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Abstract: In this study, a series of diblock glycopolymers, poly(6-O-methacryloyl-D-galactopyranose)
-b-poly(6-cholesteryloxyhexyl methacrylate) (PMAgala-b-PMAChols), with cholesterol/galactose
grafts were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT)
polymerization and deprotection process. The glycopolymers could self-assemble into aggregates
with various morphologies depending on cholesterol/galactose-containing block weight ratios,
as determined by transmission electronic microscopy (TEM) and dynamic laser light scattering
(DLS). In addition, the lectin (Ricinus communis agglutinin II, RCA120) recognition and bovine serum
albumin (BSA) adsorption of the PMAgala-b-PMAChol aggregates were evaluated. The SK-Hep-1
tumor cell inhibition properties of the PMAgala-b-PMAChol/doxorubicin (DOX) complex aggregates
were further examined in vitro. Results indicate that the PMAgala-b-PMAChol aggregates
with various morphologies showed different interaction/recognition features with RCA120 and
BSA. Spherical aggregates (d ≈ 92 nm) possessed the highest RCA120 recognition ability and
lowest BSA protein adsorption. In addition, the DOX-loaded spherical complex aggregates
exhibited a better tumor cell inhibition property than those of nanofibrous complex aggregates.
The morphology-variable aggregates derived from the amphiphilic glycopolymers may serve as
multifunctional biomaterials with biomolecular recognition and drug delivery features.
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1. Introduction

Synthetic glycopolymers with saccharide grafts have attracted increasing attentions due
to their interesting self-assembly behavior [1] and biological functions, which guarantee their
applications as advanced biomaterials such as gene/drug carriers, immunodiagnostic reagents,
and bio-targeting materials [2–4]. The saccharide-shell-bearing aggregates/assemblies with various
morphologies (e.g., nanospheres, worm-like micelles, vesicles and tubules) were obtained through
the nano-precipitation [5,6] or polymerization-induced self-assembly approach [7]. Meanwhile,
glyco-inside nanostructures have also been reported, and their vesicle-to-micelle transition could
be tuned depending on the weight ratio and protection groups of the glyco-parts [8,9]. Of particular

Nanomaterials 2018, 8, 136; doi:10.3390/nano8030136 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-3303-3832
http://dx.doi.org/10.3390/nano8030136
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2018, 8, 136 2 of 19

interest, the Schlaad [10] and Lecommandoux [11] groups explored glycocalyx-mimicking properties
of some glycopolymeric vesicles, which showed similar physico-chemical features (such as size and
structure) with natural glycocalyx architectures. For the possible applications of the glyco-containing
nanostructures, molecular recognition is one of the most interested areas [12]; protein crystalline
frameworks [13], protein-polymer conjugates [14], complex macroscopic self-assemblies [15],
and lectin-responsive hydrogels [16] have been reported. Meanwhile, it has been revealed that
the availability of this multivalent recognition could be tuned via the molecular engineering of
glycopolymers [17]. Chen et al. [18] found that the block and gradient structures resulted in a superior
lectin binding capability than statistical sequence copolymers, and the glycopolymer nanoparticles
containing branched glycol-blocks could bind more lectins than those of their linear counterparts [19].
Zhu et al. [20] disclosed that the block glycopolymers may interact with ricinus communis agglutinin
II (RCA120) to form larger clusters faster than the random copolymers. In addition, the surface density,
neighboring functional groups, as well as morphologies of the glyco-nanoparticles could influence their
lectin recognition. Nevertheless, the correlation between molecular recognition features and molecular
architecture/assembly morphology for most of the glycopolymers are still obscure, which limits their
biomedical applications.

On the other hand, molecular architecture/morphology of polymeric aggregates not only plays
an essential role in their molecular recognition, but also in pharmacokinetics and drug delivery
behaviors [21–23]. In particular, the aggregate morphologies (such as ellipse, cylinder, rod-like, and
worm-like) have been recently disclosed to profoundly influence their endocytosis, intracellular
trafficking, and tissue/organ distribution [24–27]. Mitragotri et al. [28] revealed that the particle shape
instead of the size played the dominant role in phagocytosis of polystyrene particles. Likewise,
poly(ethylene glycol)-block-poly(camptothecin prodrug) PEG-b-PCPTM self-assemblies with the
morphologies of sphere, large compound vesicle (LCV), smooth disk, and staggered lamellae showed
intriguing morphology-dependent cellular internalization, trafficking, and drug delivery [29]. It has
also been revealed that the worm-like micelles (filomicelles) exhibited some advantages such as
enhanced tumor accumulation and permeability and retention (EPR) effects [30,31], leading to prolonged
blood circulation [32] and enhanced cellular uptake [33–35], over that of their spherical counterparts.
Most recently, Gaus et al. [36] studied the cellular uptake and intracellular transport (routes) of
various-shaped poly(oligoethylene glycol methacrylate)-block-poly(styrene-co-vinylbenzaldehyde)
P(OEGMA)-b-P(ST-co-PVBA) block copolymer nanoaggregates by pair correlation microscopy,
demonstrating that rod and worm-like micelles could overcome major cellular barriers better than
spherical micelles and vesicles, which resulted in more doxorubicin (DOX) release inside the nucleus.

Among the amphiphilic block copolymers (BCPs), liquid crystal BCPs (LCBCPs) could
spontaneously self-assemble into a number of well-ordered micro/nano objects and showed potential
applications in gene/drug delivery, electronics, advanced catalysts, nanobiotechnology, etc. [37].
In particular, cholesterol as a natural rod-like mesogenic unit has already been explored for
decades [38–40]. For instance, Zhou et al. [41] synthesized triblock copolymers with polyethylene
oxide (PEO) and cholesterol attached polymethacrylates, and their self-assembled hierarchical
structures were disclosed to be from lamellae to cylinder, depending on the cholesterol block contents.
Likewise, disk-like self-assemblies, nanospheres, and other complex nanostructures have been reported
for the cholesterol-functionalized polycarbonate copolymer amphiphiles [42,43]. In our previous
studies, we prepared block copolymer amphiphiles with pendant cholesterol mesogens. They could
self-assemble into micro/nanoparticles with well-ordered cholesterol mesogens in the cores of cylinder
micelles, solid spheres, and bowl-shaped aggregates, and in the membranes of hollow nanotubes,
ellipsoidal vesicles and so forth. [44–48] Additionally, as an essential component of plasma membranes,
cholesterol plays important roles in cell membrane formation, adhesion, and signal transduction,
regulating lipid bilayer interaction [49] and intracellular trafficking of nanoparticles [50,51]. This brings
the cholesterol-based amphiphiles new potential applications in biomedical engineering [52–54].
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To develop glycopolymer-based aggregates with tunable morphology and to further explore the effects
of molecular structure/aggregate morphology on their lectin recognition and drug delivery manners,
in this work, a new series of poly(6-O-methacryloyl-D-galactopyranose)-b-poly(6-cholesteryloxyhexyl
methacrylate) (PMAgala-b-PMAChol) glycopolymers with galactose and cholesterol grafts were
prepared through reversible addition-fragmentation chain transfer (RAFT) polymerization and
successive trifluoroacetic acid (TFA)-mediated deprotection, and their structures were characterized.
Then, self-assembled PMAgala-b-PMAChol aggregates with distinct morphology features were
achieved by nanoprecipitation method, and the effects of glycopolymer structure/aggregate
morphology on lectin binding and bovine serum albumin (BSA) adsorption were examined in aqueous
media. Furthermore, employing the PMAgala-b-PMAChol aggregates as potential drug carriers,
the DOX loading capacity, the morphology of the PMAgala-b-PMAChol/DOX complex aggregates,
and related DOX delivery properties in human hepatocarcinoma SK-Hep-1 cells were investigated
and discussed.

