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CONS P EC TU S

S mall molecules are central to biology, mediating
critical phenomena such as metabolism, signal

transduction, mating attraction, and chemical defense.
The traditional categories that define small molecules,
such as metabolite, secondary metabolite, pheromone,
hormone, and so forth, often overlap, and a single
compound can appear under more than one functional
heading. Therefore, we favor a unifying term, biogenic
small molecules (BSMs), to describe any small mole-
cule from a biological source.

In a similar vein, two major fields of chemical
research,natural products chemistry and metabo-
lomics, have as their goal the identification of
BSMs, either as a purified active compound
(natural products chemistry) or as a biomarker of a

particular biological state (metabolomics). Natural products chemistry has a long tradition of sophisticated techniques that allow
identification of complex BSMs, but it often fails when dealing with complex mixtures. Metabolomics thrives with mixtures and uses
the power of statistical analysis to isolate the proverbial “needle from a haystack”, but it is often limited in the identification of active
BSMs. We argue that the two fields of natural products chemistry and metabolomics have largely overlapping objectives: the
identification of structures and functions of BSMs, which in nature almost inevitably occur as complex mixtures.

Nuclear magnetic resonance (NMR) spectroscopy is a central analytical technique common to most areas of BSM research.
In this Account, we highlight several different NMR approaches to mixture analysis that illustrate the commonalities
between traditional natural products chemistry and metabolomics. The primary focus here is two-dimensional (2D) NMR;
because of space limitations, we do not discuss several other important techniques, including hyphenated methods that combine
NMR with mass spectrometry and chromatography.

We first describe the simplest approach of analyzing 2D NMR spectra of unfractionated mixtures to identify BSMs that are
unstable to chemical isolation. We then show how the statistical method of covariance can be used to enhance the resolution of 2D
NMR spectra and facilitate the semi-automated identification of individual components in a complex mixture. Comparative studies
can be used with two or more samples, such as active vs inactive, diseased vs healthy, treated vs untreated, wild type vs mutant,
and so on. We present two overall approaches to comparative studies: a simple but powerful method for comparing two 2D NMR
spectra and a full statistical approach using multiple samples. The major bottleneck in all of these techniques is the rapid and
reliable identification of unknown BSMs; the solution will require all the traditional approaches of both natural products chemistry
and metabolomics as well as improved analytical methods, databases, and statistical tools.
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1. The Common Theme: Biogenic Small
Molecules
The identification and functional analysis of biogenic small

molecules (BSMs) form the primary objectives of both nat-

ural products chemistry andmetabolomics: natural products

chemists are traditionally interested in the identification of

new molecular structures with biological activity, whereas

metabolomics and the related field of metabonomics have

focused on correlating known BSMs with specific biological

properties. Despite similar objectives, application of similar

techniques, and frequent study of the same organisms,

natural products and metabolomics research have re-

mained largely separate fields, lacking regular interaction

and exchange of ideas.

BSMs control intracellular processes (metabolism), inter-

cellular processes (nervous system and hormonal regulation),

intraspecific communication (e.g., via pheromones), and inter-

specific interactions (e.g., viadefensive compounds); asa result,

many drugs are derived from BSMs.1 Many biogenic small

molecules function at multiple levels, making it difficult and

often artificial to differentiate between “metabolites”, that is,

compounds that are part of primarymetabolism, and “second-

ary metabolites”, that is, compounds not necessarily required

for metabolic functioning. Similarly, functional categorizations

such as “hormone”, “pheromone”, “biosynthetic intermediate”,

or “catabolite” canbeproblematic. For example, citric acid cycle

intermediatesare ligandsofGPCRs that function in intercellular

signaling.2 Therefore, for the purpose of this review, we use

“biogenic smallmolecules” (BSMs) as a unifying term to refer to

all “metabolites”, “secondary metabolites”, and “natural pro-

ducts”. Small molecules generally havemolecular weights less

than 1500 Da, but it should be noted that BSMs are further

distinguished from larger biomolecules such as proteins and

nucleic acids in that they are not strictly derived from a small

number of known building blocks. As a result, the molecular

structuresofBSMscanbehighlydiverseand irregular, and their

identification and characterization can present great analytical

challenges.

This separation of natural products research and meta-

bolomics appears ultimately rooted in differences of experi-

mental design. The basic goal of both fields is to take

complex mixtures of BSMs and identify a subset of com-

pounds that describe a biological process or possess intrinsic

biological activity. Whereas natural products research has

relied on activity guided fractionation to isolate simple

mixtures or individual compounds, metabolomics research-

ers have replaced chemical isolationwith direct comparative

analysis of complex mixtures to statistically identify subsets

of BSMs relevant in a specific biological context.

