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Abstract: Much of current research investigates the beneficial properties of mesenchymal stem cells
(MSCs) as a treatment for wounds and other forms of injury. In this review, we bring attention to
and discuss the role of the pericyte, a cell type which shares much of the differentiation potential
and regenerative properties of the MSC as well as specific roles in the regulation of angiogenesis,
inflammation and fibrosis. Pericytes have been identified as dysfunctional or depleted in many
disease states, and observing the outcomes of pericyte perturbation in models of disease and wound
healing informs our understanding of overall pericyte function and identifies these cells as an
important target in the development of therapies to encourage healing.
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1. An Introduction to Pericytes

1.1. Morphology, Location and Function

Pericytes are cells found on the outside of blood vessels [1]. Their long processes encircle the
abluminal surface of those vessels and attribute structural integrity to the vessel wall. Pericyte
morphology is characterised by minimal cytoplasm, a prominent nucleus and projecting processes
which wrap around associated capillaries (Figure 1) [2].
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swimbladder. Image was kindly supplied by Professor Roger C. Wagner, University of Delaware.

From their position on the outer surface of the blood vessel, pericytes interact with endothelial
cells (ECs), which reside on the other side of the basement membrane, through adhesion plaques
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which provide adherence between the ECs and the pericytes. Peg-and-socket contacts facilitate the
diffusion of molecules between the two cell types [3]. Pericytes and ECs together create and maintain
the shared basement membrane, the acellular component of the vessel wall [4]. This relationship
allows pericytes to regulate the blood flow within vessels by virtue of high levels of α-smooth muscle
actin (αSMA) and myosin expression, which can bring about vessel constriction [5]. Pericyte density
and the EC to pericyte ratio is found to differ between organs, with ratios estimated to range from
1:1 in the central nervous system (CNS) to 10:1 in tissues such as skeletal muscle [6]. Consequently,
in any given organ the proportion of the abluminal vessel surface which is covered by pericytes can
be anywhere from 10–70% [7]. At the interface between the endothelial tube and the surrounding
tissue, pericytes are ideally located to regulate processes associated with the vasculature, including
the control of angiogenesis, which is well documented for these cells both in the context of general
homeostasis and in response to trauma. Pericytes mechanically regulate vessel wall integrity, and
serve as signalling mediators of EC behaviour. Paracrine pericyte signalling directs EC proliferation
and migration to form new vessel sprouts when appropriate and inhibits aberrant pro-angiogenic
behaviour in ECs when vessel sprouting is not required [8]. Pericytes have also recently been found to
regulate the diffusion of cells and proteins from the vessel to the surrounding tissue, influencing the
infiltration of neutrophils [9,10] and macrophages [11], which suggests an additional role for pericytes
as mediators of the inflammatory process.

1.2. Pericyte Origin and MSC Properties

The developmental origins of the pericyte across all tissues are still not fully understood. For the
most part, pericytes develop from the mesoderm during embryogenesis, with the origins of pericytes
in the gut [12], lungs [13] and liver [14] having been tracked to the mesothelium. Similarly, cardiac
pericytes have been shown to stem from the epicardial mesothelium [15,16]. In the central nervous
system, however, chick-chimera studies show that while pericytes in the spinal cord and brain stem
have developed from the mesoderm, pericytes of the forebrain are more likely to be derived from
neural crest cells of the neuroectoderm [17].

