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Abstract: A central characteristic of many types of cancer is altered energy metabolism processes such
as enhanced glucose uptake and glycolysis and decreased oxidative metabolism. The regulation of
energy metabolism is an elaborate process involving regulatory proteins such as HIF (pro-metastatic
protein), which reduces oxidative metabolism, and some other proteins such as tumour suppressors
that promote oxidative phosphorylation. In recent years, it has been demonstrated that signal
transducer and activator of transcription (STAT) proteins play a pivotal role in metabolism regulation.
STAT3 and STAT5 are essential regulators of cytokine- or growth factor-induced cell survival and
proliferation, as well as the crosstalk between STAT signalling and oxidative metabolism. Several
reports suggest that the constitutive activation of STAT proteins promotes glycolysis through the
transcriptional activation of hypoxia-inducible factors and therefore, the alteration of mitochondrial
activity. It seems that STAT proteins function as an integrative centre for different growth and survival
signals for energy and respiratory metabolism. This review summarises the functions of STAT3 and
STAT5 in the regulation of some metabolism-related genes and the importance of oxygen in the
tumour microenvironment to regulate cell metabolism, particularly in the metabolic pathways that
are involved in energy production in cancer cells.
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1. Introduction

All cells need energy and for this purpose, they use macromolecules, which are degraded and thus,
cells obtain the necessary energy for their essential functions. The central axis of energy metabolism
consists of glycolysis, the Krebs cycle, and the respiratory chain. Glucose is the primary fuel and
oxidises, via glycolysis, to provide energy for all cells (Figure 1). This metabolic pathway consists of 10
consecutive enzymatic reactions that convert glucose into two molecules of pyruvate, which connect
with other metabolic pathways. During glycolysis, two net ATP and two net NADH molecules are
produced. This pathway usually works with limited amounts of oxygen and is only an effective means
of energy production during short, intense exercise, providing energy for a period of 10 s to 2 min
(it is dominant for about 10–30 s during maximal effort). A by-product of glycolysis is lactic acid;
this molecule accumulates in muscles and can produce tiredness and soreness. ATP is the primary
energy source for performing metabolic work, while NADH can have different functions—it is the
source of reducing power in anabolic reactions or, in the presence of oxygen, it can be oxidised in the
respiratory chain.

The functions of glycolysis are in the generation of high energy molecules (ATP and NADH) as a
source of cellular energy for aerobic respiration (in the presence of oxygen) and fermentation (without
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oxygen); the pyruvate generated in glycolysis enters the Krebs cycle and the intermediates of three
and six carbons can be used in other metabolic processes. As shown in Figure 1, each reaction in
glycolysis is catalysed by a specific enzyme. Many enzymes of the glycolytic pathway play significant
roles in diverse non-glycolytic processes, such as transcriptional regulation, which enables cancer cells
to meet other cellular demands. All enzymes that are involved in this pathway are deregulated in
cancer [1–52].
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Figure 1. General view of glycolysis. The main steps of the regulation of this pathway are the conversion
of glucose to glucose-6-phosphate; fructose-6-phosphate to fructose 1, 6-biphosphate; and the formation
of pyruvate from phosphoenolpyruvate. All glycolytic enzymes are deregulated in cancer.

A critical metabolic pathway that is parallel to glycolysis is the pentose phosphate pathway
(also called the phosphogluconate pathway or hexose monophosphate shunt). It generates NADPH
as well as ribose-5-phosphate; this molecule is a precursor for the synthesis of nucleotides. There
are two distinct phases: the first is oxidative, in which NADPH is generated, and the second is the
non-oxidative synthesis of 5-carbon sugars. This pathway is critical for cancer cells because it generates
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pentose phosphates, which support a high rate of nucleic acid synthesis. It also provides NADPH
for both the synthesis of fatty acids and cell survival under stressful conditions with high levels of
intracellular reactive oxygen species. There is increasing evidence that cancer cells modulate the
flux of the hexose monophosphate shunt for their benefit since alteration of the pathway contributes
directly to cell proliferation and survival. Like glycolysis, most enzymes of the pentose pathway are
deregulated in cancer (Figure 2) [53–62].
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Figure 2. General view of the pentose phosphate pathway. This pathway is parallel to glycolysis and is
the main source of NADPH and pentoses. Its point of regulation is the conversion of glucose-6-phosphate
to 6-phosphogluconolactone.

The Krebs cycle, also known as the tricarboxylic acid cycle (TCA) or citric acid cycle (CAC),
is fundamental in all cells that use oxygen during cellular respiration. Furthermore, it provides
precursors (for example, ketoglutarate and oxaloacetate) for the production of amino acids as well
as other fundamental molecules. The TCA cycle is composed of a series of enzymatic reactions
occurring in the mitochondrial matrix and is a vital source of metabolic intermediates, providing
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energy, macromolecules, and redox balance to the cell. This is important for highly proliferating
cells, like tumour cells, which require a continuous supply of small metabolites for the synthesis of
proteins, nucleic acids, and lipids. Aberrant TCA cycle function is implicated in a wide variety of
pathological processes such as obesity. Moreover, several TCA cycle enzymes are deregulated in cancer
(Figure 3) [63–82].
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Several enzymes of the tricarboxylic acid (TCA) cycle are deregulated in cancer.

