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Abstract

Motivation: Sequencing total RNA without poly-A selection enables us to obtain a transcriptomic

profile of nascent RNAs undergoing transcription with co-transcriptional splicing. In general, the

RNA-seq reads exhibit a sawtooth pattern in a gene, which is characterized by a monotonically

decreasing gradient across introns in the 5’–3’ direction, and by substantially higher levels of

RNA-seq reads present in exonic regions. Such patterns result from the process of underlying tran-

scription elongation by RNA polymerase II, which traverses the DNA strand in a 5’–3’ direction as it

performs a complex series of mRNA synthesis and processing. Therefore, data of sequenced total

RNAs could be utilized to infer the rate of transcription elongation by solving the inverse problem.

Results: Though solving the inverse problem in total RNA-seq has the great potential, statistical

methods have not yet been fully developed. We demonstrate what extent the newly developed

method can be useful. The objective is to reconstruct the spatial distribution of transcription elong-

ation rates in a gene from a given noisy, sawtooth-like profile. It is necessary to recover the signal

source of the elongation rates separately from several types of nuisance factors, such as unob-

served modes of co-transcriptionally occurring mRNA splicing, which exert significant influences

on the sawtooth shape. The present method was tested using published total RNA-seq data

derived from mouse embryonic stem cells. We investigated the spatial characteristics of the esti-

mated elongation rates, focusing especially on the relation to promoter-proximal pausing of RNA

polymerase II, nucleosome occupancy and histone modification patterns.

Availability and implementation: A C implementation of PolSter and sample data are available at

https://github.com/yoshida-lab/PolSter.

Contact: yoshidar@ism.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequenced total RNAs without poly-A selection (total RNA-seq) con-

sist of the pool of nascent transcripts and mature polyadenylated

RNAs. RNA polymerase II (Pol II) traverses on the DNA strand from

the 5’ to 3’ direction and generates nascent transcripts combined with

co-transcriptional splicing (Brown et al., 2012). It has been reported

that total RNA-seq exhibits a sawtooth pattern in the read density of a

gene (Ameur et al., 2011) as characterized by a monotonically decreas-

ing 5’–3’ slope in intronic regions and substantially higher levels of

RNA present in exonic regions (Fig. 1). One of the major determinants
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that influence the observed sawtooth pattern is the rate of transcrip-

tion elongation by Pol II. For example, the faster Pol II elongation

becomes, the steeper the decreasing gradient appears in introns, and

vice versa. Hence, it has been argued that the total RNA-seq could po-

tentially be utilized to obtain the relative measures of transcription

elongation rates genome-wide (Bentley, 2014; Luco et al., 2011; Singh

and Padgett, 2009). However, the use of total RNA-seq has been less

widespread, possibly because of the difficulty in analyzing consider-

ably noisy data with low read coverage.

Several types of experimental technologies have recently emerged

for genome-wide measurements of Pol II elongation rates, such as global

run-on and sequencing (GRO-seq) (Jonkers and Lis, 2015), native elon-

gating transcript sequencing (Churchman and Weissman, 2011), preci-

sion run-on sequencing (Kwak et al., 2013), nascent RNA sequencing

(Rodriguez et al., 2012) and metabolic labeling of nascent RNA using

microarrays (Radle et al., 2013). The objective common to these meth-

ods is to deeply sequence RNAs at the binding sites of transcriptionally

active Pol II running on DNA strands in cells. Typically, elongation rates

are measured by tracking a wave front of transcriptionally active Pol II

traversing 5’–3’ over time. The observed traveling distance of the wave

fronts between two consecutive time points is used to calculate the vel-

ocity. Such methods operate with intractable drug-driven interventions

to induce the Pol II wave, such as manipulations for halting and restart-

ing transcriptions. Furthermore, the time progressions of induced waves

are visually undistinguishable and often infeasible to track for most

genes as will be shown later. In addition, the spatial resolution of ob-

servable elongation rates is dependent on the length of the time interval.

It is difficult to acquire high frequency time course data because of in-

tractability in the protocols of such nascent transcript sequencing.