The diverse origins of tissue-specific pericytes are reflected in the antigenic heterogeneity of
pericytes observed between tissues. Currently, there are no markers identified as being expressed
exclusively by pericytes, nor any constitutively expressed across pericytes of all locations. Within
varying tissues, pericytes are found to display morphological changes and differential expression
of markers dependent on their differentiation state and specific function within that tissue [18].
Changes in expression are also noted between different developmental stages and disease states [7].
Further, some markers are only expressed when pericytes are actively involved in remodelling of the
vasculature, such as RGS5, which is expressed on activated pericytes in tumour development and
vascular remodelling but is absent at other times [2,19]. While the list of recognised pericyte markers
is growing, there remains a distinct absence within the field of a method by which pericytes can be
identified indiscriminately of tissue, disease or developmental factors. As such, pericyte identification
still relies on the concurrent identification of perivascular location, morphology and expression of
multiple markers. For example, pericytes express many of the same markers as fibroblasts and
exhibit similar morphology, so colocalisation between blood vessels and pericytes is often necessary to
distinguish between the two cell types. The current struggles in pericyte identification and therefore
isolation have been comprehensively reviewed in recent years [7,20,21]. Ansell and Izita discuss the
difficulties encountered when comparing previous studies of pericyte function, particularly in vitro,
and identify the potential for confounding results due to the unintentional selection of different
pericyte subtypes for inclusion in experimental studies [22]. Much of the discussion of pericytes in the
literature today addresses the current limitations in our ability to accurately define and isolate pericyte
subtypes for experimental purposes.

There is significant overlap between markers expressed by pericytes and mesenchymal stem cells
(MSCs), which is perhaps unsurprising given the predominately mesenchymal origin of many pericyte
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populations. Expression of CD105, CD73, CD90 and CD44 is observed in both pericytes and MSCs [23],
and the observation that some subsets of pericytes express αSMA while others do not leads some
researchers to postulate that αSMA+ pericytes are more likely to carry out a structural support role at
the blood vessel wall while αSMA− pericytes possess a more regenerative MSC-like phenotype [24].

Much of the current research in regenerative medicine is invested in evaluating the potential of
cells with MSC-like properties as treatments to improve wound healing. We now understand that
pericytes not only express MSC markers but also possess MSC-like properties, and display the ability
to differentiate in vitro into an array of mesenchymal cell types. These include adipocytes [25],
osteoblasts, chondrocytes [26], phagocytes and granulocytes [2]. The potential for pericytes to
differentiate into beneficial cell types during the proliferative and regenerative stages of wound
healing is an exciting prospect, and in the context of wound healing a cell type with the potential to
positively contribute to direct regeneration of lost tissue represents a possible target for therapeutics
or a source for the development of a cell-based therapy. Prior to the consideration of these cells for
application in cell therapies however, the differentiation potential of all pericyte populations must be
comprehensively understood.

Pericyte differentiation potential is extensive and highly dependent on lineage and the
surrounding environment [27]. In fact there is a body of observations surrounding pericyte plasticity
which, in conjunction with a shared perivascular location, suggests that MSCs and pericytes are, in fact,
the same cell type [28]. Recently however, only CD146+ bone marrow MSCs (BM-MSCs) and pericytes
(also CD146+) were found to maintain endothelial tube networks and improve angiogenic sprouting
in vitro, while CD146− subtypes of the BM-MSC population did not, suggesting that pericytes are
perhaps a subset of MSCs with vascular biology functions which not all MSCs possess [29]. One school
of thought with regards to the difficulty of defining the difference between a pericyte and an MSC
suggests that a pericyte which is in direct contact through gap junctions with ECs should be termed
a pericyte, but that upon liberation of a pericyte from the vessel wall, that same cell should then be
termed an MSC [30].

2. Pericytes in Wound Healing

Wound healing is a complex process made up of a series of overlapping events that include
inflammation, matrix formation and remodelling. Further to our initial understanding of their
involvement in the stabilisation of blood vessels and the control of blood pressure, the number
of recognised functions of pericytes has broadened drastically, with many of these functions involved
in wound healing (Table 1).

Table 1. Pericyte functions and their contributions to wound healing.