The electron transport chain (ETC) controls combustion, which generates energy to be used to
drive the oxidation of NADH, which produces three ATP molecules and FADH2 (which produces two
ATP molecules) at the expense of reducing oxygen. The ETC is a series of sequential redox reactions in
which the electrons are transported from one component to the next to reach the final acceptor, where
the electrons reduce the oxygen to water. The phosphorylation of ADP to produce ATP is carried
out by ATP synthase; this process is called oxidative phosphorylation and is the way that aerobic
organisms obtain energy (Figure 4).
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For a long time, these metabolic pathways were considered to be independent of the signal
transduction pathways that regulate normal cell functions. However, increasing evidence exists to
support the relationship between the signal transduction pathways induced by the growth factor,
cytokines, and hormones, amongst others, and the regulation of energy metabolism. In cancer, these
signalling pathways are deregulated to sustain altered proliferation, cell cycle regulation, and evade
growth suppression, among others [83]. More recently, evidence points to the role of altered molecules
to reprogram cellular metabolism [84]; for example, the role of transcription factors that regulate
metabolic enzymes. Cytokines activate signal transducer and activator of transcription (STAT) proteins
and mediate the metabolic switch in tumour transformation [85] (see Section 5).

2. Anaplerosis and Cataplerosis

The concept of anaplerosis describes a series of reactions or pathways that replace the pools of
metabolic intermediates in the TCA cycle. The oxidation of acetyl coenzyme A to CO2 is the critical
process in energy metabolism. Nonetheless, the TCA cycle also functions in anabolic pathways and
its intermediates leave the cycle to be converted primarily to glucose, fatty acids, or amino acids
(non-essential). After the removal of anions of the TCA cycle, they must be replaced to permit its
continued function. This process is termed anaplerosis and the main anaplerotic enzyme is pyruvate
carboxylase (this enzyme directly generates oxaloacetate in mitochondria) [86]. Cataplerosis balances
anaplerosis by removing excess intermediates from the TCA cycle [87]; in fact, it is a set of opposite
reactions to anaplerosis to increase the level of high-energy molecules (ATP) and thus, regulates the levels
of TCA cycle intermediates. If intermediates can be added to the cycle, it is equally important to remove
them to avoid the accumulation of anions in the mitochondrial matrix. There are several cataplerosis
enzymes, including phosphoenol-pyruvate carboxykinase (PEPCK), aspartate aminotransferase, and
glutamate dehydrogenase. The regulation of anaplerosis and cataplerosis depends on the metabolic
and physiologic states and the specific tissue or organ involved. During starvation, cataplerosis, via
phosphoenolpyruvate, supports gluconeogenesis, which may be regulatory in the liver, whereas in the
kidneys, anaplerosis via the uptake of glutamine may be regulatory [86,88].

For example, in cancer cells, citrate is processed by ATP citrate lyase (ACL) to produce acetyl-CoA
(this molecule can be used for fatty acid production). This phenomenon results in a truncated
TCA cycle and produces a flow of metabolites out of the cycle, resulting in the augmentation of
cataplerosis because the influx of metabolites needs to be balanced by anaplerosis (through the influx
of metabolites). In many cancer cells, glutamine satisfies this function through conversion to glutamate
and then to the intermediate α-ketoglutarate [89]. Cancer cells induce enzymes that process glutamine
(glutaminase 1 and glutaminase C) and glutamate oxaloacetate transaminases to convert glutamate to
α-ketoglutarate [90]. On the other hand, citrate can be moved to the cytosol, where it can be converted
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back to acetyl-CoA by ACL. Akt facilitates this diversion of mitochondrial citrate from the TCA cycle
to acetyl-CoA production by phosphorylating and activating ACL [91–93]. Another metabolite of TCA,
oxaloacetate, can be transaminated to produce aspartate, which can serve as a precursor for asparagine,
and α-ketoglutarate can be transaminated to produce glutamate which, in turn, can be converted to
proline, arginine, and glutamine. Most cancers depend on these syntheses rather than exogenous
supplies [84]. Through α-ketoglutarate, glutaminolysis provides at least half of the NADH pool, and
all FADH2 can potentially be generated via acetyl-CoA-independent reactions [94].

3. The Warburg Effect in Normal Cells

Healthy differentiated cells use the tricarboxylic acid cycle and oxidative phosphorylation to
generate the energy and biomass that is necessary for normal cell function. The tricarboxylic acid
cycle links the products of the oxidation of pyruvate and malate (produced in the cytosol) to CO2

with the generation of NADH to be further oxidised by the mitochondrial respiratory chain. This
system transfers electrons to create a proton gradient across the inner mitochondrial membrane, which
is used by the complex F1F0 ATPase to drive the synthesis of ATP. When cells present fundamental
changes in nutrient metabolism and depend on aerobic glycolysis, this change is known as the Warburg
effect [95–97].