Well-established total RNA sequencing has great promise as a tool

to elucidate genome-wide transcription elongation rates. We focused

on the use of total RNA-seq. The proposed method relies on a state

space representation that describes a mathematical relationship be-

tween the observed read density and the spatially varying elongation

rates. A prior distribution is placed on the elongation rates and splicing

patterns, then followed by Bayesian inference by performing sequential

Monte Carlo (SMC) calculations (Boli�c et al., 2004). The data capture

the pool of different kinds of source signals associated with spatial dy-

namics on elongation rates and co-transcriptionally occurring mRNA

splicing such as exon skipping, intron retention, recursive splicing (RS)

(Duff et al., 2015; Sibley et al., 2015) and so on. The problem is a kind

of blind source separation in which unobserved splicing patterns influ-

ence the observed sawtooth as a secondary signal to be decoupled, and

the data contain a considerably high level of noise because of the low

read depth, especially in short introns. We have also investigated some

important characteristics of the data and described the advantages and

disadvantages over GRO-seq. We explored the Pol II elongation rates

in 659 genes in mouse embryonic stem (ES) cells (Sigova et al., 2013).

The estimated elongation rates were compared with some epigenetic

observations on nucleosome occupancy and histone modification pat-

terns in mouse ES cells that have been reported in different studies

(Creyghton et al., 2010; Marson et al., 2008; Teif et al., 2012). We

found that position-specific variations in the elongation rates agree to

some extent with the observed epigenetic landscape.

2 Materials and methods

2.1 Sawtooth observation in total RNA-seq
Transcription elongation is coupled to splicing. In the process of Pol

II running through a gene from the 5’ to 3’ end, a nascent transcript

gets elongated successively and an intron is removed, conventionally

when the Pol II reaches the 3’ end of the intron. In addition to mature

mRNAs, there exist in cells nascent transcripts at different stages of

the elongation process coupled with co-transcriptional splicing. It was

first found by Ameur et al. (2011) that a sawtooth shape appears in

the read density since the sequenced reads capture the pool of mature

and immature RNAs in the cells as schematically shown in Figure 1.

Let x(t) be the probability of existence of Pol II instantly occur-

ring at nucleotide position t on the DNA strand t 2 f1; . . . ;Tg. The

5’ and 3’ ends of the gene correspond to t¼1 and t¼T, respectively.

The existence probability is inversely proportional to the elongation

rate vðtÞ / 1=xðtÞ. The tth nucleotide is spliced out when Pol II

reaches the position sðtÞðt� sðtÞ�TÞ. Then, the expected read dens-

ity r(t) is expressed by the integral of x(t) over the interval between

its transcribed position t and the splice site s(t):

rðtÞ ¼
ðsðtÞ

t

xðuÞdu: (1)

The conversion between the read density r(t) and the Pol II dens-

ity x(t) could be carried out by taking the integral or differentiation.

If the splicing mode is conventional, i.e. all exons are retained in

the final product and introns are removed when Pol II reaches the 3’

ends, the expected read density becomes

rðtÞ ¼

ðTðIkÞ

t

xðuÞdu t 2 IkðT

t

xðuÞdu t 2 Ek

8>>><
>>>:

where Ik and Ek denote sets of nucleotide positions for the kth intron

and the kth exon, respectively, and TðIkÞ denotes the 3’ end in Ik.

Fig. 1. Inverse problem of the transcription elongation rate. (A) Total RNA-seq

captures a mixture of matured and nascent transcripts in a pool of cells.

During the displacement of Pol II from 5’ to 3’, elongating and co-transcrip-

tionally spliced RNAs can take various states as shown in the middle. The

sawtooth pattern of sequenced RNA-seq reads shown in the bottom results

from the expected frequency of nucleotides included in those transcripts at

various stages. This figure was created by referring to Figure 2 of Ameur

et al. (2011). (B) Total RNA-seq reads of a gene (GRM7) in human fetal brain

(Ameur et al., 2011). Splice variants reported in hg19, GRCh37 (Genome

Reference Consortium Human Reference 37) are shown in the upper side
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It is assumed that, for each gene, K exons and K–1 introns are

arranged as E1I1E2I2 . . . IK�1EK from the 5’ to 3’ direction.

In this case, the sawtooth pattern has the following

characteristics.