We think that the fields of metabolomics and natural

products are essentially “two sides of the same coin” and

would both benefit froman increased exchange of expertise

and approach. In natural products research, the process of

isolating individual components can lead to chemical mod-

ification or degradation of the BSMs of interest. Furthermore,

activity-guided fractionation necessarily risks losing impor-

tant biological information that was encoded in the original

BSM mixture, because most of the sample is not analyzed.

The use of activity-guided fractionation therefore often fails

in cases where several BSMs act in synergy. For example, a

family of BSMs recently identified in the model organism

Caenorhabditis elegans act synergistically as a mate-attracting

pheromone, but most of this activity is lost when individ-

ual components of the pheromone are separated during

fractionation.3

On the other hand, metabolomics uses statistical analysis

of NMRandmass spectra of complex BSMmixtures to detect

spectral features that correlate to a phenotype or biological

property of interest and their response to stimuli. One of the

most pressing challenges inmetabolomics is the subsequent

chemical identification of the BSMs represented by the

detected spectral features. This problem of assigning peaks

to BSMs is a major bottleneck in the typical metabolomics

workflow. Structure elucidation techniques commonly ap-

plied in natural products research, especially integrated use

of 2D NMR spectroscopy and mass spectrometry, may hold

the key to increasing the number of identifiable compounds

in metabolomic analyses.

2. Experimental Techniques That Bridge
Natural Products and Metabolomics
In this Account, we focus on several approaches to mixture

analysis by NMR. Each uses different sampling strategies,

data sets, and computational algorithms, but they all illus-

trate methods that bridge natural products and metabolo-

mics.We startwith themost chemically intuitive approachof

simply using 2D NMR spectra to analyze unfractionated

mixtures for unstable BSMs. Next, we show that the statis-

tical method of covariance can be used to enhance the

resolution of 2D NMR spectra and thus enable in silico

separation of BSMs in a mixture for database or ab initio

identification using individual spectra. We then describe a

comparative approach in which 2D NMR spectra from two

different organisms with different genetic backgrounds are
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compared to highlight unique BSMs. The final section high-

lights some of the powerful methods of statistically extract-

ing specific chemical information from 1D and 2DNMR data

of a particular biological state using tools of multivariate

analysis. Specific technical aspects of NMR spectroscopy,4

hyphenated techniques,5 statistical analysis,6,7 and overall

protocol development8 have been reviewed elsewhere.

2.1. Direct Observation of Mixtures. Two-dimensional

NMR spectroscopy is arguably the most important spectro-

scopic technique for the elucidation of novel or unexpected

structures.4,9 Two-dimensional NMR spectra are unique in

that they provide direct evidence for atom connectivity and

spatial arrangements. In contrast to metabolomics, which

routinely uses 1D NMR spectra for the characterization of

complex, often entirely unfractionated, BSM mixtures,10

natural product researchers traditionally relied on pure,

isolated samples for analysis, whereas definite identification

of novel compounds fromcomplexmixtureswas usually not

pursued or deemed possible. However, recent examples

have demonstrated that identification of new compounds

via 2D NMR spectroscopy of complex mixtures not only is

feasible but frequently offers significant advantages over

fractionation-based approaches.

Development of methods for identifying novel structures

via 2D NMR analyses of mixtures was motivated by several

instances in which traditional activity-guided fractiona-

tion failed to reveal the BSMs of interest. In one of the first

examples, the poison gland secretion of Myrmicaria ants

was suspected to contain highly toxic alkaloids; however,

chromatographic fractionation revealed only nontoxic

monoterpene hydrocarbons in some samples. Subsequent

2D NMR analyses of unfractionated ant venom then re-

vealed the highly unstable heptacyclic alkaloid myrmicarin

430A, representing one of the first examples for natural

products based on the oligomeric assembly of several

similarly functionalized fatty-acid chains.11,12 Myrmicarin

430A, whose intriguing structure and biogenesis has

spawned several efforts toward its total synthesis,13 repre-

sents one of the first examples of BSMs that were identified

without ever having been isolated. Similarly, a 2D NMR

spectroscopic screen of a library of spider venom samples

revealed that sulfated nucleosides, which despite their struc-

tural simplicity had not previously been found in nature,

form major venom components in several spider species,

including the infamous brown recluse, Loxosceles reclusa

(Figure 1).14,15 These arthropod examples showed that

high-resolution 2QF-COSY spectra are well suited for detect-

ing and characterizing unknown BSMs from complex

mixtures because they provide detailed structural informa-

tion and often permit interpretation of overlapping signals,

one primary challenge for using NMR spectroscopy for

mixtures.