2. Experimental Section

2.1. Materials

6-Cholesteryloxyhexyl methacrylate (MAChol), 6-O-Methacryloyl-1,2:3,4-di-O-isopropylidene-D

-galactopyranose (MAIpGP), and RAFT agent of 4-cyano-4-(dodecylsulfanyl thiocarbonyl) sulfany
pentanoic acid (CDP) were synthesized and purified in similar way as described in a previous
work [52]. Poly(ethylene glycol) with a molecular weight of 5000 Da (PEG-5K) and branched
polyethylenimine with molecular weight of 25,000 Da (PEI-25K) were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and Fluka (Buchs, Switzerland), respectively. N,N′-azobis (isobutyronitrile)
(AIBN, 98%, Shanghai Sinopharm Chemical Reagent Co. Ltd., Shanghai, China) was recrystallized
twice in methanol prior to use. Toluene solvent was refluxed over metallic sodium, and freshly
distilled before use. All other solvents and chemicals purchased from commercial suppliers were used
as-received. In addition, cellulose dialysis membrane (MWCO: 3500 Da) was bought from Shanghai
Green Bird Science & Technology Development Co. Ltd. (Shanghai, China). Doxorubicin (DOX, 98%)
was purchased from Zhejiang Hisun Pharmaceutical Co. Ltd. (Zhejiang, China). Bovine serum albumin
(BSA, Cat#0332) was supplied from Amresco (Solon, OH, USA). Thiazoyl blue tetrazolium bromide
(MTT, Cat#M5655), Concanavalin A from Canavalia ensiformis (Con A), and Ricinus communis
agglutinin II (RCA120) were all bought from Sigma-Aldrich. Human hepatocarcinoma SK-Hep-1 cells
were kindly gifted by Dr. Bo Wan of the Key Laboratory of Genetic Engineering of Fudan University
(Shanghai, China).

2.2. Analytical Procedures

1H NMR spectra were recorded at ambient temperature in CDCl3 or pyridine-d5 on a Bruker
Avance-400 FT-NMR spectrometer, operated at 400.0 MHz for the proton nuclei. FTIR spectra were
measured at room temperature on a Bio-Rad FTS-185 spectrometer with 64 scans, spanning a spectral
range of 4000~500 cm−1 with a resolution of 4.0 cm−1. Samples were prepared by pressing dry
potassium bromide (KBr) and the polymer mixture before the measurements. Oxygen elemental
analysis was routinely conducted on an Elementar vario EL III system (German) in quadruplicate.
Molecular weights (Mn, Mw) and polydispersity (Mw/Mn) of the synthesized polymer samples were
measured at 35 ◦C on a PerkinElmer 200 Gel permeation chromatography (GPC) equipped with
refractive index detector (RI). Tetrahydrofuran (THF) was utilized as the eluent at a flow rate of
1.0 mL/min, and a series of commercial polystyrene standards (Polymer laboratories, Stockport, UK)
were employed to calibrate the GPC elution traces. Particle sizes and distribution of the prepared
amphiphile self-assemblies in dilute aqueous solution were analyzed at 25 ◦C on a Malvern Zetasizer
Nano ZS90 dynamic light scattering (DLS) instrument with incident beam at λ = 633 nm and a fixed
scattering angle of 90◦ (Worcestershire, UK). Morphologies of the synthesized amphiphile aggregates
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were visualized on a transmission electronic microscope (TEM, JEOL-1230, Tokyo, Japan) under
an acceleration voltage of 80 kV. In brief, the PMAgala-b-PMAChol aggregate aqueous solution
(1.0 mg/mL) was gradually dropped onto a 300-mesh carbon-coated copper grid, and excess fluid
was removed with filter paper and further air-dried under room temperature. In this study, all TEM
samples were directly observed and imaged without any further staining.

2.3. Synthesis of Diblock PMAgala-b-PMAChol Amphiphiles

Diblock copolymer poly(6-O-methacryloyl-D-galactopyranose)-b-poly(6-cholesteryloxyhexyl
methacrylate) (PMAgala-b-PMAChol) amphiphiles were synthesized by sequential RAFT
polymerization and successive TFA-mediated deprotection. Typically, MAIpGP (1.312 g, 4.0 mmol),
CDP (80.8 mg, 0.2 mmol), and AIBN (6.6 mg, 0.04 mmol) were dissolved in freshly distilled toluene
(8.7 mL) and placed into a Schlenk tube equipped with a magnetic stirrer. The mixture was
deoxygenated with a freeze-pump-thawing cycle a minimum of three times and then immersed into an
oil bath thermostated at 80 ◦C for 8 h. The reaction was stopped by cooling in ice-bath, and the reaction
mixture was precipitated in cold dry hexane. After filtration, the collected precipitates were dried
under vacuum to finally give poly(6-O-Methacryloyl-1,2:3,4-di-O-isopropylidene-D-galactopyranose)
(PMAIpGP) powders. Furthermore, the achieved PMAIpGP was employed as the macro-RAFT
agent, and predetermined amounts of PMAIpGP, AIBN, and MAChol dissolved in freshly distilled
toluene were in turn placed into a Schlenk tube with a magnetic stirrer. After three cycles of
freeze-pump-thawing, the Schlenk tube was immersed in an oil bath preheated at 80 ◦C, and the
reaction continued for 16 h. Then, the reaction stopped, and final products were obtained with
three precipitations in anhydrous methanol and dehydration under vacuum for 12 h. Thereafter,
the as-prepared PMAIpGP and PMAIpGP-b-PMAChols were deprotected at room temperature in
mixed trifluoroacetic acid (TFA) and dichloromethane (DCM) (1/2, v/v) for 32 h, and water-soluble
PMAgala and PMAgala-b-PMAChol block copolymer amphiphiles were achieved with good yields
through repeated precipitation in anhydrous cold methanol and drying under vacuum.

