each input. The output is a probability score 
for each class, with the binary cross-entropy loss measuring the difference between the predicted probability 
and true label. The loss function encourages the model to assign high probabilities to the correct class and lower 
probabilities to the opposite class. The model is penalized when the predicted probability deviates significantly 
from the ground truth65. Gradient descent is used to update the model’s weights and minimize the loss function. 
This optimization process adjusts the model’s parameters to improve its ability to classify input videos, resulting 
in higher probabilities for positive videos and lower probabilities for negative ones72.

The 3DCNN video classifier underwent cross-validation to reduce overfitting and ensure robust evaluation. 
The dataset was randomly divided into k=5 subset folds, and the model was trained and evaluated k=5 times 
using different folds as validation and training sets. This method provides a more reliable estimate of the model’s 
performance on different dataset subsets. All experiments were conducted using Google ColabTM, a cloud-
based Jupyter notebook, and the NVIDIA TeslaTM A100 GPU, Google’s top-performance GPU.

Experiments & results analysis
Statistical analysis of videos
Three skills were chosen to discriminate between performance level and were considered at three different 
difficulty levels ranging from easy to very difficult with bands being easy, stack moderately difficult and tower 
very difficult. However, statistical analysis of the videos was carried out to quantify this assumption by gauging 
skill difficulty, and as a benchmark for the model. The assumption was that an easy task would be easy for all 
performance groups, however it may be difficult for the model to discriminate between performance levels. A 
very difficult task could be a real discriminator between performance levels, and it would be easier for the model 
to discriminate between groups if there is less ambiguity between the performance level groups. The scoring 
system developed for this study was intentionally designed as a basic tool to gauge the relative difficulty of 
different tasks (band, stack, and tower). The primary objective was to establish a benchmark for task complexity, 
rather than to evaluate detailed performance outcomes. This tool focuses on end results rather than the nuances 
of procedural performance, offering a straightforward measure to facilitate comparison across the different tasks.

Time was recorded from the start to the end of each skill, and the median of each group was calculated. A 
basic scoring system was developed for each skill, with a total score of 8/8 for the stack skill. The final score was 
calculated by the number of balls remaining on the stacks at the end of the skills video. The total performance 
score for the band skill was 6/6, with 1 for each band moved correctly to the correct pegs and 1 for exact 
symmetry with the starting position pegs. The total score for the tower skill was 12/12, with 1 for each of the six 
triangles placed in the correct location and 1 per triangle for the exactness of direction and angle of points. The 
median was chosen as the dataset was small with a few outliers and therefore may be a more stable and reliable 
estimate of the central tendency65,76.

Two healthcare simulation experts marked 30 videos of skills, with inter-rater reliability measured using 
Cohen’s Kappa. The stack skill had very high agreement (Cohen’s Kappa = 1.0), while the tower skill (Cohen’s 
Kappa = 0.76), and the band skill (Cohen’s Kappa = 0.72) had moderately high agreement (Fig. 6a)66. As the aim 
is to measure the performance of the model, rather than human performance, this was considered sufficiently 
robust for this study.

The median time of experts to complete the stack skill was 3.47 minutes, compared to 5.11 minutes for 
trainees and 5.45 minutes for novices. The median performance score for experts for the stack skill was 8/8. 
This is compared to a median performance score of 6 for trainees and 4 for novices for stack skill. The median 
time of experts to complete the tower skill was 4.98 minutes, compared to 7.46 for trainees and 6.47 minutes for 
novices. The median performance score for experts for the tower skill was 11.5/12. This is compared to a median 
performance score of 0 for trainees and 2 for novices for the tower skill. The median time of experts to complete 
the band’s skill was 1.17 minutes, compared to 2.17 minutes for trainees and 3.2 minutes for novices. The median 
performance score for experts for the band’s skill was 5/6 (Fig. 6b). This is compared to a median performance 
score of 5 for trainees and 4 for novices for the band’s skill. See the distribution of performances across skills in 
Fig. 7 and time plotted against performance for each skill in an area plot in Fig. 8.