• Non-monotonic increasing gradient in an intron: 8t� s and

ðt; sÞ 2 Ik � Ik; rðtÞ� rðsÞ.
• Non-monotonic increasing gradient in exons: 8t� s and ðt; sÞ 2

Ek � Eh such that k�h; rðtÞ� rðsÞ.
• Higher read density in an exon than in subsequent introns: 8t� s

and ðt; sÞ 2 Ek � Ih such that k�h; rðtÞ� rðsÞ.

These characteristics are retained only for the given splicing

mode, but the statements imply an important feature of the data:

shorter introns or exons closer to the 3’ end of a gene exhibit lower

read counts. As shown later, read depths indeed correlate negatively

with intron lengths, and sawtooth patterns become less clear in

shorter introns because of the lack of sufficient amounts of reads.

In other words, the inference of elongation rates is feasible only to a

small subset of longer genes without performing deep sequencing.

2.2 State space representation
Each intron was divided into bins with intervals ¼400 bp. An exonic

region was treated positionally as a single point. Accordingly, the Pol

II density is discretized into the corresponding N grid points as

fxnjn ¼ 1; . . . ;Ng, and the read counts were averaged within each

range giving the dataset fynjn ¼ 1; . . . ;Ng. It is assumed here that

n¼1 and n¼N denote the 5’ and 3’ ends of a gene, respectively. The

state variables to be inferred from the data comprise the Pol II exist-

ence probability fxnjn ¼ 1; . . . ;Ng and the splice site sn (�n) of the

nth position in a transcribed RNA. The grid points f1; . . . ;Ng consist

of K exonic regions, E1; . . . ;EK, and K–1 introns, I1; . . . ; IK�1. Note

that, by definition, the first and last exonic regions become E1 ¼ f1g
and EK ¼ fNg. The 5’ and 3’ ends of a reduced intronic region Ik are

denoted by SðIkÞ and TðIkÞ, respectively.

The state space representation is then

log yn ¼ log rn þ gn; gn � Nðl; rÞ;

rn ¼
Xsn

i¼n

xn;

log xn ¼ log xnþ1 þ �n; �n � Nð0; cÞ;

sn � pðsnjsnþ1; snþ2; . . . ; sNÞ;

(2)

with the initial distributions on the state variables, log xN � Nðl0; s0Þ
and sN¼N. As in the first equation, referred to as the measurement

model, the read count is subject to the expected read count rn cor-

rupted by the multiplicative measurement noise gn of the log-normal

with mean l and variance r. In the second line, the expected read

count is represented by the sum of the Pol II existence probabilities

over the interval between n and sn, which corresponds to a discret-

ization of the integral in Equation (1). The last two equations, referred

to as the system model, describe the state transition processes; a first-

order random walk is imposed on the transition of xn to induce spatial-

ly smooth estimates on the Pol II existence probabilities. The splice sites

following the conditional distribution will be detailed in the next sub-

section. Note that the Pol II existence probabilities and the splice sites

are sequentially generated in the 3’–5’ direction (n ¼ N;N � 1; . . . ;1Þ
since the expected read rn at the nth position could be calculated with

the given fxn; xnþ1; . . . ; xNg and fsn; snþ1; . . . ; sNg.
The estimated values of xn and sn are calculated through a SMC

method that draws a set of samples from the posterior distribution

ðX; SÞ � pðX; SjYÞ to derive estimates such as the posterior mean.

A class of SMC methods provides rather easy-to-implement algo-

rithms to produce Monte Carlo samples from analytically intract-

able posteriors. The standard reference is (Doucet and Johansen,

2011). The methods share a common algorithmic structure with

genetic algorithms. The system model in Equation (2) is used to gen-

erate samples of (xn, sn) with given history, fxnþ1; . . . ;xNg and

fsnþ1; . . . ; sNg. Fitness scores of the generated samples are assessed

based on the measurement model with respect to given yn. Samples

having better fitness have a better chance at surviving in the next

generation. This process keeps on iterating from N to 1 and at the

end, samples from the targeted posterior will be produced. The algo-

rithmic details are shown in Supplementary Material M1.