2.2. Statistical Methods for Identification of BSMs from

Single Biological Mixtures. The popularity of 1D 1H NMR in

metabolomics and metabonomics applications is primarily

founded on the simplicity and efficiency of data collection.

Natural product research, on the other hand, has adopted

fromearly on the powerful repertoire of 2DNMR techniques.

Due to the narrowNMR linewidths of smallmolecules, 1D 1H

NMR spectra of mixtures can provide some rather speci-

fic information about the mixture components. They are

particularly useful in situations where the pool of compo-

nent candidates is limited, for example in the case of a urine

sample.16 In such cases, the observation of a single non-

overlapping peakmultiplet of amixture component permits

identification of the component and determination of its

relative concentration with high confidence. On the other

hand, 1D 1H NMR spectra of mixtures containing unknown

components permit neither the determination of the 1D

spectral traces that belong to individual components nor the

assignment of peaks to specific atoms. In such cases, the use

of 2DNMRmethods becomes indispensible. J-resolvedNMR

spectra17 are useful for simplifyingoverlap in 1D 1HNMRbut

lack important atomic correlations that are the cornerstone

of structure determination via 2D NMR; therefore, this

approach is not included in this Account.

The main drawback of 2D Fourier transform (FT) NMR

spectroscopy is the time required to collect the indirect

second dimension at high digital resolution. This dimension

is acquired in the time domain by repeating the same pulse

FIGURE 1. Structures of BSMs (biogenic small molecules) identified via
NMR-spectroscopic analysis from largely unfractionated metabolite
mixtures. Myrmicarin 430A (1) and bacillaene (3) represent members of
a small but growing class of natural products that have never been
isolated in pure form.11,12,15,35 The sulfated nucleoside 2was identified
from spider venom.15 The xanthurenic acid derivative 4 is a natriuretic
identified from partially fractionated human urine samples.49
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sequence N1 times with the evolution time t1 incremented

from experiment to experiment. Because the digital spectral

resolution is determined according to the Nyquist theorem

by Δν = SW/N1, where SW is the spectral width, a relatively

large number of increments, N1 > 256, is required to obtain

acceptable spectral resolution along the indirect dimen-

sion. This sampling requirement, which is independent of

sensitivity, becomes more severe at higher magnetic field

strengths B0 as SW � B0.

Covariance NMR18,19 represents an alternative approach

to 2D FT that overcomes some of these limitations. Instead

of applying FT along the indirect dimension, the 2D correla-

tion information is reconstructed by statistical means

through covariance yielding a symmetric spectrum C that

has the same high resolution along the indirect and direct

dimensions. In this way, the minimal number of t1 incre-

ments required can be reduced to N1 < 100.20 It can be

shown that C is mathematically related to the 2D FT spec-

trum F through C = sqrtm(FT 3 F)
19 where sqrtm denotes the

matrix square root, which can be efficiently computed via

singular valuedecomposition (SVD).21 The covariancemeth-

od can be directly applied to TOCSY and NOESY-type spec-

tra, whereas for COSY an additional regularization step

should be applied.22

While for short mixing times the information content of

TOCSY and COSY spectra are similar, for longermixing times

(∼100 ms) typically all protons that belong to the same

molecule or spin system show 2D cross-peaks to each other.

This property conveniently permits the spectral deconvolu-

tion of the mixture into 1D NMR traces that correspond to

individual components. Such a decomposition can be

achieved by non-negative matrix factorization (NMF)23 or

bottom-up clustering of all 1D cross sections of a covariance

TOCSY spectrumusing theDemixCmethod.24 Application of

the method to the analysis of a single defensive spray

milking from an adult female walking-stick insect Anisomor-

pha buprestoides using a 1-mm high-temperature supercon-

ducting NMR probe revealed that it contains, in addition to

glucose, two stereoisomeric terpenes, each with a dialdehyde

and a diol in slow chemical exchange (Figure 2).25

DemixC traces can be treated like 1D NMR spectra, and

hence, they are well suited for compound identification by

database searching. For this purpose, a peak list is generated

for a given DemixC trace, which is then queried against

the peak lists of the components of an NMR database, such

as themetabolomics BMRB26 or HMDB,27 as implemented in

the COLMAR suite of web servers28,29 (http://spinportal.

magnet.fsu.edu). NMR databases26,27,30 are improving and

expanding rapidly, and correspondingly, their importance for

metabolomics and natural products research is growing.