Wound Healing Process Pericyte Functions

Angiogenesis

Structural support of existing blood vessels [19]
Regulation of EC proliferation and migration to form new vessels [8]
Prevention of capillary tube regression by TIMP-3 expression [31]
Stabilisation of newly formed capillaries [32,33]

Inflammation

Regulation of vessel permeability [34–36]
Regulation of neutrophil extravasion [9,10]
Regulation of macrophage extravasion [11,37]
Control of leukocyte trafficking [38]
Control of T cell activation [39,40]
Response to inflammatory signals [41,42]

Re-epithelialisation Regulation of keratinocyte migration [43]

Fibrosis
Production of collagen [44,45]
Differentiation into myofibroblasts [46]

Tissue regeneration MSC-like properties: differentiation potential includes adipocytes,
osteoblasts, chondrocytes, phagocytes and granulocytes [2,25,26]
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2.1. Pericytes and Inflammation

Inflammation is one of the key phases during wound healing, and any perturbation in this
carefully controlled process can lead to delayed healing, fibrosis or the incomplete healing seen in
chronic wounds. It is triggered within 30–40 min of wounding and begins with the influx of neutrophils
from the blood vessels to the wound site. Once in the wound, neutrophils act to phagocytose invading
pathogens and cellular debris to clear the wound of infection. Early studies of pericytes in inflammation
have noted that these cells form umbrella-like covers over gaps between ECs following histamine
treatment, which prevents cells and proteins from leaving the vessel. Interestingly, the opposite
is seen after IL-2 treatment, which causes pericytes to realign at EC junctions and results in leaky
microvessels [34,35]. Neng et al. showed that pericytes also regulate tight junctions in a paracrine
manner in EC monolayers in the mouse ear. This was shown to in turn regulate EC monolayer
permeability and to control the diffusion of proteins and cells out of the blood [36]. These studies
suggest that pericytes play a significant role in controlling inflammation. More recently, pericytes have
been shown to be directly involved in the extravasion of neutrophils from the vessels. Direct contact
between neutrophils and pericytes induces a relaxation of the pericyte cytoskeleton via the inhibition
of RhoA/ROCK signalling, which allows neutrophils to leave the vessel at regions displaying low
expression of matrix proteins, termed “low expression regions” (LERs) [10]. This process is facilitated
by the expression of Intercellular Adhesion Molecule-1 (ICAM-1), Macrophage antigen-1 (Mac-1) and
Leukocyte function associated antigen-1 (LFA-1) [9]. ICAM-1 expression by pericytes, in conjunction
with the expression of chemoattractant MIF, has also been shown not only to attract and activate
neutrophils and macrophages, but also to facilitate efficient trafficking of these cells to areas of
infection [38]. Pericytes have also been shown to influence T cell activity: brain pericytes are able to
present antigens to T cells in order to induce lymphocyte activation [39], whereas retinal pericytes
inhibit T cell action [40]. Whether these inherent differences in action are due to differences in the
local population of pericytes or a result of microenvironmental cues is unclear. Brain pericytes also
respond to inflammatory signals, such as lipopolysaccharides (LPS), resulting in activated NF-κB and
expression of Interferon gamma-induced protein 10 (IP-10) and Monocyte Chemoattractant Protein-1
(MCP-1) [41]. Blockade of pericyte recruitment to vessels and therefore pericyte-EC intractions induces
inflammatory reactions in ECs and results in increased extravasion of macrophages in an adult mouse
model of diabetic retinopathy, again illustrating the importance of pericyte influence in the correct
regulation of inflammatory infiltration [37]. Hung et al. suggest a role for pericytes not only in the
recruitment of immune cells but also in the direct detection of proinflammatory molecules during
infection, and show that decreasing the presence of pericyte-like cells in a model of lung injury leads
to decreased inflammatory response to infection, leading the authors to propose that pericytes be
considered “interstitial immune sentinel cells” [42]. Together, these studies intimately link pericyte
action with regulation of the inflammatory response.