2.3 Prior distribution of unknown splice variants
One difficulty of the inverse problem lies in the fact that splicing var-

iations cause significant deviations from the expected sawtooth pat-

tern as previously shown. Hence, it is essential to infer the splicing

patterns simultaneously with the elongation rate through analysis of

a given read density. The prior distribution pðsnjsnþ1; snþ2; . . . ; sNÞ is

used in the SMC calculation to sequentially produce unknown splic-

ing sites for which the sites n are removed out from the transcribed

RNA. The difficulty is to avoid the occurrence of infeasible splicing

patterns during the random generation.

As illustrated in Figure 2, we modeled three modes of splicing

events: (i) exon skipping, (ii) intron retention and (iii) RS of an in-

tron. The occurrence of alternative donor/acceptor sites is not taken

into consideration because of the reduction of exonic regions into

single points. RS is a stepwise removal process of an intron that has

more often been observed in exceptionally long introns (Sibley et al.,

2015). The occurrence of splicing in the middle of an intron brings a

valley in the sawtooth shape of total RNA-seq reads at the RS site

(Duff et al., 2015; Sibley et al., 2015). Deviation from the monoton-

ic decreasing gradient in the RNA-seq density of an intron could be

indicative of RS. As reported in previous studies, there are also a

large number of apparent RS sites in the data that we analyzed as

shown in Figure 3.

The prior distribution describes the dependence of the splicing

site sn of the position n on the preceding ones, snþ1; snþ2; . . . ; sN.

Fig. 2. (A) Four splicing modes to be modeled in the system with illustrative

examples: (i) conventional mode, (ii) intron retention, (iii) RS of introns and

(iv) exon skipping. (B) Infeasible and feasible modes of exon skipping are

exemplified in (i) and (ii), respectively

Inferring transcription elongation rate 1879
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Adjacent sn and snþ1 in the same intron should be more likely to

take the same value; e.g. they would be the 3’ end of the intron, con-

ventionally. However, if the nth position is an RS site, it then holds

that sn¼n while the neighboring snþ1 turns out to be the 3’ end of

the intron with high probability. On the other hand, sn for an exonic

region tends to take the 3’ end of the gene if no skipping occurs, but

the intronic snþ1 is likely to be the 3’ end of the intron. In this way, a

sequence fs1; . . . ; sNg is not smoothly evolved, and the prior prob-

ability of sn should be dependent on whether or not n is an exon or

an intron as well as the configuration of snþ1; . . . ; sN.

The procedure for successively constructing such a sequence is

summarized in quasi-code Algorithm 1. Several generators are

switched into the active or inactive mode according to the if state-

ments that classify the current position n and the configured preced-

ing sequence snþ1; . . . ; sN into several conditions. This classification

is employed to exclude the emergence of unlikely occurring splice

variants as illustrated in Figure 2. For example, consider that a gene

consists of E1I1E2I2E3 with the three exons Ek (k¼1, 2, 3) and the

two introns Ik (k¼1, 2). Conventionally, when the second exon E2

is skipped out, it temporally forms with the previous and next

introns, I1 and I2, a nascent transcript dangling from the DNA

strand, and they are removed out together at the same time, possibly

when the 3’ end of I2 is transcribed and isolated. This splicing mode

is represented as E1ðI1E2I2ÞE3, where the unit in the parentheses is

isolated simultaneously. On the other hand, E1ðI1ÞðE2I2ÞE3 would

be unlikely to occur. This mode describes a nascent transcript com-

prised of E1E2I2 dangling from the DNA strand temporarily, and its

subunit E2I2 is removed while only E1 is retained in the transcript

when Pol II reaches the 3’ end of I2. Such an unrealistic splicing

mode should not be allowed to emerge. Meanwhile, ðE1I1ÞðE2I2ÞE3

could realistically happen as the first exon is spliced out together

with the first intron, and then a nascent transcript consisting of the

second exon and the second intron disappears simultaneously.

Consequently, our generator follows the statements shown

below:

• Rule 1. Let sn be a splice site of the exonic nucleotide in Ek, and

then sn�1 and snþ1 be its nearest neighbors in the 5’ and 3’ direc-

tions, respectively. If sn ¼ snþ1 but sn 6¼ sn�1, all upstream exonic

nucleotides closer to the 5’ end, i.e. any m 2 Eh 8h <¼ k, satisfy

sm�sn.
• Rule 2. Whenever being skipped out, the exonic nucleotide n 2

Ek is removed together with the neighboring intronic nucleotide

(i.e. sn ¼ snþ1) or the most surviving exon sn ¼ s� where

s� ¼ min fsmjm 2 Ekþ1; . . . ;EKg.