Detailed descriptions of these databases are available at

the listed Web sites.

FIGURE 2. (A) Aliphatic section of covariance proton TOCSY spectrum of defensive secretion of a single walking stick insect. (B) One-dimensional 1H
NMR spectrum of the mixture. The six black spectra are covariance TOCSY traces extracted from covariance TOCSY of panel A using the DemixC
approach. The bottom three red spectra are reference 1D spectra of purified components. Each reference spectrum contains two species, R-glucose
(trace 1) and β-glucose (trace 2); dialdehyde and diol forms of the anisomorphal (traces 4 and 3, respectively); and the peruphasmal (traces 5 and 6,
respectively) monoterpenes. Chemical structures of the anisomorphal and peruphasmal and their corresponding geminal diols are shown as insets.
Figure is adapted from ref 25.
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Database matching has also been demonstrated for

heteronuclear 2D 13C�1H HSQC31 and HSQC-TOCSY NMR32

spectra of mixtures. Although at natural 13C abundance the

intrinsic sensitivity of HSQC is lower than for TOCSY, along

the 13C dimension the fully decoupled HSQC spectrum dis-

plays very sharp peaks with low probability of cross-peak

overlap. Moreover, HSQC spectra only yield correlations

between directly bonded 1H�13C nuclei and are therefore

unsuitable to trace the carbon backbones of individual

mixture components. This objective can be achieved by

the doubly indirect covariance NMR method combining a

2D COSY spectrum Y with a 2D HSQC spectrum H via basic

matrix operations: D = H 3Y 3H
T.33 D is a symmetric ultra-

high resolution 13C�13C correlation spectrum that can be

analyzed using graph theory to identify the carbon skele-

tons of individualmixture components, as shown in Figure 3.

In case of proton overlap, additional connectivities do occur.

They can be suppressed by an unsupervised “moment”

FIGURE 3. Doubly indirect covariance spectroscopy ofmodelmixture containing carnitine, lysine, isoleucine, and shikimate: (A) 2QF-COSYspectrum;
(B) 13C�1H HSQC spectrum; (C) doubly indirect covariance spectrum; (D) absolute value cross sections along 1H dimension of COSY and HSQC for the
overlap at ω2 = 1.45 ppm (traces 1�4 belong to COSY and traces 5 and 6 to HSQC); (E) carbon�carbon connectivity graphs of mixture components.
Dashed lines indicate extraneous connectivities to nodes 15 and 16 due to 1H overlap at 1.45 ppmas indicated by arrows in panels A and B. They are
identified by filtering according to differential peak positions and shapes (1st and 2ndmoments) (panel E) or, alternatively, by diffusion order spectro-
scopy (DOSY). The labels a, b, c, andd inpanels E andF belong to carnitine, lysine, shikimate, and isoleucine, respectively. Figure is adapted from ref 33.
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filtering method34 that removes false correlations based on

differential peak positions and peak widths (Figure 3). Be-

sides the carbon backbone topology, the method also

provides 13C and, via HSQC, 1H chemical shifts, which are

useful reporters on the nature of additional chemical groups,

for example, a phosphate or amino group, attached to these

carbons that are not directly visible in the COSY and HSQC

spectra. The doubly indirect covariance approach is de-

signed for studying samples from uncharted territories

where not only the concentrations of mixture components

but also their chemical structures are not a priori known,

thereby bridging the fields of natural product research and

metabolomics.

2.3. Comparative Analysis of Biological Mixtures. Sta-

tistical techniques used in comparativemetabolomicswill be

particularly useful for identifying new BSMs associated with

specific phenotypes or genotypes, perhaps the largest loom-

ing challenge in chemical biology and natural products

chemistry. For most known BSMs in nonmammalian sys-

tems, their biological functions andbiosynthetic heritage are

not known, and correspondingly, many genes believed to

play a role in small molecule biosynthesis have remained

orphans. The recent identification of the antibiotic bacil-

laene from Bacillus subtilis using differential analyses of 2D

NMR spectra (DANS) illustrates the potential for adapting

comparative approaches to natural products research.35,36

Previous studies had shown that the very large pksX

gene cluster (∼2% of the B. subtilis genome) encodes an

unusual hybrid PKS/NRPS (polyketide synthase/nonribosomal

peptide synthetase) that produced a small molecule with

antibiotic properties. Despite copious production of this

metabolite, its structure had remained undetermined be-

cause all isolation attempts had failed as a result of chemical

instability. Ultimately, bacillaene was identified via 2D NMR

spectroscopic comparison of the unfractionated metabo-

lomes of a pksX knockout and a pksX-expressing strain.