Although the Warburg effect is frequent in tumour cells, some healthy cells also display this
effect. The cells of the immune system are maintained in a quiescent state up until their activation.
Good examples of enhanced glycolysis are M1 macrophages and T lymphocytes [98]. The M1 cells have
increased glycolytic flux and reduced mitochondrial oxidative phosphorylation [99]. This metabolic
change occurs in the context of an altered TCA cycle. M1 cells have specific TCA breakpoints at isocitrate
dehydrogenase and succinate dehydrogenase, in which their gene expression is downregulated [100,101]
similarly to tumour cells. During T lymphocyte activation, they go through several metabolic changes:
rapid proliferation, synthesis of large amounts of a variety of effector proteins, and preparation to enter
a potentially hypoxic environment. These metabolic adaptations resemble those observed in the cancer
metabolism paradigm (proliferation, anabolism, energy production to generate building blocks, and
the lack of nutrients and oxygen can limit the metabolic flux since they restrict metabolite access and
oxygen) [102]. This phenomenon indicates that cancer cells only adopt metabolic strategies similar to
those used by T lymphocytes in response to their activation; for this reason, cancer cells pervert these
metabolic changes.

Glucose is introduced into the cell by glucose transporters and is metabolised to pyruvate in the
cytosol by glycolysis; the net production is only two ATP molecules per glucose. In non-transformed
quiescent cells, the pyruvate that is produced in the glycolysis is imported to the mitochondrial matrix,
where it is converted to acetyl-CoA by the action of the pyruvate dehydrogenase complex (PDH).
The acetyl-CoA enters the tricarboxylic acid cycle and the generated NADH is oxidised via oxidative
phosphorylation. Compared to glycolysis, this process is highly efficient for the generation of ATP; the
complete oxidation of one molecule of glucose produces 36 ATP molecules [103].

Some studies have demonstrated that the resting lymphocytes obtain most of their ATP by
oxidative phosphorylation; nevertheless, within hours of stimulation, lymphocytes begin to increase
glucose uptake up to 40-fold and secrete high amounts of lactate [104]. This increase in aerobic
glycolysis precedes, and is essential for, the growth and proliferation of stimulated T cells [105,106].

Cancer cells do not increase glycolysis solely because their capacity for oxidative phosphorylation
is saturated. Instead, aerobic glycolysis and basal oxidative phosphorylation provide sufficient energy
to support the cell survival and growth demands of cancer cells and active T cells [102]. One advantage
of glycolysis (and the TCA cycle) is the generation of molecular intermediates, which are used as
carbon moieties to generate amino acids, lipids, and nucleotides; in this manner, a central function
of aerobic glycolysis is to provide sufficient intermediates for biosynthesis in proliferation and cell
growth. Glycolysis and the TCA cycle can supply both ATP and intermediates to multiple pathways to
potentially support cells under stressful conditions. Furthermore, high rates of glycolysis can protect
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against apoptosis [107]. Moreover, glycolysis is independent of oxygen and adopting this type of
metabolism can prepare cells to survive in a hypoxic environment. Adoption of a highly glycolytic
metabolism may help both tumours and lymphocytes to survive and proliferate during conditions of
low oxygen availability [102].

In the case of T cell activation, the induced metabolism is maintained by the continuous signalling
of interleukin (IL)-2 (and other cytokines that share the γc chain, like IL-7). In fact, this cytokine can
induce amino acid uptake and protein synthesis [108]. This effect is, in part, mediated directly by
STAT5 [109]. JAK/STAT3 signalling in lymphocytes induces the expression of PIM kinases, which
themselves participate in regulation of the AMP/ATP ratio and energy metabolism. Furthermore, the
AMPK complex is capable of detecting changes in the concentrations of AMP and ADP; AMPK is
also activated by glucose deprivation [95,110]. These effects lead to the modulation of the mTORC1
pathway and the control of cell growth [110]. The γc-receptor directs the maintenance of activated T
cell metabolism and, therefore, potentially represents a useful tool to study the role of STAT-driven,
PIM-mediated regulation of metabolism [95,102].

Despite significant metabolic similarities, the two systems—activated lymphocytes and cancer
cells—have differences. For example, T cell metabolic reprogramming is transient and reversible.
Unlike cancer cells with specific oncogenic mutations, the activated T cells are not malignant. In fact,
following the clearance of infection, the majority of activated T cells will die due to the activation
of apoptosis. Both activated T cells and tumour cells are kept alive by an imbalance of pro- and
anti-apoptotic signals. This imbalance is maintained by cytokine signalling through Akt and other
pathways and by glycolytic flux [96,97,102]. However, in cancer cells, this balance is maintained by
glycolytic flux and oncogenic signalling, for example, hexokinase (HK) is the first enzyme in glycolysis
and is a rate-limiting enzyme. There are four subtypes: Firstly, HKI-IV is overexpressed in tumour cells,
enabling the cells to ensure that is energy is produced in hypoxia. The most commonly overexpressed
subtype is HKII; this molecule has been observed in cervical cell lines (HeLa and SiHa) in normoxia
and hypoxia [11], in hepatoma [111], breast [112], and brain [113] cancers. Thus, T cells provide a
unique opportunity to understand how metabolism is used in healthy cells to achieve proliferation in
comparison to that observed in cancer cells. Further research on the immune cell’s metabolism could
provide the basis for new treatments targeting cancer metabolism.