Interpretation of statistical analysis of video results
For the stack skill, all experts got a full performance score of 8/8 and finished the skill in a considerably 
faster time than both the trainees and novices. The trainee’s performance was 6/8 compared to the novice’s 
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performance of 4/8 for this skill and trainees finished the skill marginally faster than the novices, 5.11 minutes 
versus 5.45. See the relationship trend between performance score and time for each group for the stack skill 
(Fig. 9). The red trend line represents the linear relationship between performance score and time67,76. With a 
median performance score of 11.5 for experts, compared to 0 for trainees and 2 for novices, the tower skill was 
a difficult skill for all groups. Experts completed the skill in 4.98 minutes, whilst trainees took 7.46 minutes to 
complete it, and novices 6.47 minutes (Fig. 10). Although it would have appeared that novices were speedier and 
performed better, this was not the case. By the time the video ended, some of the trainees had almost erected 
the tower correctly when they unintentionally toppled it. This skill was also the most challenging, and many 

Fig. 8. Area plots of time and performance for each skill. *In cases where participants scored full performance 
scores or zero, the plot collapses to a line.

 

Fig. 7. Distribution plots of performance for each skill.

 

Fig. 6. (a) Inter-rater reliability of the scoring system for each skill, (b) Median time and score for each skill 
with p-values, SD, and H-statistic.
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novices gave up after an attempt to stack only a few triangles. In fact, the median tower built by the trainee 
group was 3, over a median time of 6.00 minutes. The range of the size of tower built in this group was zero to 
five and attempts to build a tower ranged from once to four times. In one instance a trainee built four towers in 
a 12-minute window of 4 triangles high but knocked it over each time. The rudimentary scoring system simply 
considers the single tower that is upright at the conclusion of the video, not actual participant performance 
throughout the entire video.A simple scoring system was selected to provide a consistent and easily interpretable 
benchmark for assessing task difficulty across different procedural skills. However, we acknowledge that this 
basic system may not capture the full complexity of procedural execution, particularly for tasks like ’tower’ that 
require a more nuanced assessment of performance throughout the procedure, where focusing solely on the end 
result may overlook important aspects of procedural performance.

For the band’s skill, both the experts and trainees received the same performance score of 5 out of 6. 
However, the experts completed the skill more quickly, in 1.17 minutes as opposed to 2.17 minutes. The novice’s 
performance was 4, and they took longer to complete it, taking 3.2 minutes (Fig. 11).

It is not surprising that the experts were faster at completing every skill and scored the highest performance 
score for all three skills. The tower skill was the most difficult and a real discriminator between expert and non-
expert as reflected in the performance scores. There is the odd outlier within the novice group that completed 
skills both quickly and with high performance scores, an interesting example of which can be seen at the top 
left-hand corner of the tower skill in Fig. 12. This novice had never undertaken any laparoscopic training, was 
on a medical rotation, and denied playing a lot of video games. Anecdotally there is a perception of cross-over 
and correlation between video game playing and laparoscopic skills, however, evidence to support this remains 
controversial77,78.

3DCNN classification results
The proposed 3DCNN model was tested in two ways i.e. as a multiclass classifier and as a binary classifier. Firstly, 
it is trained to classify among performance classes novice, trainee, and expert over the three skills. However, the 
model frequently misclassified instances and had poor test accuracy, especially for the tower and bands skills, as 
seen in the confusion matrices Fig. 13. The testing accuracy of the stack skill (i.e. 79%) is higher than the other 

Fig. 10. Relationship trend between performance and time: Tower skill.

 

Fig. 9. Relationship trend between performance and time: Stack skill.
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two, tower (i.e. 49%), and bands (i.e. 54%) skills (Table 1). This aligns with the results shown in the statistical 
analysis i.e. tower is the most difficult of the tasks.