DANS analysis of 2QF-COSY spectra obtained for these two

metabolite samples enabled straightforward identification

of spectral features that were present in the pksX-expressor

but absent in the knockout, which formed the basis for

subsequent identification of bacillaene's complete structure

(Figure 1).35

A similar approach was used for the identification of a

component of the male-attracting pheromone of the nema-

tode Caenorhabditis elegans. Earlier studies based on activity-

guided fractionation of wormmetabolite extracts had shown

that C. elegans hermaphrodites produce a male-attracting

blend of derivatives of the dideoxysugar ascarylose.3

However, due to strong synergism, not all components of

this pheromone blend could be identified via fractionation.

Based on the observation that daf-22mutant worms do not

produce the male attractant, Pungaliya et al. employed

DANS to compare the C. eleganswild-type and daf-22mutant

metabolomes, which revealed the unanticipated p-amino-

benzoic acid derivative ascr#8 as an important component

of the male-attracting pheromone (Figure 4).37 The identifi-

cation of ascr#8 from C. elegans and bacillaene from B.

subtilis illustrate that using comparative approaches for the

analysis of whole-metabolome 2D NMR spectra offers sig-

nificant opportunities for natural products chemistry and

chemical biology.

2.4. Statistical Methods for Identifying BSMs fromMul-

tiple Biological Mixtures. The combination of untargeted

spectral analysis of complex small molecule mixtures with

statistical pattern recognition techniques for direct spe-

ctral comparison has transformed the study of meta-

bolite associations with disease, gene function, and drug

metabolism.38,39 Quantitative comparisons of spectra from

two or more distinct biological states has been a defining

feature of an approach that has been referred to as “meta-

bolomics”, “metabonomics”, and “metabolic profiling”.38,39

As such, the statistical data analysis methodology for com-

paring spectra is as significant a part of metabolomics as the

underlying analytical chemistry technique that is used to

generate data sets. Two major classes of statistical tools are

used in metabolomics: those that identify relation-

ships between biological states and spectral signals and

those that look for correlations between spectral signals

themselves.

Most metabolomics studies make use of statistical tech-

niques to look for correlations between spectral signals and

the biological states of the analyzed samples. Examples of

these tools include principal component analysis (PCA),

partial least squares (PLS), orthogonal projection onto latent

structures (O-PLS), anddiscriminant analysis (PCA-DA, PLS-DA,

O-PLS-DA).6 In the general implementation of a metabo-

lomics study, two biological states are chosen such that the

majority of BSMs are unchanged, but certain BSMs that are

sensitive to differences in the two biological states are

quantitatively or qualitatively different. Pattern recognition

tools then act as a filter to remove the spectroscopic signals

from the shared metabolites from consideration while high-

lighting the signals arising from the metabolites present in

one state or the other (Figure 5).6

Although the use of 2D NMR spectra in metabolomics

has generally lagged behind the use of 1D NMR or mass
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spectra,40 a recent example demonstrates that full-resolu-

tion 2D NMR spectra can be used for statistical analysis (e.g.,

via PCA) following proper alignment. Using a peak align-

ment algorithm termed HATS-PR (hierarchical alignment of

two-dimensional spectra - pattern recognition), Robinette

et al. compared sets of TOCSY spectra derived frommetabo-

lome samples of two nematode species, Pristionchus pacificus

and Panagrellus redivivus.41 The method combined the

strengths of traditional 1D statistical methods and 2D NMR

data, illustrating how a combination of natural products and

metabolomics approaches can be used together and provid-

ing a framework for applying comparative statistical anal-

ysis to BSM discovery.

While themajority of the statistical tools inmetabolomics

seek to identify correlations between signals and biological

states, in the past 5 years there have been a number of

methods developed to identify correlations of spectroscopic

signals to other signals. The best known of these methods

is statistical total correlation spectroscopy (STOCSY).42,43

While covariance TOCSY18,19,21 (see section 2.2) identifies

correlations between signals by assessing their covariances

acrossmultiple t1-increments collected froma single sample,

STOCSYuses1Dspectraofmultiple biological replicates in the

place of t1-increments. Because all the signals from a given

compound increase and decrease together with the concen-

tration of the compound, peaks arising from the same com-

pound exhibit high positive statistical correlations. Because

STOCSY does not depend on physical phenomena such as

magnetization transfer, it can correlate signals even across

multiple spin systems that could not be correlated by TOCSY.