PMAIpGP:
1H NMR (CDCl3, δ in ppm): 5.53 (d, Gal–H at 1 position), 4.62 (m, Gal–H at 3 position), 4.35–3.90

(m, Gal–H at 2, 4, 5 and 6 position), 2.35 (s, HOOCCH2R).
FTIR (in cm−1): 2988, 2932, 1732, 1382, 1256, 1212, 1166, 1115, 1070, 1004, 892.
PMAIpGP-b-PMAChol:
1H NMR (CDCl3, δ in ppm): 5.53 (Gal–H at 1 position), 5.34 (=CHR of cholesterol), 4.65 (Gal–H at

3 position), 4.35–3.75 (Gal–H at 2, 4, 5, 6 position and CH2COOR), 3.45 (CH2OR of cholesterol), 3.12
(OCHR of cholesterol).

FTIR (in cm−1): 2934, 2886, 1730, 1464, 1381, 1254, 1212, 1167, 1111, 1071, 1005.
PMAgala-b-PMAChol amphiphile:
1H NMR (Pyridine-d5, δ in ppm): 6.90–6.50 (–OH), 6.02–5.68 (Gal–H at 1 position), 5.55 (=CHR of

cholesterol), 5.35–4.00 (Gal–H at 2, 3, 4, 5 position and CH2COOR), 3.65 (CH2OR of cholesterol), 3.38
(OCHR of cholesterol).

FTIR (in cm−1): 3466, 2934, 2886, 1728, 1466, 1377, 1365, 1255, 1152, 1105.

2.4. Self-Assembly of PMAgala-b-PMAChols in Solution

First, the critical micelle concentration (CMC) of PMAgala-b-PMAChols was measured by utilizing
pyrene as a fluorescence probe [52]. PMAgala-b-PMAChol self-assemblies were conducted through
nanoprecipitation in a similar way as previously published [55]. In brief, the amphiphiles were
dissolved in pyridine under an initial mass concentration of 3.0 mg/mL, and deionized water was
dropped slowly under gentle shaking to a water content of about 60 wt %. During this procedure,
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real-time mixture solution transmittance (T%) was measured on a UV-vis spectrophotometer (UV-2800,
Hitachi, Japan) at λ = 650 nm, and the turbidities were calculated according to the equation as following:

Turbidity (%) = 2.0 − log(T%) (1)

When the nanoprecipitation procedure was accomplished, the mixed solution was dialyzed
against deionized water using a pre-swollen cellulose membrane (molecular weight cut-off (MWCO):
3500 Da) for 48 h to remove residual organic solvent.

2.5. Lectin Recognition Assay

Lectin recognition of the PMAgala-b-PMAChol self-assemblies in aqueous solution was explored
via the recording of turbidity change at λ = 450 nm vs. time at room temperature on a UV-vis
spectrophotometer. Briefly, pre-determined amounts of lectin RCA120 were separately placed into a
PMAgala18 solution (0.1 mg/mL) or a PMAgala-b-PMAChol aggregate solution (0.1 mg/mL fixed
for the PMAgala block) under gentle shaking to give mixture solutions with a series of RCA120 mass
concentration of 0.1, 0.2, 0.5, or 0.8 mg/mL, and light absorbances at λ = 450 nm were recorded per
minute for 10 min with Con A and BSA as the controls.

2.6. BSA Adsorption Assay

Bovine serum albumin (BSA) was employed as a model to determine protein adsorption in
aqueous solution for the PMAgala-b-PMAChol aggregates. BSA was first placed into the aggregate
aqueous solution (fixed amphiphile aggregate mass concentration: 0.2 mg/mL or 0.5 mg/mL) to
achieve a final BSA mass concentration of 0.5 mg/mL, and it was kept incubation at 37 ◦C for a
predetermined period. Then, the solutions were vortexed and centrifuged at 16,000 rmp for 15 min
to precipitate the BSA-adsorbed aggregates, and 1 mL supernatant of each solution was sampled.
BSA mass concentration of the supernatant was evaluated at λ = 280 nm on UV-vis spectrophotometer.
The amounts of BSA adsorbed on the amphiphile aggregates were thus estimated on the basis of the
BSA calibration curve in a way previously reported [56]. Poly(ethylene glycol) with a molecular weight
of 5000 Da (PEG-5K) and branched polyethylenimine with a molecular weight of 25,000 Da (PEI-25K)
were employed as the negative and positive controls, respectively.

2.7. Preparation of the PMAgala-b-PMAChol/DOX Complex Aggregates

DOX-loaded complex aggregates were prepared through nanoprecipitation in a similar way as
aforementioned. In brief, 27.0 mg of PMAgala-b-PMAChol amphiphiles and 3.0 mg of DOX were first
dissolved in 10 mL pyridine, and stirred at room temperature for 10 h. Afterwards, 15 mL of deionized
water was gradually dropped into the mixture under gentle agitation, and the mixture was dialyzed
against deionized water for 48 h using a pre-swollen cellulose dialysis membrane (MWCO: 3500 Da)
to give a DOX-loaded complex aggregate solution. DOX loading levels were further measured on a
UV-vis spectrophotometer. Lyophilized DOX-loaded amphiphile aggregates were again dissolved
in dimethyl sulfoxide (DMSO), and DOX mass concentration was evaluated according to a standard
working curve. Thus, DOX loading content (DLC) and loading efficiency (DLE) were calculated in
accordance with the following formulas [57].