4. Cancer Metabolism

Cancer cells frequently use well-established processes, like the Warburg effect, and adapt them
for their benefit. Thus, some of the most remarkable characteristics of many types of cancer cells are
the presence of altered metabolism, enhanced glucose uptake and glycolysis, and decreased oxidative
metabolism. Tumour cells reprogram their metabolism to meet their high demand for energy; in
fact, this change in metabolism is considered one of the hallmarks of oncogenic transformation [83].
This adjustment is essential for tumour cells to acquire sufficient energy to meet the anabolic demands
necessary to generate the biosynthetic precursors that are required for cell growth and division.

In multicellular organisms, nutrient uptake is tightly regulated in the control of systems that
prevent abnormal proliferation [83]. Nevertheless, tumour cells can exceed these metabolic restrictions,
acquiring mutations in essential genes such as tumour suppressors and oncogenes. These genetic
mutations may accumulate in the cells throughout the lifetime of an individual and change the
function of signalling pathways that regulate metabolism. The unusual changes in these pathways
increase nutrient uptake and alter metabolism to produce the necessary energy for survival and cell
proliferation [114,115]. It has been reported that energetic metabolism, notably glucose metabolism,
is connected to growth control by silencing of specific tumour genes, which drives uncontrolled cell
proliferation, cycle arrest, and senescence [84,116–118]. Most of the proto-oncogenes and tumour
suppressor genes code for molecules that participate in several signal transduction pathways, and
their role in carcinogenesis has been related to their capacity for regulating the cell cycle to sustain
proliferative signals that help cells to evade growth suppression and cell death [116]. Growing evidence
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exists that indicates that the main function of active oncogenes and inactive tumour suppressors is cell
metabolism reprogramming [118]. In normal tissues, approximately 10% of cell energy is provided by
glycolysis, while the aerobic respiratory chain that takes place in the mitochondria contributes 90%
of cell energy. However, in cancer cells, approximately 50% of cell energy is generated by glycolysis
and the rest of the energy is produced by the mitochondria [119]. This change is sustained even when
the O2 is enough to maintain mitochondrial function (anaerobic glycolysis) [120]. Several reports
suggest that there is an important correlation between the JAK/STAT pathway and cell metabolism—an
aberrant pathway in cancer cells—since the constitutive activation of STAT proteins promotes glycolysis
through the transcriptional activation of hypoxia inducible factors and, therefore, the alteration of
the mitochondrial activity [121–126]. It seems that STAT proteins function as an integrative centre for
different growth and survival signals for energy and respiratory metabolism and they have a central
role in the metabolic function of the cell.

5. Role of the Transcription Factors STAT and HIF in the Deregulation of Energy Metabolism in
Cancer Cells

5.1. Role of STAT Proteins in Metabolism

Signal transducer and activator of transcription (STAT) proteins are essential transcription factors
for the cellular response to cytokines and growth factors [127–129]. Upon the binding of a ligand,
the receptor becomes phosphorylated in tyrosine (pTyr); STAT proteins bind to the receptor and are
phosphorylated by JAK kinases. They then dimerise, translocate into the nucleus, and regulate the
expression of genes that modulate cellular functions (Figure 5). Increasing evidence suggests that STAT
signalling may be involved in the regulation of cellular metabolism [130].
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Figure 5. JAK/STAT (signal transducer and activator of transcription) pathway. This pathway initiates
with ligand binding (1), which induces receptor dimerisation, and the associated JAKs phosphorylate
the receptors (2). STATs bind to the phosphorylated receptor (3). Subsequently, JAKs phosphorylate
STATs (4). STATs separate from the receptor and dimerise (5) and then migrate to the nucleus (6A) or
mitochondria (6B). STATs regulate gene expression in the nucleus (7).

STAT molecules (particularly STAT3 and STAT5) are constitutively activated in a large variety
of cancers. The actual model describes STAT molecules regulating the expression of nuclear
target genes involved in proliferation, cell cycle progression, and resistance to apoptosis [130].
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In Ras-mediated oncogenesis, STAT3 has been reported in mitochondria, and altered glycolytic and
oxidative phosphorylation activities have been suggested, indicating that STAT proteins regulate an
unknown metabolic function in mitochondria [131]. These results suggest that STATs might have
supplementary functions in the mitochondria to alter cellular metabolism in ways that favour oncogenic
transformation [130]. We discuss how the transcription factors STAT3 and STAT5 participate in the
regulation of energy metabolism and their involvement in the regulation of HIF-1α, an important
regulator in the cancer hypoxic microenvironment.