Though STOCSY was applied to identify correlations

between protons within the same spectrum, it was quickly

realized that statistical correlations could be identified

across multiple types of spectra. Heteronuclear STOCSY, or

Het-STOCSY, has beenapplied to identify 1H�19F and 1H�31P

correlations frommultiple biological replicates of 1D 1H and

1D 19F or 31P spectra.44,45 Additionally, peaks from NMR and

mass spectra have been correlated using statistical hetero-

spectroscopy (SHY).46 This approach is particularly promising

given thatwhile ascertaining bothmolecular formula and the

FIGURE 4. Identification of male-attracting pheromones in C. elegans via differential analysis of 2D NMR spectra (DANS): (A) overlay of COSY spectra
from C. elegans wild-type and daf-22 mutant metabolomes reveals daf-22-dependent signals; (B) structures of two new metabolites, ascr#7 and
ascr#8, that were identified from additional analysis of the daf-22-dependent signals.37
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structural restraints encoded in NMR spectra are critical for

structural elucidation, there are few methods for correlating

nuclear resonances with molecular weights in mixtures.

One drawback of these techniques is that any small mole-

cules that covary in concentration due to biological factors

such as coregulation will exhibit statistical correlations as well,

which can lead toambiguity aboutwhether agiven correlation

between two peaks represents a structural or biological

relationship.47 A recent extension of STOCSY termed cluster

analysis statistical spectroscopy (CLASSY) has focused on using

the network structure of correlations to resolve local clusters of

tightly correlated peaks.48 In the future, clustering both signals

and states using two-way or biclustering techniques should

provideameansofboth identifying signals specific toanactive

biological state andgrouping correlated signals as a first step in

the identification of BSMs. While “signal�state” correlation

tools are useful for identifying signals arising from a biologi-

cally active smallmolecule, theyalso couldbeextremelyuseful

in structure elucidation.

3. Conclusion/Future Perspectives
Long-establishedNMR techniques innatural product research

and the more recent statistical techniques of metabolomics

both strive to identify BSMs and correlate them to activity.

As described in this Account, several approaches using

NMR take advantage of the strengths of both approaches

in solving important biological problems. Advances in analy-

tical instrumentation in NMR and mass spectrometry as well

as improved databases and computational resources are

fueling these new capabilities. However, a great amount of

work remains. Some important challenges include the

following:

• Improved integration of NMR and MS data. The two

techniques are complementary and both are often

required for BSM identification. However, they have

very different sensitivities and dynamic ranges. MS is

very sensitive, but not all compounds are easily de-

tected. NMR is almost a universal detector, but it

suffers from low sensitivity. Despite advances, such

as SHY,46 this is still a difficult problem that limitsmany

studies.

• Improved Databases. This has improved significantly in

the past few years, but the size of NMRdatabases is still

relatively small, and many NMR chemical shifts are

dependent on solvent, sample concentration, and

other acquisition parameters, which makes exact

matching a challenge.

FIGURE 5. When two biological mixtures (blue and red ovals) share most compounds (colored spheres) but differ in biological activity, pattern
recognition techniques applied to NMR spectra of the mixtures can identify the spectral signatures of the differential compounds. Multivariate
statistical tools such as PCA and PLS decompose a set ofmixture spectra into a score for each sample spectrum and loadings for each chemical shift in
the NMR data set. When pattern recognition produces scores that separate the active (red circles) and inactive mixtures (blue circles), the loadings
indicate which signals arise from compounds specific to the active (red cross-peaks) and inactive (blue cross-peaks) mixtures.
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• Rapid Identification of BSMs. Ultimately, the goal in

virtually every natural products or metabolomics

study is the identification of active BSMs. Acceleration

and automation of the identification process remains

the major bottleneck, both because of limitations

described above, and perhaps more importantly, be-

cause of the great chemical diversity in BSMs.

Although comparison to experimental reference spec-

tra may enable identification of common abundant

metabolites, a large number of minor and trace com-

ponents, especially organism-specific metabolites,

usually remain unidentified in automated analyses.

There is no universal identification algorithm or pro-

tocol that can be robustly applied to all classes of

molecules, and thus exists amajor need for the further

development of methods that can build on the recent

progress made, including the work described in this

Account.
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