2.2. Pericytes and Re-Epithelialisation

Another key process during wound healing is the reformation of the epithelial barrier
post-wounding. This helps to prevent wound infection and begins to restore some of the vital functions
of the skin, such as the prevention of excess water loss and the regulation of temperature. Pericytes
have been implicated in this process, and this action is quite distinct from pericyte action at the surface
of the vessels. Paquet-Fifield et al. isolated pericytes from skin by means of FACS sorting with a
pericyte specific antibody, and created organotypic cultures (OCs), with or without pericytes, which
also contained fibroblasts and keratinocytes. When pericytes were present in the OCs there was a
drastic improvement in the epidermal layer formed: the epidermis in these OCs was multilayered and
sustainable for much greater periods of time when compared to the epidermis of OCs which did not
contain pericytes [43].
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2.3. Pericytes and Angiogenesis

Pericytes have been known to play a role in blood vessel formation from some of the earliest
studies of their function, which identified these cells as being distinct from endothelial cells and
originally labelled them Rouget cells [47]. More recently, they have been shown to respond to platelet
derived growth factor β (PDGFβ) and transforming growth factor β (TGF-β) released by platelets
upon injury [2]. The chemotactic response of pericytes to PDGFβ causes these cells to leave the outer
layers of blood vessels and migrate into the wound site. This was established by Rajkumar et al.
in studies using the PDGFβ inhibitor imatinib [48]. This migration allows ECs to proliferate into
the wound site in response to vascular endothelial growth factor (VEGF), which is also released
upon platelet activation [49]. This process is aided by the production of fibronectin, vitronectin and
laminins, which provide a structure to support EC migration and capillary tube formation [50,51]. The
provisional matrix, formed by these ECM components, is frequently remodelled during healing by
proteases released by macrophages [52]. This can expose matricryptic sites such as Arg-Gly-Asp (RGD),
which act as adhesion sites for EC receptors and can, therefore, regulate EC migration, proliferation
and survival [52]. Interestingly, pericytes may regulate protease action via their expression of tissue
inhibitor of metalloproteinase-3 (TIMP-3), which prevents capillary tube regression normally caused
by matrix metalloproteinase-1 (MMP-1) and -10 (MMP-10) [31]. Pericytes also act to stabilise newly
formed capillaries by the expression of TGF-β [32] and by Rho GTPase regulated alterations in pericyte
contractility, which inhibit EC proliferation [33]. PDGFβ also appears to be essential in this process, as
PDGFβ and PDGFRβ knockout mice exhibit endothelial hyperplasia with a distinct lack of pericytes
present on blood vessels [53]. Interestingly, control of PDGFβ expression appears to be via Tie2
and Ang1/Ang2 interactions, where Tie2/Ang1 interaction leads to PDGFβ expression and pericyte
recruitment, while Tie2/Ang2 interaction leads to the opposite [54]. In addition to PDGFβ and
PDGFRβ, the PDGFβ retention motif is also crucial for pericyte-EC signalling. This sequence of amino
acids acts to hold PDGF in close proximity to the EC for it to be recognised by the PDGFRβ expressing
pericytes. This allows direct pericyte-EC interaction, as well as creating a PDGF gradient which enables
pericytes to migrate to ECs [55]. This motif has been studied using a pdgf-bret/ret mouse knockout
model, and has been shown to be crucial for maintaining vascular function in the retina, brain and
liver [56–58].