5.2. STAT3

The STAT3 transcription factor is well known for functioning as an anti-apoptotic factor, enhancing
DNA repair in several malignancies, like leukemic stem cells [132], breast [133,134], prostate [132,133],
fibrosarcoma, myelomas, lymphomas, head and neck, lung, pancreatic [134,135], and glioblastoma [136].
STAT3-dependent gene expression in cancer is heterogeneous, reflecting the implication of this factor in
multiple steps of the oncogenic program [137]. In response to interferon β, pTyr-STAT3 participates in
modulating mitochondrial electron transport chain (ETC) activity and oxidative phosphorylation [137].
Some observations suggest the existence of an essential correlation between STAT3 and cell metabolism;
the latter process is aberrantly regulated in cancer cells. Evidence exists that constitutive activation of
STAT3 promotes glycolysis through transcriptional induction of HIF-1α and decreased mitochondrial
activity [85,128]. Activation of STAT3 precedes HIF-1 transcriptional response in oxygen deprivation;
pSTAT3 has a peak after five minutes of oxygen deprivation, since maximum HIF-1α stabilisation
requires 120 min [138]. In oesophageal squamous cell cancer, STAT3 bound to the HIF1α promoter and
the knockdown of STAT3 inhibited epithelial–mesenchymal transition and downregulated HIF1α [139].
In malignant peripheral nerve tumours, STAT3 and HIF-1α promote oncogenic phenotypes, similarly
to oesophageal cancer, where STAT3 knockdown was sufficient to block the expression of HIF-1α [140].

Exactly how STAT3 phosphorylation can be regulated within the mitochondria is not understood,
however the phosphatase SHP2 was proposed as a potential player in dephosphorylating mitochondrial
STAT3 [141]. Phosphorylation in serine 727 (S727) of STAT3 has emerged as a critical regulator of
metabolic processes. STAT3 is localised in the mitochondria and some reports indicate that the molecule
GRIM19, a component of Complex I of the ETC that was previously identified as a protein capable
of interacting with STAT3, is necessary for the import of STAT3 into the mitochondria [142]. Inside
the mitochondria, STAT3—phosphorylatedat S727—can interact with the Complexes I and II, which
results in a reduction of reactive oxygen species (ROS) [130,143]. This function is essential under some
stressful conditions, such as cardiac ischemia. In this case, the mitochondrial localisation of STAT3
protects the cells by preserving the activity of Complex I, reducing ROS production and the activation
of caspase 3 [144]. STAT3 also interacts with cyclophilin D in the mitochondrial matrix, preventing
the opening of the mitochondrial permeability transition pore (MPTP), avoiding apoptosis induced
by calcium and necrosis [137]. STAT3 is capable of maintaining Ras-mediated carcinogenesis due to
increased aerobic glycolysis and ETC activity, diminished opening of MPTP, and the lack of STAT3,
which decreases the activity of Complex V (ATP synthase) dramatically [143].

Evidence exists that STAT3 affects the optimal activity of the ETC because it can modulate the
energy status of the cell. For example, in pro-B cells and in murine hearts, mitochondria increase the
activity of Complexes I and II [143]; in MEF cells, expressing the mutant H-RasV12, STAT3 increases
the activity of Complexes II and V [131]; in MEF cells lacking SIRT1 (SIRT1 KO), they show an increase
in the activity of Complexes I, III, and IV and a decrease in Complex II activity [145]; in the murine
cardiomyocyte cell line HL-1, this transcription factor elevates the activity of Complexes I–IV [146].
It seems that STAT3 functions as an integration centre for different survival and growth signals through
its nuclear and mitochondrial activity [137]. Furthermore, the relative concentration of this molecule in
the organelle is low; biochemical fractions reveal that 5–10% of total STAT3 localises in the mitochondria
of multiple tissues and cell lines [143]. Nevertheless, how STAT3 carries out its activities within the
mitochondria remains an open question.
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5.3. STAT5

STAT-5 is considered to be an oncogene because it brings about the activation of cyclin D1, c-Myc,
and Bcl-xl expression and is involved in promoting cell cycle progression, cellular transformation, and
in preventing apoptosis [147]. Aberrant signalling of STAT3 and STAT5 is present in different solid
tumours, like bladder, breast, colon, head and neck, cervical, and liver cancers, gliomas, melanomas,
and haemopoietic malignancies [148–151]. Cholez et al. gave one of the first pieces of evidence
linking STAT5 to oxidative metabolism (in pre-B cells). They used a proteomic approach to identify
differential types of regulation in cells either expressing or not expressing a dominant negative
form of STAT5A (NALM6∆5). Among the 14 identified proteins, six were involved in the control
of oxidative stress. The possible link between STAT5 and oxidative metabolism could be in the
downregulation of transaldolase, glutathione synthetase, DJ-1, and thioredoxin domain-containing
protein 9 (proteins 1–4) expression [152]. The downregulation of the levels of DJ-1 protein (known as
Parkinson disease protein 7) in pre-B cells may, therefore, increase cell death susceptibility through
oxidative metabolism and the upregulation of QPRTase (quinolatephosphoribosyltransferase) and
DDAH2 (dimethylargininedimethylaminohydrolase). Some of these proteins control the levels of
ROS [152]. Cancer cells could use this mechanism to modify their metabolism and adapt better to the
tumour microenvironment.