DLC(wt %) =
Weight of loaded drug

Weight of loaded drug and polymers
× 100% (2)

DLE(%) =
Weight of loaded drug
Weight of drug in feed

× 100% (3)
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2.8. Cell Viability Assay

Cytotoxicity of the as-prepared PMAgala-b-PMAChol aggregates was evaluated with SK-Hep-1
cells and standard method of transcriptional and translational (MTT). SK-Hep-1 cells were first seeded
into a 96-well microplate (6 × 103 cells/well) with Dulbecco’s Modified Eagles Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS), and they were incubated for 24 h. Then, the
medium was aspirated and replaced with 100 µL of fresh medium containing 10% FBS, and it was
supplemented with amphiphile aggregate solution under various mass concentration of 10, 30, 100,
300, and 500 µg/mL and kept cultivation at 37 ◦C under 5% CO2 for another 24 h. Afterwards, 20 µL
of MTT solution (5.0 mg/mL) was placed into the microplate, the medium was replaced with 100 µL of
FBS-free fresh medium and it was continuously incubated for 2 h. Then, 100 µL of DMSO was added
into each well to dissolve the MTT-formazan, and light absorbances at λ = 490 nm were measured
on a microplate reader (BioTek, ELX800, Winooski, VT, USA) with absorbances at λ = 630 nm as the
reference. As a result, cell viability was evaluated in quintuplicate as follows:

Cell viability (%) = (OD490 (sample) − OD630 (sample))/(OD490 (control) − OD630 (control)) × 100%. (4)

In a similar way, cell viability was examined for the PMAgala-b-PMAChol/DOX complex
aggregates. After cell incubation for 24 h, the medium was aspirated and replaced with 100 µL of
fresh medium (with 10% FBS), and it was supplemented with predetermined amounts of DOX-loaded
complex aggregates to give a series of final DOX mass concentration of 1, 2, 3, 5, 8, 10, and 15 µg/mL.
They were kept incubated at 37 ◦C under 5% CO2 for 24 h. Cell viability was accordingly evaluated
as aforementioned.

3. Results and Discussion

3.1. Synthesis and Characterization of the PMAgala-b-PMAChol Amphiphilic Copolymers

As illustrated in Scheme 1, a new series of diblock PMAgala-b-PMAChol amphiphiles were
prepared through sequential RAFT polymerization and successive TFA-mediated deprotection
as we recently reported [52]. Figure 1A shows a typical 1H NMR spectrum for the as-resulted
diblock PMAIpGP-b-PMAChol precursor, and the proton nuclei resonance signals were accordingly
assigned [41,58]. In order to achieve final PMAgala18-b-PMAChol products, a reaction condition
of TFA/dichloromethane (1/2, v/v) at room temperature for 32 h was employed to deprotect the
PMAIpGP18-b-PMAChol precursors, and a typical 1H NMR spectrum recorded in pyridine-d5 for
the PMAgala18-b-PMAChol amphiphile is shown in Figure 1B, in which 1H nuclei resonance signals
attributable to each block were observed and accordingly assigned. Furthermore, GPC traces of
the PMAIpGP macro-RAFT initiator and the series of diblock PMAIpGP-b-PMAChol precursors
are presented in Figure 1C. The monodispersive and narrow molecular weight distribution
demonstrated their well-defined polymer structures. To further substantiate the diblock amphiphile
structures, oxygen elemental percentages were analyzed to be 23.43 ± 0.11%, 18.95 ± 0.03%,
14.88 ± 0.09%, and 14.47 ± 0.09% for the PMAgala18-b-PMAChol8, PMAgala18-b-PMAChol24,
PMAgala18-b-PMAChol38, and PMAgala18-b-PMAChol48, respectively, and these values are very
close to the theoretical oxygen elemental percentages of 25.71%, 18.24%, 14.94%, and 13.92%,
respectively, as estimated on the basis of their corresponding PMAIpGP18-b-PMAChol precursors.
As a result, the 1H NMR and oxygen elemental analytical evidence could imply quantitative
isopropylidene deprotection and sufficient structure stability of the diblock PMAgala18-b-PMAChols
during deprotection. In this study, the synthetic results are summarized in Table 1. Notably,
the synthesized PMAgala18-b-PMAChol amphiphiles have PMAChol block weight ratios of 50, 75, 83,
and 86 wt %, respectively. These amphiphiles with high hydrophobic block contents were designed
for self-assembling into morphology-variable “crew-cut” aggregates, which may be employed as
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functional nanobiomaterial models for further elucidating the effects of glycopolymer structure and
aggregate morphology on biomolecular recognition/adsorption and intracellular drug delivery.Nanomaterials 2018, 8, x FOR PEER REVIEW  7 of 18 

 

 
Scheme 1. Preparation of diblock poly(6-O-methacryloyl-D-galactopyranose)-b-poly(6-
cholesteryloxyhexyl methacrylate) (PMAgala-b-PMAChol) amphiphiles bearing galactose and 
cholesterol grafts. 

8 7 6 5 4 3 2 1 0 -1

CDCl
3

TMS

n

q,p,p'

o

m

g

Chol-H,r,q

k

i
l

j

b,d,e,f,h
ca

r
q

r
q

p'
p

o
n

m

lk

g

j

i

h

g

f ed

c b

Chemical shift (ppm)

a

 
(a) 

9 8 7 6 5 4 3 2 1 0

-OH

Pyridine-d
5

Chol-H, r,q

i

l

j

b,c,d,e,f,h

a

r
q

r
q

l

j

i

hf ed

c b

Chemical shift (ppm)

a

 
(b) 

Scheme 1. Preparation of diblock poly(6-O-methacryloyl-D-galactopyranose)-b-poly(6-cholesteryloxyhexyl
methacrylate) (PMAgala-b-PMAChol) amphiphiles bearing galactose and cholesterol grafts.

Nanomaterials 2018, 8, x FOR PEER REVIEW  7 of 18 

 

 
Scheme 1. Preparation of diblock poly(6-O-methacryloyl-D-galactopyranose)-b-poly(6-
cholesteryloxyhexyl methacrylate) (PMAgala-b-PMAChol) amphiphiles bearing galactose and 
cholesterol grafts. 

8 7 6 5 4 3 2 1 0 -1

CDCl
3

TMS

n

q,p,p'

o

m

g

Chol-H,r,q

k

i
l

j

b,d,e,f,h
ca

r
q

r
q

p'
p

o
n

m

lk

g

j

i

h

g

f ed

c b

Chemical shift (ppm)

a

 
(a) 

9 8 7 6 5 4 3 2 1 0

-OH

Pyridine-d
5

Chol-H, r,q

i

l

j

b,c,d,e,f,h

a

r
q

r
q

l

j

i

hf ed

c b

Chemical shift (ppm)

a

 
(b) 

Figure 1. Cont.



Nanomaterials 2018, 8, 136 8 of 19
Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 18 

 

9 10 11 12 13 14 15 16 17
 Elution time (min)

PMAIpGP18-b-PMAChol48

PMAIpGP18-b-PMAChol38

PMAIpGP18-b-PMAChol24

PMAIpGP18-b-PMAChol8

PMAIpGP18

 
(c) 

Figure 1. 1H NMR spectra for the (a) synthesized diblock PMAIpGP-b-PMAChol in CDCl3; (b) 
PMAgala-b-PMAChol amphiphile in pyridine-d5 and (c) Gel permeation chromatography (GPC) 
elution traces for the PMAIpGP18-b-PMAChol series along with the PMAIpGP18 as macromolecular 
reversible addition-fragmentation chain transfer polymerization (macro-RAFT) initiator. 