2.4 Hyperparameters
For each gene, the hyperparameters on the log-normal measurement

noise, l and r, were determined as follows: (i) a smoothing

spline f(n) was fitted to the logarithmically transformed read counts,

which provides an initial guess on the expected reads, i.e.

log rn ¼ log
Xsn

i¼n
xi [see the measurement equation in Equation

(2)], and then (ii) the mean and the variance of the residuals were

given to l and r, respectively. Using the estimated expected reads,

we could derive the estimates on the state variables as xn ¼
exp f ðnÞ � exp f ðnþ 1Þ (n ¼ 1; . . . ;N � 1Þ. The variance of the

first-order differences log xn � log xnþ1 (n ¼ 1; . . . ;N � 1) was

given to g, and the mean of xn was given to l0.

2.5 Total RNA-seq data
Total RNA-seq that we used was derived from mouse ES cells (Sigova

et al., 2013). As already discussed, the RNA-seq reads were consider-

ably sparse, especially in shorter genes, hence we began by selecting

genes analyzable. The objective was to identify introns in which al-

most monotonically decreasing slopes were observed in the 5’–3’ dir-

ection. To assess the monotonicity of an intron, we used Pearson’s

correlation coefficients between intronic read counts and their posi-

tions. Supplementary Material F1 shows the relationship between the

lengths of introns and the correlation coefficients. We then selected

introns with lengths �5000bp and with correlation coefficients �0:5,

providing 653 genes that contain one or more such selected introns.

3 Results

For each gene, we calculated the Pol II density, the splicing sites and

the expected reads by taking the averages of 105 particles generated

Fig. 3. Read density of the OPCML gene in human fetal brain (Ameur et al.,

2011). The observed valley in the intron implies the occurrence of RS

Algorithm 1 Generator for splice sites pðsnjsnþ1; . . . ; sNÞ
Input: snþ1; . . . ;N; a;b; d; �;/thr

Output: sn, /thr

t1 . . . tp ¼ unique:intron ðsnþ1; . . . ; sNÞ (# get unique values

from the given splice sites of only intronic regions)

Remove from ft1 . . . tpg N and those less than /thr, and then

we have u1 . . . uq.

if n 2 fTðI1Þ; . . . ;TðIK�1Þg then (# 3’ end of the intron)

sn ¼
n with probability a
snþ1 otherwise

�

if sn 6¼ snþ1 and snþ1 2 fu1 . . . uqg then

/thr ¼ n

end if

end if

if n 2 I1nftðI1Þg [ . . . [ IK�1nftðIK�1Þg then (# intronic region

other than the 3’ end)

sn ¼
n with probability b ðRSÞ
snþ1 otherwise

�

end if

if n 2 E1 [ E2 . . . [ EK�1 then

sn ¼
N with probability d
snþ1 with probability ð1� dÞ�
ui with probability ð1� dÞð1� �Þ=q for i ¼ 1; . . . ; q

8<
:

end if
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from the posterior distribution, which could be summarized with

known splice variants as in Figure 4. The reconstructed elongation

rates of the 653 genes are displayed by a heatmap in Figure 5.

First, we compared the estimated Pol II densities and two ChIP-

seq profiles of Pol II (GSM1865697, GSM1865698), which were

generated from mouse ES cells in a different study (Flynn et al.,

2016). As shown in Figure 6D, the Pol II densities obtained by the

different experimental methods exhibited a significantly strong cor-

relation; the number of genes exhibiting significant positive correla-

tions was nearly 11 times larger than significantly negative genes at

the 5% significance level [Supplementary Material F3(iii)].