The JAK/STAT pathway (in particular, STAT5) could regulate glucose metabolism by driving
the expression of Pyruvate dehydrogenase kinase (PDK). STAT5 mediates the expression of PDK4
in adipocytes in response to prolactin [153]. Chueh et al. demonstrated an interaction between
STAT5 and a metabolic enzyme, PDC-E2, in the mitochondria. STAT5 exhibits unique DNA-binding
activity. The presence of mitochondrial STAT5 in tumour cells and cytokine-stimulated cells also
coincides with their metabolic shift towards aerobic glycolysis [130]. In a later report, the same
group demonstrated that PDC-E2 might function as a coactivator in STAT5-dependent nuclear and
mitochondrial gene expression. The model proposed by Chueh et al. for nuclear–mitochondrial
crosstalk through cytokine-induced STAT5 and PDC-E2 interaction initiated by cytokine stimulation is
that receptor dimerisation induces tyrosine phosphorylation of the associated JAK2 tyrosine kinase.
Active JAK2 phosphorylates the cytoplasmic tails of receptor subunits. Cytoplasmic STAT5 is recruited
to the receptor complex and phosphorylated in tyrosine by the JAK2 kinase. STAT5 proteins dimerise
and translocate into the nucleus and the mitochondria. In the nucleus, tyrosine phosphorylated STAT5
binds to the promoter regions of distinct target genes. The associated PDC-E2 may work and collaborate
with histone acetyltransferase (HAT) to enhance STAT5-dependent nuclear gene expression. On the
other hand, the binding of tyrosine-phosphorylated STAT5 to the control region of mitochondrial DNA
may modulate transcription initiated from the heavy strand promoter (HSP) and light strand promoter
(LSP) [153,154].

The translocation of STAT5 into the mitochondria requires phosphorylation in specific tyrosine
residues. The mitochondrial localisation of tyrosine-phosphorylated STAT5 was observed in leukemic
T cells (these cells express a constitutively activated STAT5), and the presence of STAT5 increased
in response to IL-2. By contrast, the cells that were not treated with IL-2 did not show the presence
of STAT5 in the mitochondria. Once in the mitochondria, STAT5 interacts with the E2 protein, a
component of the pyruvate dehydrogenase complex; it is also able to bind to the mitochondrial genome,
precisely into the D-loop region [130]. The mitochondrial localisation of STAT5 suggests that it may be
involved in mitochondrial gene regulation, also coinciding with the metabolic shift to aerobic glycolysis
observed in T cells and leukaemias stimulated with cytokines. HIF-2α (a closely related HIF-1α isoform)
is also a target gene of STAT5 in haemopoietic stem cells (HSC) [155]. The decrease in the expression of
HIF-2α reduces the expansion of HSC induced by STAT5. Glucose uptake is enhanced in HSC cells
expressing STAT5, and in these cells, HIF-2α is required for the upregulation of genes associated with
glucose metabolism. In T cells, it has also been observed that STAT5 mediates glucose uptake [109].
Both isoforms of HIF (HIF-1α and HIF-2α) regulate the expression of numerous common genes,
while HIF-1α preferentially induces genes of the glycolytic pathway [156,157]. HIF-2α is involved in
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the regulation of essential genes for tumour growth, cell cycle progression, and maintenance of the
pluripotency of stem cells, like the proto-oncogene c-Myc41 and the stem cell factor OCT-3/4.

Chronic liver diseases and the development of hepatocellular carcinoma are tightly related and
represent a real medical challenge as treatment options are minimal. Some studies using animals have
shown that the genetic deletion of STAT5 in the liver is associated with a high susceptibility to fatty liver
disease, fibrosis, and cancer, pointing to a protective role of hepatic STAT5 in mouse models of chronic
liver disease [158]. Several studies have suggested that growth hormone (GH)-STAT5 signalling plays a
vital role in controlling hepatic lipid metabolism. Mice with a liver-specific STAT5 ablation were shown
to develop steatosis, glucose intolerance, insulin resistance, late-onset obesity, and impaired liver
regeneration. Notably, the expression of genes associated with adipogenesis (PPARγ) and fatty acid
uptake (CD36, or fatty acid translocase) were upregulated in Stat5a/b-deficient mice. These changes may
partially explain steatosis induced by loss of STAT5 [159,160]. Barclay et al. demonstrated that deficient
GH-dependent STAT5 signalling correlates with steatosis through microarray analysis, quantitative PCR,
and chromatin immunoprecipitation identified putative targets of STAT5 (FA (fatty acid) synthetase,
CD36 signalling) that are responsible for the steatosis associated with a healthy diet [159]. The liver is a
target organ for steroid hormone metabolism. Several studies have suggested that GH-STAT5 regulates
genes linked to steroid metabolism. One of these genes, HSD3b5, catalyses the formation of the poorly
active metabolite androstanediol from dihydrotestosterone [160]. HSD3b5 gene expression was shown
to be downregulated in the livers of STAT5-deleted male mice [161,162]. By contrast, an alternative
gene involved in testosterone metabolism, testosterone 16α-hydroxylase (Cyp2b9), which hydroxylates
testosterone at the 16α position, was found to be upregulated in STAT5-deleted male mice. Cyp7b1
(oxysterol 7α-hydroxylase), which is responsible for the hydroxylation of dehydroepiandrosterone,
androstenediol, and 25-hydroxycholesterol, was found to be downregulated in STAT5-deleted male
mice [163].