Table 1. Synthetic results for the PMAIpGP macro-RAFT initiator and diblock PMAIpGP-b-
PMAChols. 

Entry 1 Sample 
Monomer 

Conversion 
(%)2 

Molecular Weight
PMAgala/PMACh

ol Ratio (wt %) Mn, thero 3 

(kg mol−1) 
Mw, GPC 4 

(kg mol−1) 
Mn, GPC 4 

(kg mol−1) 
Mw/Mn 4 

1 PMAIpGP18 91 6.37 5.56 4.95 1.10 - 

2 
PMAIpGP18-b-

PMAChol8 
82 10.94 12.56 10.95 1.14 50/50 

3 
PMAIpGP18-b-

PMAChol24 
96 19.74 20.84 16.23 1.28 25/75 

4 
PMAIpGP18-b-

PMAChol38 
96 27.76 19.83 24.74 1.23 17/83 

5 
PMAIpGP18-b-

PMAChol48 
95 32.83 36.19 31.23 1.15 14/86 

Notes: 1 Initial 4-cyano-4-(dodecylsulfanyl thiocarbonyl) sulfany pentanoic acid/6-O-Methacryloyl-
1,2:3,4-di-O-isopropylidene-D-galactopyranose /N,N′-azobis (isobutyronitrile) (CDP/MAIpGP/AIBN) 
feeding molar ratio of entry 1 was preset to be 1.0/20.0/0.2, and the PMAIpGP/6-Cholesteryloxyhexyl 
methacrylate (MAChol)/AIBN feeding molar ratio of entry 2~5 were set to be 1.0/10.0/0.2, 1.0/25.0/0.2, 
1.0/40.0/0.2 and 1.0/50.0/0.2, respectively. 2 Monomer conversions were estimated by 1H NMR in 
CDCl3. 3 Theoretical number average molecular weights (Mn) were calculated on the basis of 
corresponding monomer conversion. 4 Data express the molecular weights and distribution 
determined by GPC with polystyrene standard calibration. 

3.2. Self-Assembly of the PMAgala-b-PMAChol Amphiphiles in Pyridine/Water Mixed Solvent 

To examine spontaneous aggregation, critical micelle concentration (CMC) of the PMAgala-b-
PMAChol amphiphiles in pure water was first measured with a pyrene fluorescent probe (the results 
are shown in Figure S1). With an increase of PMAChol hydrophobic block length, the CMC values 
tend to decrease as the sequence of PMAgala18-b-PMAChol8 (6.82 mg/L) > PMAgala18-b-PMAChol24 

(1.24 mg/L) > PMAgala18-b-PMAChol38 (0.87 mg/L) > PMAgala18-b-PMAChol48 (0.43 mg/L). Lower 
CMC values suggest their self-assembled micelles may possess relatively higher stability in water. 
Furthermore, self-assembly of the PMAgala18-b-PMAChol amphiphilic copolymers were 
implemented via gradually dropping water into their pyridine solution at ambient temperature and 
continuous dialyzing against deionized water for 48 h. Then, morphologies of the as-prepared 
aggregates under dry state were characterized by TEM. As shown in Figure 2, both PMAgala18-b-

Figure 1. 1H NMR spectra for the (a) synthesized diblock PMAIpGP-b-PMAChol in CDCl3;
(b) PMAgala-b-PMAChol amphiphile in pyridine-d5 and (c) Gel permeation chromatography (GPC)
elution traces for the PMAIpGP18-b-PMAChol series along with the PMAIpGP18 as macromolecular
reversible addition-fragmentation chain transfer polymerization (macro-RAFT) initiator.

Table 1. Synthetic results for the PMAIpGP macro-RAFT initiator and diblock PMAIpGP-b-PMAChols.

Entry 1 Sample
Monomer

Conversion (%) 2

Molecular Weight
PMAgala/PMAChol

Ratio (wt %)Mn, thero
3

(kg mol−1)
Mw, GPC

4

(kg mol−1)
Mn, GPC

4

(kg mol−1) Mw/Mn
4

1 PMAIpGP18 91 6.37 5.56 4.95 1.10 -

2 PMAIpGP18-b-
PMAChol8

82 10.94 12.56 10.95 1.14 50/50

3 PMAIpGP18-b-
PMAChol24

96 19.74 20.84 16.23 1.28 25/75

4 PMAIpGP18-b-
PMAChol38

96 27.76 19.83 24.74 1.23 17/83

5 PMAIpGP18-b-
PMAChol48

95 32.83 36.19 31.23 1.15 14/86

Notes: 1 Initial 4-cyano-4-(dodecylsulfanyl thiocarbonyl) sulfany pentanoic acid/6-O-Methacryloyl-
1,2:3,4-di-O-isopropylidene-D-galactopyranose/N,N′-azobis (isobutyronitrile) (CDP/MAIpGP/AIBN) feeding
molar ratio of entry 1 was preset to be 1.0/20.0/0.2, and the PMAIpGP/6-Cholesteryloxyhexyl methacrylate
(MAChol)/AIBN feeding molar ratio of entry 2~5 were set to be 1.0/10.0/0.2, 1.0/25.0/0.2, 1.0/40.0/0.2 and
1.0/50.0/0.2, respectively. 2 Monomer conversions were estimated by 1H NMR in CDCl3. 3 Theoretical number
average molecular weights (Mn) were calculated on the basis of corresponding monomer conversion. 4 Data express
the molecular weights and distribution determined by GPC with polystyrene standard calibration.