2.4. Pericytes and Matrix Deposition/Fibrosis

Under normal conditions, matrix deposition is initiated once the wound has been cleared of
infection and cellular debris. The main cell type responsible for this is the fibroblast. These cells
initially deposit fibronectin and collagen III, but in later phases replace these proteins with collagen I
and elastin. Fibroblasts, like pericytes, are attracted to the wound site by the expression of PDGF by
resident cells and platelets [48]. Once in the wound, fibroblasts may become activated to differentiate
into myofibroblasts, expressing α-SMA to physically contract the wound [59]. Interestingly, pericytes
are also able to produce collagen [44,45]. The pericytes in these studies appear to remain as collagen
secreting cells and don’t express αSMA, suggesting that they do not convert to myofibroblasts unlike
the resident fibroblasts within the wound. In an interesting study, Dulauroy et al. were able to use a
Cre-transgenic mouse to label ADAM12, which is induced only during embryogenesis and fibrosis.
They showed that the majority of collagen producing cells were positive for αSMA and thus were
myofibroblasts. These perivascular cells were also shown to be positive for PDGFRβ and NG2, and
were presumed to be pericytes [60]. In other studies, pericytes have been shown to differentiate into
myofibroblasts to promote fibrosis, particularly in the kidneys where the pericytes present are called
mesangial cells [46]. Interestingly, deletion of pericytes does not alter the recruitment of myofibroblasts
or alter kidney fibrosis, which suggests that resident MSCs may also play a role in promoting fibrosis,
and lends credence to the theory that pericytes are derived from MSC populations rather than the
reverse [61]. Birbrair et al. suggest that pericytes could be split into two subsets dependent on their
expression of Nestin (type-1: Nestin−NG2+ and type-2: Nestin+NG2+). They find that type-1 pericytes
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accumulate near sites of fibrosis but are not solely responsible for the resultant fibrosis, whereas
type-2 pericytes appear to play a role in angiogenesis [62,63]. Pericytes have also been show to play a
significant role in fibrosis in the liver as hepatic stellate cells. Mederacke et al. use a Cre-transgenic
mouse that marks all stellate cells to show that 82–96% of myofibroblasts in a model of toxic, cholestatic
and fatty liver disease are of stellate origin [64]. These studies illustrate that pericytes have a major
role in important matrix deposition, but under negative circumstances may promote fibrosis.

Clearly, pericytes can influence each phase of the wound healing process (Table 1), and as such
should be considered a major cell type that can regulate healing. With increasing evidence that
pericytes can promote fibrosis, these cells may not only be a potential target for therapies to accelerate
healing but also to prevent fibrosis. Many of the beneficial aspects of pericytes are due to their
plasticity and ability to act in a stem cell-like manner to regulate the microenvironment, resulting in
improved healing.

3. Pericytes in Other Pathologies

Pericytes mediate both angiogenesis and vessel permeability, consequently they are important in
the development of solid tumours, which rely on sufficient vascularization and therefore blood supply
to grow.

Pericyte stabilization of the vessel wall supports vascularization within a tumour and can
prevent the passing of cancer cell-targeting drugs such as chemotherapeutic agents from the blood
stream to the tumour tissue [65]. Consequently, there has been some anti-angiogenic targeting of
pericytes within tumours, with a view to destabilizing the vessels that feed tumours and increasing
the permeability of cancer drugs into the tumour. Under normal circumstances, however, pericyte
signaling represents a fine balance between pro- and anti-angiogenic activities, as pericyte presence not
only stabilizes the function of preexisting vessels but also prevents the aberrant proliferation of ECs
to form new vasculature. As such, insufficient pericyte coverage in tumours can also be detrimental,
resulting in excessive vascular sprouting and increased vascularization of tumours. This suggests that
pro-angiogenic targeting of pericytes in tumours may also be beneficial. Additionally, pericyte-EC
cross-talk and the resultant regulation of ECs in tumours limits the metastasis of cancer cells, and
depleted pericyte coverage of vessels in PDGFβ-deficient mice leads to increased metastasis of solid
tumours [66]. Research into the targeting of pericytes in cancer aims to balance pro- and anti-angiogenic
signaling to achieve ‘vascular normalisation’ within the tumour microenvironment. Interestingly the
neuron-glial antigen 2 (NG2) proteoglycan, which is often used as a pericyte marker in conjunction
with the expression of other proteins, appears to play an important role in pericyte biology within the
context of tumour angiogenesis. Altered vascularity, including vessel leakiness and decreased pericyte
coverage, is noted in models of brain and breast cancer in NG2 null mice [67,68], and this is thought to
be the result of decreased pericyte-EC crosstalk. NG2 knockout in a mouse brain melanoma model
also appears to decrease tumour blood supply and increase hypoxia, hinting at a possible therapeutic
pathway for the treatment of this disease [69,70]. The result of pericyte perturbation in the context
of tumour growth however is complex and multifaceted, directly reflecting the delicate nature of
normal angiogenic control, and as such the development of pericyte-targeted therapeutics for cancer
is difficult.