Another critical organ in which the STATs play an essential role is the heart; JAK1, JAK2, TYK2,
and all the members of the STAT family are expressed in the heart [164]. Multiple studies have
demonstrated a favourable and protective role of STAT3 in the heart. This role has mainly been
pointed out using data from animal experiments. As STAT3 knockout mice were shown to have early
embryonic lethality [165], specific cardiac myocyte STAT3 knockout mice have been a helpful tool to
investigate the role of STAT3 in the heart. The use of these mice and the pharmacological inhibitor of
JAK2 (AG490) demonstrated a protective and anti-apoptotic role of STAT3. This role has mainly been
demonstrated using a model of ischemia/reperfusion injury [166]. Similar cardio-protective effects
have been described for STAT5 activation [167]. Heusch et al. used a model of cardio-protection by
remote ischemic preconditioning (RIPC), and only STAT5 activation was associated with protection
by RIPC. The available data suggest that the functions of STAT3 and STAT5 might have different
roles in pigs and humans; STAT5, but not STAT3 activation, is associated with protection in human
hearts, whereas STAT3 activation and possibly STAT5 inhibition are associated with protection in pigs.
Alternatively, different procedures and protocols of cardio-protection may recruit a different pattern
of STAT isoform signalling [167]. Tumour cells could use this mechanism to evade apoptosis and
increase their resistance to stress caused by a low oxygen concentration. STAT5 undergoes nuclear and
mitochondrial activities, and both functions cooperate to induce metabolic shift, however the role of
this transcription factor in the mitochondria is unknown and remains an open question.

As mentioned above, the STATs are essential for promoting glycolysis through the activation
of HIF molecules. For example, STAT3 induces the expression of HIF-1α, augments glycolysis, and
decreases mitochondrial activity. Furthermore, STAT5 can induce the expression of HIF-2α, which
is necessary for the upregulation of genes associated with glucose metabolism. Thus, it is clear that
STAT proteins are involved in regulating hypoxia-inducible factors that are the main regulators of
oxygen homeostasis. Hypoxia is a critical microenvironmental factor that is related to progression and
metastasis. Most of the solid tumours show hypoxic conditions, and this minor concentration of O2

induces an altered regulation in gene transcription, leading to changes in cell metabolism [168,169].
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5.4. The Importance of Oxygen and HIF-1α in the Regulation of Metabolism

Oxygen is a basic necessity for life as it is the final acceptor of electrons in the ETC; its relative
abundance or absence can modify processes like embryogenesis, wound healing, and stem cell
maintenance [170–173]. In fact, because of its physiological importance, oxygen levels and molecular
pathways regulated by oxygen are strictly regulated, so failure in the proper regulation in response
to low oxygen (hypoxia—an oxygen concentration of approximately 6% or lower generates hypoxic
stress) can promote a number of diseases, including diabetic retinopathy, ischemic heart disease, and
cancer [170,174,175]. In cancer, the microenvironment of tumours is related to chronic hypoxia [175,176].
In response to low levels of O2, the tumour cells turn on specific genes that promote adaptation to
hypoxic stress, including those involved in angiogenesis, cell survival, proliferation, evasion of growth
suppressors, metastasis, metabolic reprogramming, and mortality [177,178]. It is well documented
that hypoxia promotes tumorigenesis and contributes to a poor clinical prognosis [179,180].

Hypoxia inducible factor-1alpha (HIF-1α) is a critical molecule that is overexpressed in many
types of cancer; this transcription factor forms heterodimers consisting of an oxygen-dependent
subunit (subunit α) and an independent oxygen subunit (subunit β). There are three isoforms of
the α subunit (HIF-1α, HIF-2α, and HIF-3α) and three isoforms of the β subunit, also known as the
aryl-hydrocarbon receptor nuclear translocators (Arnt1, Arnt2, and Arnt3). Subunit α translocates into
the nucleus and under normal conditions, has an extremely short half-life—less than five minutes [123].
The degradation of this subunit is mediated by the oxygen-dependent degradation domain (ODDD)
positioned within the N-TAD, which contains specific proline residues (Pro402 and Pro564 in HIF-1α
and Pro405 and Pro531 in HIF-2α) that are hydroxylated in an average oxygen concentration by a
particular group of prolyl hydroxylases (PHDs) [124]. However, the α-subunit can dimerise with
the β-subunit (this subunit is insensitive to oxygen and hence, is constitutively expressed) when the
oxygen concentration is under 6% [124,125]; this complex binds to consensus sequence 5′-RCGTG-3′,
which is present in the enhancer of the hypoxia response element (Figure 6).
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Figure 6. Hypoxia-inducible factor (HIF) is a transcription factor and is expressed in all metazoan
organisms. This factor is composed of two subunits: HIF-1α and HIF-1β. Under hypoxic conditions,
HIF regulates the expression of hundreds of genes. In this figure, only the genes related to metabolism
are shown.