In the second test, the cases classed as trainee were dropped and the model was trained as a binary classifier, 
with two classes of novice and expert for the same three skills, with much-improved performance as shown in Fig. 
14. Being able to reliably and accurately classify expert proficiency from novices was seen as most important. All 
three skills were trained with a cross-validation procedure (k=5). The data was divided into training and testing 

Fig. 13. Multi-class confusion matrices.

 

Fig. 12. Scatterplots of performance scores vs time for all groups.

 

Fig. 11. Relationship trend between performance and time: Bands skill.
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i.e. 80% for training and the remaining 20% for testing. From the training data, 20% was used for validation. The 
data was shuffled for randomness.

The test accuracy of the stack skill was 91%. Expert class precision was 0.94 and recall was 0.88. Novice class 
precision was 0.91. Both classes had an F1 score of 0.91. The expert class had an AUC of 0.92 and the novice 
class had 0.92. The tower skill’s test accuracy was 0.97. Expert class precision was 0.95 and recall 1.0. Novice 
class precision was 1.0, and recall was 0.95. Both classes had an F1 score of 0.97. The AUC for expert and 
novice classes was 0.99. The model has excellent predictive ability and can discriminate easily between these 
class instances for both the stack and tower skills. The band skill’s test accuracy was 79%. Expert class precision 
was 0.71, and recall of 0.97. The expert class achieved an F1 score of 0.82. Novice class precision was 0.96, and 
the recall score was 0.61. The novice class has an F1 score of 0.74. The model’s AUC for the expert class was 0.86 
and 0.79 for the Novice class (Table 2). The model achieved reasonable performance for this skill however, it 
struggled to correctly classify all experts as experts and missed significant numbers of novices within the dataset. 
This is not unsurprising as it was the easiest skill according to the statistical analysis.

Human performance and results
The study involved human raters with healthcare simulation expertise classifying skill performance levels into 
three groups (expert, trainee, and novice) and two groups (expert and novice) on separate datasets. The goal was 
to gauge human-level performance and compare it with the model’s performance. Two datasets were randomly 
selected with balanced numbers of each class within each dataset, with 63 videos for the three groups and 60 
videos for the two groups. The raters watched LaparoTM training videos for each skill and were presented with 
examples of real performance from each group. For the first task, the raters were asked to classify for each of the 
three skills whether they believed the participant was an expert, trainee, or novice. For the second task, the raters 

Precision Recall F1 Score AUC

Stack

Expert 0.94 0.88 0.91 0.92

Novice 0.88 0.94 0.91 0.89

Tower

Expert 0.95 1.0 0.97 0.99

Novice 1.0 0.95 0.97 0.99

Bands

Expert 0.71 0.97 0.82 0.86

Novice 0.96 0.61 0.74 0.79

Table 2. Precision, Recall, F1 Score and AUC for each skill for Binary classifier.

 

Fig. 14. Binary class confusion matrices.

 

Multi-class Accuracy Binary Accuracy

Stack 79% Stack 91%

Tower 49% Tower 97%

Bands 54% Bands 79%

Table 1. Multiclass vs Binary classifier accuracy.
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were asked whether they believed the participant was an expert or a novice. The two raters were independent of 
each other, and their predictions were measured from the ground truth labels. In both instances, raters used the 
basic scoring metrics described in the statistical analysis section.