Pericyte numbers decline in the dermal and muscle capillary networks of diabetic patients,
where they also exhibit an altered morphology with hypertrophy, abnormal cytoplasmic branching
and gaps in the basement membrane [71]. These pericytes also appear to promote a fibrotic or
sclerotic vessel [72,73]. A study which investigated pericyte changes in patients with chronic venous
insufficiency found that 31 out of 42 patients displayed an altered pericyte phenotype [74]. Significantly
diminished pericyte coverage is also observed on blood vessels in the retinas of diabetic patients
experiencing retinopathy, and in fact this is identified as one of the main mechanisms of disease
progression [75]. Hyperglycemia in these patients has been shown both in vivo and in vitro to cause



Int. J. Mol. Sci. 2017, 18, 1129 7 of 14

pericyte apoptosis leading to increased production of acellular capillaries in the retina [76]. Mechanistic
studies identify activation of NF-κB, PKCδ and SHP-1 as effectors in this outcome [76,77].

Given that one of the most common diabetic pathologies is angiogenic dysregulation, pericyte
dysfunction is not a surprising observation in diabetic patients and models, and indicates the
normalisation of pericyte number and function as a promising therapeutic approach for the treatment
of diabetic complications.

In humans, a two-fold increase in the pericyte number observed on pulmonary arteries is noted in
the lungs of patients with pulmonary arterial hypertension (PAH) when compared with the vessels of
healthy control samples. Ricard et al. [78] show that these finding are recapitulated in vivo in models of
PAH, and show that these additional pericytes serve as a source of smooth muscle-like cells leading to
endothelial dysfunction and excessive remodelling of the pulmonary vasculature which is associated
with PAH.

Table 2. Pathologies exhibiting pericyte perturbation and likely outcomes of altered pericyte number
or function.

Disorder Pericyte Aberrance Observed Pericyte Functions Likely to Impact
Disease

Diabetic chronic
healing

Decreased pericyte numbers in
dermis, pericytes exhibit altered

morphology [72–75]

Angiogenesis-decreased vascularisation

Vessel permeability-leaky vessels lead to
prolonged and uncontrolled inflammation

Fibrosis-pericytes promote fibrotic vessels

Stem cell properties-replacement of lost
cell/tissue types

Diabetic retinopathy Decreased pericyte numbers,
increased pericyte apoptosis [76]

Angiogenesis-decreased control of
endothelial proliferation

Vessel permeability-leakiness of vessels

Solid tumour

Unknown, however control of
angiogenesis has long been

recognised as an important target
in treatment of solid tumours

Angiogenesis-tumour relies on new
vasculature for blood supply

Endothelial control-metastasis of cancer

Vessel permeability-ability of
chemotherapeutic agents to pass from
bloodstream to tumour tissue

Pulmonary arterial
hypertension (PAH)

Increased pericyte coverage on
pulmonary arteries [78]

Angiogenesis-excessive remodelling of
pulmonary vasculature and endothelial
dysfunction

Alzheimers (AD) Degeneration at blood brain
barrier (BBB) [79]

Angiogenesis-break down of vessels causes
decreased cereberal bloodflow leading to
neurodegeneration

Vessel permeability-accumulation of
damaging molecules in the brain

Chronic kidney
disease (CKD)

Differentiation of pericytes into
myofibroblasts [80]

Fibrosis-pericytes thought to be source of
myofibroblasts contributing to excessive
fibrotic activity

Angiogenesis-differentiation of pericytes
into myofibroblasts leaves less pericytes to
stabilise vasculature

Degeneration of pericytes is also observed at the blood brain barrier (BBB) in patients with
Alzheimers disease (AD) [79]. This leads to neurodegeneration, caused by vascular breakdown
and decreased cerebral blood flow. It is also suggested that pericyte loss further contributes to
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neurodegeneration by allowing increased permeability of blood vessels, leading to the buildup of
damaging molecules such as plasmin, fibrin and thrombin in the brain [81]. Here, in yet another model
of disease, the importance of vascular stability and permeabilisation and how these parameters are
regulated by pericytes is illustrated once again.