Next, we investigated the spatial features of the transcription

elongation rates in neighboring regions of the transcription start

sites (TSSs) as shown in Supplementary Material F2(i). The averaged

elongation rates in 0–3 kb and 3–6 kb downstream from the TSSs

were compared. Nearly 1.75-fold slower elongation was observed in

the TSS adjacent regions than in the downstream regions. This is

due to a widely known fact, i.e. the promoter-proximal pausing of

Pol II at �30–50 bp downstream of the TSS, which is mediated by

negative elongation factors (Jonkers and Lis, 2015). In addition, as

shown in Supplementary Material F2(ii), a comparison of the aver-

age elongation rates between exons and introns strongly suggests

that Pol II slows down significantly at exons, presumably to facili-

tate splicing (Brown et al., 2012; Tanny, 2014)<AQ12/>. On the

other hand, a lack of correlation was observed between the esti-

mated Pol II densities and GC content in the DNA sequences

[Supplementary Material F2(iii)], though several studies suggest that

GC-richer sequences negatively influence elongation rates (Jonkers

et al., 2014).

The effects of nucleosome occupancy and histone modification on

elongation rates were investigated by assessing the correlation be-

tween the estimated Pol II densities and epigenetic-level profiles

derived from mouse ES cells in independent studies (Creyghton et al.,

2010; Marson et al., 2008; Teif et al., 2012). Pearson’s correlation

coefficients were evaluated with respect to the nucleosome occupan-

cies observed through MNase-seq from mouse ES cells (GSE40910:

GSM1004652), neural progenitor cells derived from these ES cells

(GSE40910: GSM1004653) and mouse embryonic fibroblasts from

the corresponding mouse strain (GSE40910: GSM1004654)

(Teif et al., 2012). Nucleosomes form barriers against Pol II elong-

ation as nucleosome-depleted regions become more accessible by Pol

II (Teves et al., 2014). Indeed, the correlation coefficients indicated

negative relationships between the estimated Pol II densities and the

nucleosome positioning patterns (Kulaeva et al., 2013) in many genes

[Fig. 6B and Supplementary Material F3(ii)].

For the association with histone modification patterns, we used

the ChIP-seq profiles of histone modifiers involved in epigenetic

silencing histone H3 lysine 79 di-methylation and activation [histone

H3 lysine 4 tri-methylation (H3K4me3), histone H3 lysine 4 mono-

methylation (H3K4me1), histone H3 lysine 36 tri-methylation

(H3K36me3), histone H3 lysine 27 acetylation (H3K27ac)]

(GSE11724, GSE24165) (Creyghton et al., 2010; Marson et al.,

2008). For many genes, the estimated Pol II densities seem to be posi-

tively related to the histone modification marks associated with tran-

scriptional activation [Fig. 6A and Supplementary Material F3(i)].

The number of genes exhibiting significant positive correlations was

more than eight times larger than those with negative correlations at

the 5% significance level. On the other hand, the histone modification

patterns of the silencer groups tend to correlate negatively with the

Pol II densities within the gene bodies [Fig. 6A and Supplementary

Material F3(i)]. The number of genes exhibiting statistically signifi-

cant negative correlations was nearly 1.5 times larger than those with

positive correlations. Even though these epigenetic data are derived

from different laboratories, we found that the estimated Pol II den-

sities are highly consistent in pattern with the observed epigenetic

landscape.

Fig. 4. Estimated Pol II density, expected read density and splicing patterns

are shown on the DNA coordinates of the Cdk19 gene in the 5’–3’ direction.

The observed read counts are shown in the top panel
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In addition, the estimated Pol II densities were investigated in re-

lation to computationally annotated chromatin states. We used 15

annotations of chromatin states (Shen et al., 2012), which were

obtained by performing a Poisson-based multivariate hidden

Markov model (ChromHMM) (Ernst and Kellis, 2012) on 7 ChIP-

seq profiles of H3K4me1, H3K4me3, H3K36me3, H3K27me3,

H3K27ac, the insulator-binding protein CCCTC-binding factor and

Pol II in mouse ES cells (GSE29184). We then compared the aver-

ages of the estimated Pol II densities in regions with and without a

given annotation. As shown in Figure 6C, it was found that some

chromatin states, e.g. ‘active promoter’ tend to show significant

associations with high-density regions of Pol II in most genes.