Human performance with three classes (multi-class) With three classes for the stack skill, Rater-1 had an 
accuracy of 53%, precision of 0.5, recall of 0.4, and F1 score of 0.44. Therefore, rater-1 predicted about 50% of 
the correct classes, reflecting the ratio of true positive predictions to the total number of predictions made for 
each class. Rater-1 captured about 40% of the actual instances of each class, or the ratio of true positive predic-
tions to the total actual instances of each class. Poor performance is reflected in the low F1 score64. Rater-2 had 
an accuracy of 47%, precision of 0.25, recall of 0.2, and F1 score of 0.22 when classifying between three classes 
for the stack skill (Fig. 15, left). Cohen’s Kappa coefficient was used to measure agreement between the two 
raters, beyond what would be expected by chance. It is particularly useful in measuring inter-rater reliability 
and agreement between categorical data65. Cohen’s Kappa ranges between -1 and 1, where -1 indicates complete 
disagreement and 1 indicates perfect agreement. The Cohen’s Kappa between Rater-1 and Rater-2 for the stack 
skill is 0.4, which is considered fair agreement (Fig. 16a). For the tower skill, Rater-1 had an accuracy of 47%, 
precision of 0.2, recall of 0.2, and F1 score of 0.2. Rater-2 had an accuracy of 60%, precision of 0.2, recall of 0.33, 
and F1 score of 0.25 (Fig. 15, left). The Cohen’s Kappa between the two raters for the tower skill was 0.41, which is 
also considered fair agreement (Fig. 16a). For the band’s skill, Rater-1 had an accuracy of 33%, precision of 0.33, 
recall of 0.6, and F1-score of 0.43. Rater 2 also had an accuracy of 33% for this skill. Rater-2’s precision was 0.33, 

Fig. 16. (a) Cohens Kappa for each skill for the three-class problem and two-class problem, (b) Accuracy of all 
predictions between both raters.

 

Fig. 15. Human performance metrics. Left: 3 classes, Right: 2 classes.
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the recall was 0.4, and the F1 score was 0.36 (Fig. 15, left). The Cohen’s Kappa between Rater-1 and Rater-2 for 
the band’s skill was 0.12, which is considered very low (Fig. 16a).

Human performance with two classes (binary) When performing a binary classification between expert and 
novice on the stack skill, Rater-1 had an accuracy of 65%, precision of 0.71, recall of 0.5, and F1-score of 0.59. 
Rater-2 had an accuracy of 75%, precision of 1.0, recall of 0.5, and F1 score of 0.65 (Fig. 15, right). The Cohen’s 
Kappa between the two raters for the binary classification of the stack skill was 0.53, which is considered between 
fair and moderate agreement (Fig. 16a). For the tower skill, Rater-1 had an accuracy of 95%, precision of 1.0, 
recall of 0.9, and F1 score of 0.95. Rater-2 had an accuracy of 90%, precision of 1.0, recall of 0.8, and F1 score of 
0.89 (Fig. 15, right). The Cohen’s Kappa between the two raters was 0.9, indicating substantial agreement (Fig. 
16a). For the band’s skill, Rater-1 had an accuracy of 35%, precision of 0.36, recall of 0.4, and F1 score of 0.38. 
Rater-2 had an accuracy of 45%, precision of 0.44, recall of 0.4, and F1 score of 0.42 (Fig. 15, right). The Cohen’s 
Kappa between the two raters for the band’s skill was -0.18, which is less than chance (Fig. 16a). In other words, 
this means that the coefficient indicates that the observed agreement between the two raters is worse than would 
be expected by random chance.

Human performance with two classes (binary)
Human performance discussion Both Rater-1 and Rater-2 had more difficulty classifying 3 groups, rather than 
two groups. The accuracy of predictions between both Rater-1 and Rater-2 are relatively similar (Fig. 16b). With 
regards to the stack and tower skills, both raters could make predictions above random chance when classifying 
between three classes, however, accuracy was still not particularly useful between 47%-60%. Both raters had an 
accuracy of 33%, which is no better than random for the band’s skill when attempting to classify between three 
groups. When the trainee class was removed, accuracy improved considerably for the tower skill to 90% and 
above, and moderately for the stack skill to between 65%-75%. However, there was only a slight increase in the 
band’s skill to 35-45%. The poor Cohen’s Kappa between the raters with this skill indicates, that there was signif-
icant disagreement between the classifications. Indicating that the band’s skill is particularly difficult to classify 
between skill levels, both as a multi-class problem and as a binary problem for humans. There was a significant 
increase in the accuracy levels in all skills except the band’s skill when the trainee group was removed (Fig. 16b). 
This indicates that the trainee class was possibly problematic for humans to predict in the presence of expert and 
novice classes.