Pericytes have also been implicated in fibrosis of the kidney. Mouse models of kidney fibrosis
indicate that collagen-producing myofibroblasts appear to originate from a perivascular location [83],
and genetic tagging of pericytes illustrates these cells can gain αSMA expression and differentiate into
myofibroblasts [80]. It is suggested that the activation of pericytes in the kidney to differentiate into
myofibroblasts not only leads to fibrosis but also leaves the endothelium of capillaries unstable, leading
to the decreased renal vascularization which is documented in chronic kidney disease [83]. With
investigations into pericyte action, uncovering the greater role that pericytes play in many divergent
pathologies (Table 2) increases the possibilities for future therapeutic treatments targeting pericytes.

4. Pericytes as a Therapeutic Agent

With an ever-growing understanding of pericyte potential and function comes new possibilities in
the form of pericyte-based therapies. In comparison to the significant momentum that MSC application
has gained in recent years, the therapeutic potential of pericytes is under-investigated, however
early preclinical studies in mice indicate that pericytes can contribute positively to healing in several
different tissues.

The myogenic potential of in vitro pericytes is recapitulated by in vivo studies of pericyte function
in mouse models of muscle damage. Human pericytes isolated by expression of CD146, NG2 and
PDGFRβ from both skeletal muscle and nonmuscular tissues produce myofibres and contribute to
muscle regeneration when injected into a cardiotoxin-induced mouse model of muscle damage [84].
Similarly, cells positive for pericyte markers CD146, NG2 and PDGFRβ isolated from the culture of
human pluripotent stem cells (hPSCs) promote muscle regeneration and increased vascularization
when applied to a mouse model of limb ischemia. At 21 days, these transplanted cells are found
incorporated into both the vasculature and the muscle tissue of the recovering limb [85]. In another
study, human placental cells isolated with a CD146+CD34−CD45−CD56− expression profile are shown
to produce myofibres and promote increased angiogenesis in the muscles of SCID/mdx mice [86]. With
their myogenic abilities confirmed in vivo, the development of a pericyte-based therapy holds great
potential to enhance the healing of muscles.

Chen et al. have also investigated the therapeutic potential of CD146+CD34−CD45−CD56−

pericytes on the ischemic heart. In their study, pericyte application to a mouse model of myocardial
infarction (MI) resulted in improved cardiac recovery and contractility, as well as decreased fibrosis and
decreased infiltration of inflammatory cell types [11]. The authors report superior recovery following
pericyte transplantation when compared to transplantation of CD56+ myogenic progenitor cells, which
suggests that the positive outcome was not solely due to the myogenic capabilities of pericytes but
rather a cumulative effect of pericyte function which may also include regulation of angiogenesis
and inflammation. This study also suggests an anti-fibrotic function for pericytes, in contrast to other
studies which identify pericytes as significant contributors to fibrosis by way of differentiation into
myofibroblasts [87–89]. It is possible that in this model the tissue signalling environment did not
induce pericyte differentiation into myofibroblasts, and this highlights the fact that pericyte function
and heterogeneity are heavily influenced not only by pericyte origin but also by the surrounding
tissue environment.

Pericytes (CD146+NG2+CD45−) isolated from mouse fat tissue display osteogenic potential
in vitro which is mirrored in vivo by contributing to the regeneration of mouse bone injury
when applied in a seeded scaffold [26]. Similarly, human adipose derived pericytes
(CD146+CD34−CD45−CD31−) enhance bone healing and encourage bone-union in mouse bone
fractures with equal efficacy to BM-MSCs [90]. Given this, the authors suggest that adipose derived
pericytes present a more preferable option for transplantation than BM-MSCs as they can be isolated
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abundantly from fat tissue such as that resulting from liposuction and represent a more defined and
homogenous population that BM-MSCs.