The estimated elongation rates of the 653 genes were compared

to those estimated based on GRO-seq (Hah et al., 2011; Jonkers and

Lis, 2015). Using a hidden Markov model with the groHMM pack-

age (Chae et al., 2015; Danko et al., 2013) of R language, we

tracked the wave fronts of Pol II progression at 5, 12.5, 25 and

50 min after the release from the paused state of Pol II. The elong-

ation rate was calculated by the moving distance of the adjacent

wave fronts per minute. The Pol II densities obtained by our method

Fig. 6. Correlation coefficients between the estimated Pol II densities and (A) ChIP-seq profiles of histone modifiers, (B) nucleosome occupancies observed by

MNase-seq from mouse ES cells. (C) Differences between the averages of the estimated Pol II densities in regions with and without a chromatin state annotation.

The 15 annotations shown in the right panel were obtained by performing ChromHMM on the ChIP-seq profiles of the histone modifiers. (D) Correlation coeffi-

cients between the estimated Pol II densities and two ChIP-sep profiles of Pol II. The color scale charts shown on the sides denote the given values in which the

mean differences shown in (C) are scaled to ½�1; 1�

Fig. 5. The estimated elongation rates of the 653 genes are arranged on the ver-

tical axis. The horizontal axis denotes the relative position from TSS. The color

scale chart shown on the side denotes the estimated values normalized to ½0; 1�
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were summed for each interval of the identified wave fronts at two

consecutive times, and the relative elongation rate on each of the

five intervals was calculated by dividing the inverse of the summed

Pol II densities by the respective moving distance. Then, the correl-

ation coefficients were calculated for each gene, showing a lack of

agreement between the different estimates of elongation rates with

total RNA-seq and GRO-seq (Supplementary Material F4). This in-

consistency likely arises from the difficulty of identifying the induc-

tion waves of elongating Pol II with GRO-seq. As exemplified in

Supplementary Material F5, it was quite hard in many genes even to

recognize visually exact positions on the wave fronts of elongating

Pol II. While induction waves should progress in time monotonically

from 5’ to 3’, the tracked positions could take place in the reverse

order across time points.

4 Discussion

In this study, we implemented a Bayesian framework for the recon-

struction of transcription elongation rates from sawtooth-like obser-

vations derived from total RNA-seq. After forwardly modeling the

given sequenced RNA-seq reads for unknown rates of elongating

Pol II and unknown modes of splicing, the backward prediction was

performed according to Bayes’ law to inversely predict the

unknowns. As a proof of principle, we tested our approach on the

total RNA-seq data derived from mouse ES cells. We identified

some spatial features of elongation rates such as the slowdown of

transcription at exons and promoter-proximal regions. In addition,

the predicted elongation rates were highly consistent spatially with

epigenetic observations, i.e. nucleosome positioning and histone

methylation, even though the data were acquired in different

studies.

Despite the potentially great promise of utilizing total RNA-seq

to study transcription elongation, there has been considerably less

progress made in statistical methods. In some previous studies, the

slope of the read density gradients, for instance, which is obtained

using linear regression, was used as the relative elongation speed.

However, as described in this study, different splicing modes could

bring different slopes to the read density, thereby drawing the wrong

conclusion in the absence of inferring the splicing variations. One

contribution of this study is to provide a way to estimate unmeas-

ured states of elongation rates and splicing modes simultaneously.

As a by-product of our method, the RS sites could be identified.

Although details were not described, quite a lot of valleys, possibly

indicating ratchet points of RS, were found in the intronic regions in

addition to those shown in Supplementary Material F6. For ex-

ample, the luna gene in Drosophila melanogaster is known to con-

tain a 108 kb intron with five ratchet points, such that the intron is

removed in six stepwise RS events (Duff et al., 2015). As shown in

Supplementary Material F6, the splicing sites estimated by our

method captured the five ratchet points reported in the previous

study, though some seemingly false estimates of the splicing sites

were also given.

This study focused only 653 genes since intronic reads were con-

siderably sparse in most other genes. Supplementary Material F7

shows an example of such data in which RNA-seq reads covered

only 6.47% of the entire region. One difficulty is the infeasibility of

inferring splicing sites from such data. The current method is applic-

able only for long introns. In our perspective, the currently achieved

estimation accuracy might decline substantially for shorter introns,

even for the selected 656 genes, where read coverages tend to be

low. By performing deeper sequencing, a genome-wide elongation

rate distribution is potenstially predictable with the well-established

RNA-seq protocol.
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