Conclusion
This study successfully demonstrated automated assessment of laparoscopic surgical performance in a simulated 
setting using a 3DCNN model on a custom dataset and lays the foundation for a new research area. The model 
demonstrated excellent performance and predictive ability for both the tower (accuracy 97%) and stack (accuracy 
91%) skills, and reasonable performance and predictive ability for the band’s skill (accuracy 79%) on test data, as 
a binary classifier. This approach is viable for a binary classification to discriminate between expert and novice 
classes performing basic simulated laparoscopic surgical skills in a desktop laparoscopic surgical simulator. 
However, this approach could be expanded to other skills beyond simulated laparoscopic skills and has scope for 
assessment of performance for other procedural and clinical skills79,80. There is significantly less domain expert 
time needed using this approach as there is no need for frame-level annotation, which is well recognized as a 
significant bottleneck and impedance to the development of surgical, and clinical simulation-based intelligent 
assessment tools in general9.

The model encountered difficulties in predicting three distinct performance skill levels in a multi-class 
classification problem. Similarly, human raters also struggled to accurately classify performance skill levels in 
this context. It is not surprising that the model showed the lowest accuracy when predicting the band’s skill, as 
statistical analysis of the videos revealed no significant difference in mean performance for this skill. Human 
raters also had difficulty distinguishing skill levels in this area, whether approached as a multi-class or binary 
classification problem. When comparing the model’s performance to that of human raters, similar trends were 
observed: human accuracy was notably higher for binary classification tasks (ranging from 65% to 75%) than 
for multi-class tasks (ranging from 47% to 53%). While this comparison offers some insight, a larger sample of 
human raters would be needed to draw more definitive conclusions.

The distribution of skill levels in the trainee group was too broad, with some participants near novice and 
others near expert, which made it especially challenging for the model to accurately classify the group (Fig. 13). 
Human raters also found this difficult. Future work would benefit from more detailed definitions of each skill 
level, particularly an intermediate group such as trainees. A clearer definition of what constitutes a trainee should 
be established at the outset. The dataset was also small, comprising 106 original videos, with data augmentation 
accounting for the remainder of the dataset. Ideally, the original dataset would be larger to provide greater 
diversity, which may make it easier for the model to differentiate between the classes.

A 3DCNN automatically learns and processes spatiotemporal features, which are crucial in tasks like 
laparoscopic skill classification, where the movement and coordination of instruments over time are key to 
determining skill level. This research demonstrated that a 3DCNN model can classify skill levels efficiently 
and automatically from video data, significantly speeding up the process of skill evaluation, allowing for faster 
assessments in surgical training programs, with the potential of making the model highly valuable for further 
development in real-time or large-scale applications. Fast and efficient automated identification of non-experts 
allows for faster throughput through training programmes and allows for more timely expert feedback and 
intervention, with more focused and deliberate practice. Furthermore, as our model could robustly discriminate 
between performance skills levels, it offers potential towards standardising non-subjective approaches to 
automating skills assessment in laparoscopic surgery and other healthcare domains.
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We have demonstrated that weakly-supervised methods using a 3DCNN is a viable approach to automatically 
discriminate between performance skills in simulated laparoscopic surgical skills using the LSPD dataset. 
The videos were relatively short due to high computational demands, future work could look at augmented 
approaches of attention mechanisms, or temporal segmentation to increase the video length sequences and 
widen the application of use of this approach within the healthcare simulation field.

Data availability
The data that support the findings of this study are available on request from the corresponding author, [DP]. 
The data are not publicly available due to containing information that could compromise the privacy of research 
participants.
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