In the diabetic retina, there is a loss of pericytes which leads to collapse of the vasculature and
ultimately blindness. Human cells derived from adipose stem cells and expressing αSMA, PDGFRβ
and NG2 can protect against diabetic retinopathy in a mouse model, causing revascularisation of the
retina after injection which was not achieved by injection of human BM-MSCs [91]. This effect of
pericyte injection was enhanced when the cells were pre-treated with TGF-β1. These results indicate
that replacement of lost endogenous pericytes in a diabetic setting can encourage angiogenesis and
vascular support, as is seen in acute models of injury, and are particularly promising when considering
the possibility that pericyte therapies may hold for treating diabetic pathologies associated with
pericyte loss.

Human umbilical cord perivascular cells (HUCPV) isolated by expression pattern
CD45−CD34−SH2+SH3+Thy-1+CD44+ and also expressing the pericyte marker 3G5 cause enhanced
healing at 3 and 7 days when applied in a fibrin gel to full thickness skin defects in Balb/C mice,
as assessed by dermal thickness and re-epithelialisation [92]. In another study, the application of
human adipose derived stem cells expressing pericyte markers αSMA, PDGFRβ, NG2 and Ang1 in
a PEG-fibrin gel to a rat model of excisional wounding resulted in earlier collagen deposition and
remodelling, as well as increased angiogenesis [93]. Contrastingly, the application of human neonatal
foreskin dermal pericytes (CD45−VLA-1/α1/CD49abright) to a mouse model of excisional wound
healing did not enhance re-epithelialisation and in fact resulted in a decrease in dermal wound closure
at day 7 when compared to wounds treated with CD45−VLA-1dim fibroblasts [94]. The authors suggest
that as this model assessed the capability of applied human pericytes to influence the migration of
endogenous keratinocytes in wounded mouse skin, signalling between the human and murine cells
in question may not have been successful. In addition, this study applied cells isolated based on a
different expression pattern when compared to other studies investigating the application of pericytes
to wounded skin, and serves to further illustrate the heterogeneity of pericytes and how important
standardisation of identification and isolation will be before these cells can be considered a realistic
source for the development of cell therapies.

Overall, early studies of pericyte application to mouse models of muscle, heart, bone and skin
injury show promising signs that these regenerative and plastic cells can positively contribute to
healing, but also raise questions as to how the origin of cell isolation and method of delivery can affect
the ability of these cells to carry out beneficial functions. Little is known about the effect of pericyte
delivery to chronic tissues, including chronic wounds, but the demonstration in other tissues that
applying pericytes can encourage enhanced angiogenesis and decreased inflammatory infiltration as
well as regenerating lost tissue is promising when considering the treatment of non-healing wounds.
The fibrotic activity of the pericyte and how this is influenced by tissue-specific environments remains
incompletely understood, and this is an area which would require significant investigation before the
use of pericytes as a clinical cell therapy for wound healing could be considered.

5. Conclusions

The functions and capabilities of pericytes are impressive and, as yet, incompletely understood.
These cells regulate the vasculature and the inflammatory response, and in addition possess MSC-like
regenerative qualities. As such, the pericyte is well placed to significantly influence healing outcomes.
A decrease in pericytes associated with the vasculature is well documented in the retinas of diabetic
patients, and this results in the onset of diabetic retinopathy. Loss of pericytes is also documented
in other disease states, and aberrant pericyte function is identified as an important target in the
development of cancer therapies. With each observation of pericyte function or dysfunction in the
context of new disease environments, the body of knowledge illustrating the importance of pericytes in
the regulation of homeostatic and healing processes grows. There has been a lot of interest in the idea
of MSC application as a wound therapy, and it is possible that pericytes, which possess both MSC-like
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behaviours and distinct regulatory roles in angiogenesis and inflammation, may represent another
promising cell population for the development of treatments. In fact, recent in vivo studies show that
the transplantation of isolated pericytes can positively influence the healing of bone, muscle and skin
and can support revascularisation in a mouse model of diabetic retinopathy. It seems that pericytes
have an important part to play in chronic and acute healing processes, and must be considered a
crucial cell type as we continue to work towards a comprehensive understanding of healing processes
to better advise the development of effective therapies.
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