3.2. Self-Assembly of the PMAgala-b-PMAChol Amphiphiles in Pyridine/Water Mixed Solvent

To examine spontaneous aggregation, critical micelle concentration (CMC) of the PMAgala-b-PMAChol
amphiphiles in pure water was first measured with a pyrene fluorescent probe (the results are shown in
Figure S1). With an increase of PMAChol hydrophobic block length, the CMC values tend to decrease
as the sequence of PMAgala18-b-PMAChol8 (6.82 mg/L) > PMAgala18-b-PMAChol24 (1.24 mg/L) >
PMAgala18-b-PMAChol38 (0.87 mg/L) > PMAgala18-b-PMAChol48 (0.43 mg/L). Lower CMC values suggest
their self-assembled micelles may possess relatively higher stability in water. Furthermore, self-assembly
of the PMAgala18-b-PMAChol amphiphilic copolymers were implemented via gradually dropping water
into their pyridine solution at ambient temperature and continuous dialyzing against deionized water
for 48 h. Then, morphologies of the as-prepared aggregates under dry state were characterized by
TEM. As shown in Figure 2, both PMAgala18-b-PMAChol8 (50/50) and PMAgala18-b-PMAChol48

(14/86) amphiphiles self-assembled into spherical micelles with narrow nanoparticle size distribution.
Their average aggregate diameters (d) under dry state determined by TEM were ≈51 nm and
423 nm, respectively, a bit smaller than those as analyzed by DLS (≈92 nm and 543 nm) in wet
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state (Figure S2) due to the micelle shrinkage upon dehydration for the TEM measurements. Notably,
the PMAgala18-b-PMAChol24 (25/75) amphiphile spontaneously self-assembled into asymmetric
nanofibrous aggregates with diameter sizes of 40~200 nm and several micrometers in length.
In contrast, the PMAgala18-b-PMAChol38 (17/83) amphiphile formed non-uniform nanoscopic spheres
and fibers. To further investigate the self-assembly processes, turbidity diagrams of the mixed
solution for the PMAgala18-b-PMAChol8 (red) and PMAgala18-b-PMAChol24 (blue) were measured
on a UV-vis spectrometer (Figure S3). Critical aggregation water contents (CWC) of 22.5% and
13.1% were further estimated for the PMAgala18-b-PMAChol8 (50/50) and PMAgala18-b-PMAChol24

(25/75) amphiphiles, respectively. This evidence inferred that the diblock amphiphiles with higher
PMAChol hydrophobic ratios tend to have higher aggregation capability via their stronger hydrophobic
interactions as the driving force in the pyridine/water solution. The equilibrium turbidities of
the fibrous and spherical aggregate solution were evaluated to be 0.97 and 0.05 by UV-vis for the
PMAgala18-b-PMAChol8 (50/50) and PMAgala18-b-PMAChol24 (25/75), respectively. It has been
reported that the colloidal turbidity could give a semi-quantitative indication of the aggregate sizes [59],
therefore, the results imply that the sizes for the PMAgala18-b-PMAChol24 nanofibers are larger than
those of the PMAgala18-b-PMAChol8 nanospheres.
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Figure 2. TEM morphologies of the series of amphiphile self-assemblies formed in pyridine/water
mixed solution for the diblock PMAgala18-b-PMAChol8 (a); PMAgala18-b-PMAChol24 (b);
PMAgala18-b-PMAChol38 (c); and PMAgala18-b-PMAChol48 (d).

3.3. Lectin Recognition of the PMAgala-b-PMAChol Aggregates

It is known that the specific interactions between carbohydrates and lectins play crucial roles in
many biological processes like cell adhesion and hemagglutination. RCA120 could specifically bind
galactosyl residues. Con A exhibited high affinity to the glucosyl and mannosyl residues [60], and the
binding efficiencies greatly depended on the molecular structure, sugar density, and morphology of
3D glycol-nanoparticles [14,61]. To further elucidate the roles of PMAgala-b-PMAChol polymer
structures and related aggregate morphologies played on lectin recognition, turbidimetry was
employed to assay the recognition between the as-prepared PMAgala-b-PMAChol aggregates and
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lectin RCA120. First, homopolymer PMAgala18 was utilized as a model/control. As shown in
Figure 3A, the PMAgala18 (0.1 mg/mL) strongly interacted with the RCA120 and the light absorbance
at λ = 450 nm enhanced along with the increase of lectin concentration from 0.1 mg/mL to 0.8 mg/mL.
In contrast, no significant change could be observed in the presence of Con A or BSA, demonstrating
specific recognition interaction occurred between the PMAgala18 and lectin RCA120. As for the
self-assembled aggregates solution, the PMAgala18-b-PMAChol8 spherical aggregate (d ≈ 92 nm)
solution showed the highest light absorbance while the PMAgala18-b-PMAChol24 fibrous aggregate
solution exhibited the lowest light absorbance under an RCA120 mass concentration of 0.2 mg/mL
(Figure 3B) and 0.5 mg/mL (Figure 3C). Figure S4 depicts the pictures of the PMAgala18-b-PMAChol8
and PMAgala18-b-PMAChol24 aggregate solution before and after adding the RCA120. Aqueous
solution with the PMAgala18-b-PMAChol8 spherical aggregates turned turbid with the formation
of cotton-like aggregates upon the addition of lectin, furthermore, quite different particle sizes of
the PMAgala18-b-PMAChol48 aggregates were also detected by DLS. The results suggested that the
lectin RCA120 recognition capabilities of the PMAgala18-b-PMAChol aggregates largely relied on
their 3D-morphologies. Kim et al. [62] previously reported that glycol-containing nanospheres with
higher curvature (d ≈ 12 nm) have stronger binding to Con A than that of the vesicular (d ≈ 40 nm)
and cylindrical objects, whilst Ladmira et al. [7] disclosed that the galactose functionalized vesicles
exhibited much stronger and faster optical response upon the exposure to RCA120 than that of
the worm-like micelles and spheres. In addition, Huang et al. [11] found that in the presence of
RCA120, the glycopeptides with longer blocks in aqueous solution showed higher light absorbance
at λ = 450 nm, nevertheless, the exact reason of the copolymer chain length and the self-assemblies
structure was thereby uncertain. In this study, the results of lectin recognition in aqueous solution
for the PMAgala18 and series of PMAgala18-b-PMAChols aggregates with the same PMAgala18 block
ratios could undoubtedly guarantee the polymer structure and aggregate morphology, predominantly
influencing the recognition between the PMAgala18-b-PMAChol aggregates and lectin; this may benefit
the development of new galactose-based biomaterials for lectin detection and separation.Nanomaterials 2018, 8, x FOR PEER REVIEW  11 of 19 
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Figure 3. Light absorbance of aqueous solution at λ = 450 nm for the PMAgala18 (0.1 mg/mL) in the 
presence of ricinus communis agglutinin II (RCA120) (various concentrations), Concanavalin A from 
Canavalia ensiformis (Con A) (0.5 mg/mL), and bovine serum albumin (BSA) (0.5 mg/mL) (a) and the 
interactions between PMAgala18-b-PMAChol self-assemblies (0.1 mg/mL for the PMAgala block) with 
RCA120 under 0.2 mg/mL (b) and 0.5 mg/mL (c). 