High levels of expression of HIF-1α are associated with high mortality in cancer [181]; HIF is
capable of inducing transcription of the pyruvate dehydrogenase kinases (PDK) 1 and 3 [182,183].
The PDK phosphorylates and inactivates the pyruvate dehydrogenase (PDH), preventing pyruvate
from entering into the Krebs cycle, hence reducing mitochondrial oxygen consumption and decreasing
the production of reactive oxygen species (ROS). HIF promotes the conversion of pyruvate to lactate
through lactate dehydrogenase. This enzyme is a tetramer that includes the H subunit (LDH-H;
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this subunit is expressed ubiquitously by the gene IDHB). The LDH-H that is found in the heart is
more active at low concentrations of pyruvate and is strongly inhibited by an excess of pyruvate
(approximately 10−2 M). The subunit M (LDH-M, expressed by the gen IDHA) maintains its activity at
relatively high pyruvate concentrations [184]. The IDHA gene is a direct target of HIF and is highly
inducible by hypoxia. HIF, therefore, promotes the formation of a complex formed exclusively by
LDH-M, which is more efficient in converting pyruvate to lactate; this results in a decreased flow of
pyruvate into mitochondria [182].

HIF-1α is expressed in cervical cancer, which represents an early event in tumour development and
is expressed in both normoxia and hypoxia conditions. The levels of glucose transport protein 1 (GLUT1)
gradually increases during the transition from normal cervix conditions to cervical intraepithelial
neoplasia; the expression of this molecule is related to lymph node metastasis, and the expression levels
of GLUT1 and HIF-1α are correlated, indicating that HIF-1αmay regulate the expression of downstream
genes that are involved in the energy supply [114]. On the other hand, the contribution of HIF-1α to
the regulation of hypoxic cell survival or death remains controversial. It has been reported that this
molecule can have either pro-apoptotic or anti-apoptotic effects in different systems [185]. During
severe hypoxia (or anoxia), apoptotic cell death is crucial to avoid hypoxia-induced mutations in cells.
One proof of hypoxia-induced apoptosis is the suppression of the electron transport chain on the inner
membrane of mitochondria [186]. Reports exist that HIF-1α can initiate hypoxia-mediated apoptosis by
enhancing the expression of several genes (Bcl-2, p53, and others) [187]. However, during hypoxia, the
translocation of the Bax protein to the mitochondria is downregulated and the inhibitor of apoptosis
protein 2 (IAP-2) levels are upregulated; this combination of effects preserves the mitochondrial
integrity and may help with cell survival during hypoxia. HIF-2 also plays an essential role during
hypoxia by positively regulating cell proliferation, which is controlled by Myc [121,186]. In fact, during
severe or prolonged hypoxia, the vast majority of the cells undergo apoptosis; nevertheless, some of
the cells adjust to the environment and survive by avoiding necrosis and apoptosis, therefore resulting
in an aggressive phenotype. This phenomenon suggests that cells that are non-sensitive to apoptosis in
a tumour will be resistant to anticancer treatments [188,189].

6. Conclusions

The progress made in recent years in cancer research metabolism has improved our understanding
of how aerobic glycolysis and other metabolic abnormalities that are observed in cancer cells support
the anabolic requirements associated with cell growth and proliferation. There is increasing evidence
that anabolism is under complex control, which is regulated directly through signalling induced by
growth factors; all promote changes in aerobic glycolysis that are characteristic of the Warburg effect.
Aberrant activation of the JAK/STAT pathway has been found in several hematologic malignancies and
solid tumours. In particular, STAT proteins participate in cellular respiration and increasing evidence
indicates that activated STATs can regulate energy metabolism by influencing the expression of critical
enzymes that are important in these metabolic pathways. In this review, we discussed the role of
STAT proteins in the regulation of metabolic enzymes. We focused mainly on cytoplasmic/nuclear
STAT proteins, the fact that STAT3 and STAT5 are found in mitochondria, and that the effects on the
regulation of metabolic enzymes are mainly mediated by an increased HIF-1α expression. The impact
of STAT proteins on energy metabolism remains an open question, highlighting this as an important
area for future research.

Despite the progress that has been made in recent years, it has been difficult to change the general
idea that alterations in metabolism are an indirect phenomenon in cancer, a small side effect that pales
in importance compared with the activation of the first signals of proliferation and survival. Therefore,
altered metabolism should be considered a central aspect in the development and growth of tumours
to which more attention must be devoted, since there is still much research to be done in this area of
cancer. This phenomenon indicates that the cancer cells only adopt metabolic strategies similar to
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those used by T lymphocytes in response to their activation; for this reason, the cancer cells pervert
these metabolic changes.
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