3.4. Serum Protein Adsorption of the PMAgala-b-PMAChol Aggregates 

So far, the adsorption of serum proteins on synthetic nanoparticle surfaces has been known to 
significantly affect particle internalization and pharmacokinetics, and the nanoparticle composition, 
size, curvature, surface potential, and hydrophobicity largely influence its protein binding profile 
[63]. Therefore, the design of functional nanoparticles with less serum protein adsorption seems 
important for realizing prolonged blood circulation in vivo. In this study, bovine serum albumin 
(BSA) was taken as a model protein to examine the effect of PMAgala18-b-PMAChol aggregate 
morphology on protein adsorption in aqueous solution. Figure 4 depicts the results of BSA 
adsorption assay by UV-vis. The water-soluble PMAgala18 and PMAgala18-b-PMAChol8 spherical 
aggregates (d ≈ 92 nm) under 0.5 mg/mL showed very low BSA adsorption, only 4.6% and 8.8% BSA 
were adsorbed within 5 h, much lower than that of PEG-5K negative control (19.8% BSA for 5 h). In 
comparison, the fibrous PMAgala18-b-PMAChol24 aggregates under 0.5 mg/mL gave the highest BSA 
adsorption, with 28.8% and 32.6% BSA adsorption after 3 h and 5 h incubation, respectively, far below 
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Figure 3. Light absorbance of aqueous solution at λ = 450 nm for the PMAgala18 (0.1 mg/mL) in the 
presence of ricinus communis agglutinin II (RCA120) (various concentrations), Concanavalin A from 
Canavalia ensiformis (Con A) (0.5 mg/mL), and bovine serum albumin (BSA) (0.5 mg/mL) (a) and the 
interactions between PMAgala18-b-PMAChol self-assemblies (0.1 mg/mL for the PMAgala block) with 
RCA120 under 0.2 mg/mL (b) and 0.5 mg/mL (c). 
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Figure 3. Light absorbance of aqueous solution at λ = 450 nm for the PMAgala18 (0.1 mg/mL) in the
presence of ricinus communis agglutinin II (RCA120) (various concentrations), Concanavalin A from
Canavalia ensiformis (Con A) (0.5 mg/mL), and bovine serum albumin (BSA) (0.5 mg/mL) (a) and the
interactions between PMAgala18-b-PMAChol self-assemblies (0.1 mg/mL for the PMAgala block) with
RCA120 under 0.2 mg/mL (b) and 0.5 mg/mL (c).

3.4. Serum Protein Adsorption of the PMAgala-b-PMAChol Aggregates

So far, the adsorption of serum proteins on synthetic nanoparticle surfaces has been known to
significantly affect particle internalization and pharmacokinetics, and the nanoparticle composition,
size, curvature, surface potential, and hydrophobicity largely influence its protein binding profile [63].
Therefore, the design of functional nanoparticles with less serum protein adsorption seems important
for realizing prolonged blood circulation in vivo. In this study, bovine serum albumin (BSA) was
taken as a model protein to examine the effect of PMAgala18-b-PMAChol aggregate morphology
on protein adsorption in aqueous solution. Figure 4 depicts the results of BSA adsorption assay by
UV-vis. The water-soluble PMAgala18 and PMAgala18-b-PMAChol8 spherical aggregates (d ≈ 92 nm)
under 0.5 mg/mL showed very low BSA adsorption, only 4.6% and 8.8% BSA were adsorbed
within 5 h, much lower than that of PEG-5K negative control (19.8% BSA for 5 h). In comparison,
the fibrous PMAgala18-b-PMAChol24 aggregates under 0.5 mg/mL gave the highest BSA adsorption,
with 28.8% and 32.6% BSA adsorption after 3 h and 5 h incubation, respectively, far below that of
the PEI-25K positive control (90.0% and 92.0%, respectively) due to negative surface charge of the
glycol-nanoparticles [64]. Intriguingly, the different BSA adsorption for the PMAgala18-b-PMAChol
aggregates may be interpreted as due to their much more distinct aggregate morphologies on lectin
recognition, as discussed above. Comparing to the fibrous aggregates, the PMAgala18-b-PMAChol8
spherical aggregates with lower BSA binding affinities were expected to be employed as high efficient
serum-resistance drug carriers for therapeutic application.
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Figure 4. BSA adsorption assay for the PMAgala18 and PMAgala18-b-PMAChol aggregates under 37 
°C in aqueous solution for an incubation of 3 h (a) and 5 h (b). Poly(ethylene glycol) with a molecular 
weight of 5000 Da (PEG-5K) and branched polyethylenimine with molecular weight of 25,000 Da (PEI-
25K) were employed as the negative and positive controls, respectively. BSA protein mass 
concentration was preset to be 0.5 mg/mL. 
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were observed higher than 90%, indicating their very low cytotoxicities in vitro. By using DOX as an 
anti-tumor model drug, the DOX-loaded complex aggregates PMAgala18-b-PMAChols/DOX were 
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measured as 8.71 wt % (PMAgala18-b-PMAChol8), 7.75 wt % (PMAgala18-b-PMAChol24), 8.26 wt % 
(PMAgala18-b-PMAChol38), and 9.33 wt % (PMAgala18-b-PMAChol48), and the corresponding DLEs 
were calculated to be 85.9%, 75.6%, 81.0%, and 92.6%, respectively. Morphologies of the PMAgala18-
b-PMAChol/DOX complex aggregates were investigated by TEM (Figure 6), and the self-assembled 
aggregates with various aggregate morphologies including nanospheres (PMAgala18-b-
PMAChol8/DOX), nanofibers (PMAgala18-b-PMAChol24/DOX), mixture of nanospheres/nanofibers 

Figure 4. BSA adsorption assay for the PMAgala18 and PMAgala18-b-PMAChol aggregates under
37 ◦C in aqueous solution for an incubation of 3 h (a) and 5 h (b). Poly(ethylene glycol) with a
molecular weight of 5000 Da (PEG-5K) and branched polyethylenimine with molecular weight of
25,000 Da (PEI-25K) were employed as the negative and positive controls, respectively. BSA protein
mass concentration was preset to be 0.5 mg/mL.

3.5. Intracellular Doxorubicin (DOX) Delivery by the PMAgala18-b-PMAChol/DOX Complex Aggregates

To further exploit the above-synthesized PMAgala18-b-PMAChols as drug delivery carriers,
the cell toxicities were firstly evaluated by MTT assay with SK-Hep-1 cells, the results are shown in
Figure 5. Under a PMAgala18-b-PMAChol concentration up to 500 µg/mL, SK-Hep-1 cell viabilities
were observed higher than 90%, indicating their very low cytotoxicities in vitro. By using DOX
as an anti-tumor model drug, the DOX-loaded complex aggregates PMAgala18-b-PMAChols/DOX
were prepared by nanoprecipitation in pyridine/water solution, similar to the preparation condition
of the above-mentioned PMAgala18-b-PMAChol aggregates. As shown in Table S1, the DLCs
were measured as 8.71 wt % (PMAgala18-b-PMAChol8), 7.75 wt % (PMAgala18-b-PMAChol24),
8.26 wt % (PMAgala18-b-PMAChol38), and 9.33 wt % (PMAgala18-b-PMAChol48), and the
corresponding DLEs were calculated to be 85.9%, 75.6%, 81.0%, and 92.6%, respectively.
Morphologies of the PMAgala18-b-PMAChol/DOX complex aggregates were investigated by TEM
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(Figure 6), and the self-assembled aggregates with various aggregate morphologies including
nanospheres (PMAgala18-b-PMAChol8/DOX), nanofibers (PMAgala18-b-PMAChol24/DOX), mixture
of nanospheres/nanofibers (PMAgala18-b-PMAChol38/DOX), and nanospindles (PMAgala18-b-
PMAChol48/DOX) were observed, indicating the DOX-loaded morphology-variable aggregates
could be obtained by using the certain amphiphilic glycopolymer as the drug carrier. To study
the DOX delivery efficiency of the as-prepared morphology-variable aggregates, SK-Hep-1 cell
viabilities were examined by MTT assay. It could be seen that the tumor cell proliferation
inhibition strongly depended on DOX dosage, and cell viabilities decreased to 45~63% under
the DOX dosage of 15 µg/mL (Figure 7), inferring efficient endocytosis and intracellular DOX
release of the DOX-loaded complex aggregates. Noteworthy, the SK-Hep-1 cell proliferation
greatly depended on the morphologies of the complex aggregates, the spherical complex aggregates
(PMAgala18-b-PMAChol8/DOX) showed the highest cell proliferation inhibition efficiency, whilst the
nanofibrous aggregates (PMAgala18-b-PMAChol24/DOX) exhibited the lowest cell inhibition under the
same DOX dosage. Moreover, the IC50 (half maximal inhibitory concentration) values were evaluated
to be 9.06, 26.70, 13.54, and 14.36 µg DOX equiv./mL for the above complex aggregates, respectively.
The results may due to their different molecular structure/morphology-dependent cellular interactions
and drug release; the spherical complex aggregates have comparably smaller size and larger surface
area than the aggregates with other morphologies, which may endow them with their higher cellular
uptake and drug release manners. Likewise, Zheng et al. [65] reported that drug release behavior
was determined by the matrix morphologies and the interactions between drug and matrix, and the
methoxy poly(ethyleneglycol)-poly(lactic acid) (mPEG-PLA) nanofibrous vectors showed BSA release
slower than that of their nanoparticle counterparts with corresponding kinetic t1/2 (time for 50%
drug release) of 175.5 h and 11.76 h, respectively. Alternatively, methotrexate (MTX) decorated
MPEG-PLA nanobacillus (MPEG-PLA-MTX NB) prepared by Hou et al [35] were shown to enhance
cell internalization, accumulation, and tumor inhibition superiorly to that of the MPEG-PLA-MTX
spherical nanoparticles in vivo. In addition, the IC50 values of a series of poly[oligo(ethyleneglycol)
methacrylate]-block-[poly(styrene)-co-poly(vinyl benzaldehyde)] (POEGMA-b-P(ST-co-VBA)-DOX)
nanoparticles with distinct morphologies were found to decrease in an order from micelles, vesicles,
rods to worm-like nanoparticles with MCF-7 breast cancer cells [34]. In fact, until now, there
was a lack of in-depth studies for revealing the morphological effects of nanoscale drug carriers
on their interaction with cells and subsequent intracellular trafficking and drug release. In this
work, the preliminary study on PMAgala18-b-PMAChols/DOX complex aggregates as drug carriers
demonstrated an obvious molecular structure/morphology-dependent intracellular DOX release
and tumor cell proliferation inhibition, which may provide potential platforms for designing highly
efficient drug delivery nanosystems.
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4. Conclusions

In summary, a new series of diblock PMAgala18-b-PMAChol amphiphilic glycopolymers with
galactose and cholesterol grafts were designed and prepared. These glycopolymers could self-assemble
into morphology-variable nanoscale aggregates from spherical nanoparticles to nanofibers. These
glycol-containing amphiphilic aggregates showed different lectin RCA120 recognition and BSA
adsorption behaviors, largely relying on their molecular structure/aggregate morphology. MTT assay
of the PMAgala18-b-PMAChol aggregates (up to 500 µg/mL) indicated their low cytotoxicity
toward SK-Hep-1 cells, enabling them to serve as promising drug carriers in vivo. Furthermore,
the PMAgala18-b-PMAChol/DOX complex aggregates were prepared, and the DOX-loading and
cell proliferation inhibition properties of the complex aggregates were also found to be molecular
structure/morphology-dependent. The spherical complex aggregates gave rise to higher tumor
cell inhibition efficiency than those of the nanofibrous and nanospindles counterparts under the
same DOX dosages. The study may provide a potential molecular structure/morphology-control
approach towards the design and preparation of efficient amphiphilic glycopolymers for protein
recognition/adsorption and drug delivery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/3/136/s1.
Figure S1: Fluorescence intensity ratios (I394/I374) as a function of logarithm of PMAgala18-b-PMAChol mass
concentration in water. Figure S2: Particle sizes and distributions for the amphiphile self-assemblies formed by
diblock PMAgala18-b-PMAChol8 and PMAgala18-b-PMAChol48 by DLS (A,C) and TEM (B,D), respectively. Figure
S3: Turbidity profiles for the PMAgala18-b-PMAChol8 (A) and PMAgala18-b-PMAChol24 (B) in pyridine/water
mixed solution with initial mass concentration of 3.0 mg/mL in pyridine, and the inset demonstrated the
photograph of amphiphile aggregate solutions for the PMAgala18-b-PMAChol8 (A) and PMAgala18-b-PMAChol24
(B). Figure S4: Photographs of the PMAgala18-b-PMAChol8 (A,B) and PMAgala18-b-PMAChol24 (C,D) aggregate
solutions before and after adding RCA120. Particle sizes and distributions were analyzed by DLS for
the PMAgala18-b-PMAChol8 self-assemblies in the absence (blue curve) and the presence (red curve) of
RCA120 (E). Table S1: Characteristics of the doxorubicin (DOX)-loaded complex nanoparticles by diblock
PMAgala18-b-PMAChol amphiphiles.
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