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Contrast agent enhanced magnetic resonance (MR) perfusion imaging provides an early, non-invasive
indication of defects in the coronary circulation. However, the large variation of contrast agent properties,
physiological state and imaging protocols means that optimisation of image acquisition is difficult to
achieve. This situation motivates the development of a computational framework that, in turn, enables
the efficient mapping of this parameter space to provide valuable information for optimisation of perfu-
sion imaging in the clinical context. For this purpose a single-compartment porous medium model of cap-
illary blood flow is developed which is coupled with a scalar transport model, to characterise the
behaviour of both blood-pool and freely-diffusive contrast agents characterised by their ability to diffuse
through the capillary wall into the extra-cellular space. A parameter space study is performed on the non-
dimensionalised equations using a 2D model for both healthy and diseased myocardium, examining the
sensitivity of system behaviour to Peclet number, Damköhler number (Da), diffusivity ratio and fluid
porosity. Assuming a linear MR signal response model, sample concentration time series data are calcu-
lated, and the sensitivity of clinically-relevant properties of these signals to the model parameters is
quantified. Both upslope and peak values display significant non-monotonic behaviour with regard to
the Damköhler number, with these properties showing a high degree of sensitivity in the parameter
range relevant to contrast agents currently in use. However, the results suggest that signal upslope is
the more robust and discerning metric for perfusion quantification, in particular for correlating with per-
fusion defect size. Finally, the results were examined in the context of nonlinear signal response, flow
quantification via Fermi deconvolution and perfusion reserve index, which demonstrated that there is
no single best set of contrast agent parameters, instead the contrast agents should be tailored to the spe-
cific imaging protocol and post-processing method to be used.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

There were more than 80,000 deaths due to coronary heart dis-
ease in the UK, during 2010 alone (Townsend et al., 2012). Associ-
ated treatment of the disease has been estimated at costing £1.8
billion, with an overall cost to the economy of £6.7 billion
(Townsend et al., 2012). Earlier diagnosis of coronary heart disease
therefore has the potential both to increase life expectancy and to
reduce healthcare and other economic costs.

To achieve this, contrast agent (CA) enhanced magnetic reso-
nance imaging (MRI) of myocardial perfusion (Coelho-Filho et al.,
2013b) has been proposed as being able to provide a non-ionising,
non-invasive, early indication of disease in the coronary circulation.
This modality aims to yield a direct representation of the underlying
physiological state of local perfusion (Barkhausen et al., 2004), by
revealing areas of the myocardium that are receiving lower than
normal blood flow. Common causes for these regional deficiencies
in blood perfusion are stenosis of one or more of the main coronary
arteries, and microvascular disease. Prolonged exposure of tissue to
hypoperfusion can lead to functional consequences such as myocar-
dial hibernation (Frangogiannis, 2003) and ultimately death of
myocytes.

Various other imaging modalities exist for detecting these con-
ditions, for example, Computed Tomography (CT) or MR angiogra-
phy provide direct representation of any stenoses. However this
structural diagnosis does not perfectly correlate with the func-
tional diagnosis that perfusion imaging provides, nor does it detect
microvascular disease. While nuclear medicine techniques such as
Single Photon Emission Computed Tomography (SPECT) or
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Positron Emission Tomography (PET) can provide robust absolute
quantification of perfusion, and even target specific metabolic con-
sequences of tissue perfusion (Beller and Zaret, 2000), MR perfu-
sion imaging realises significantly higher spatio-temporal
resolution. This resolution enables the observation of localised per-
fusion defects which might otherwise be obscured. An additional
advantage of using MRI is that the perfusion imaging can be com-
bined with that of cardiac function, scar and other diagnostic tar-
gets within a single session, providing useful clinical flexibility.
Finally, the lack of ionising radiation makes MRI safe and suitable
for regular follow-up imaging of patients.

The basic protocol for performing cardiac perfusion imaging
begins with the injection of a dose of contrast agent into a periph-
eral vein. This dye is then transported through the right ventricle,
lungs and left ventricle, from where it is pumped into the myocar-
dial circulation. Three imaging planes are taken along the short
axis of the heart, at an approximate resolution of 1.2 � 1.2 � 10
(mm). The gadolinium-based CA boosts the MR signal of the blood
relative to the surrounding tissue, such that areas which are under-
perfused appear much darker in the image than those which are
well-perfused. These images are then viewed by the clinician,
who makes an expert judgement regarding the health of the
patient’s heart based on the spatial distribution of contrast agent
within the ventricle walls.

Beyond expert visual assessment is the potential for much
greater information to be extracted from these images. There are
now various methods that derive quantitative metrics of the perfu-
sion state specifically and the disease state in general. For example,
flow quantification is approached by calculating the maximum
upslope of a the myocardial signal (Aquaro et al., 2013) or by using
signal deconvolution techniques, either on segment-averaged data
(Jerosch-Herold et al., 1998) or more recently on voxel-wise signals
(Zarinabad et al., 2012). Other metrics include transmural perfu-
sion gradients, which may discern between large-vessel and micro-
vascular disease (Hautvast et al., 2011), and the perfusion reserve
index which reflects the spare capacity in the myocardial circula-
tion to adapt to stress conditions (Jerosch-Herold et al., 1998).

However, despite these promising aspects, the technique still
possesses some limitations. Among the more significant drawbacks
include: artifacts due to patient motion (Stegmann et al., 2005);
quantification errors due to ECG trigger failures (Knesewitsch
et al., 2013); a saturation of the signal response curve that prevents
straightforward perfusion quantification (Ishida et al., 2011);
reconstruction errors arising from under-sampled imaging
sequences (Plein et al., 2007); dark rim artifacts (Di Bella et al.,
2005); errors due to a combination of nonlinear signal response
properties and partial volume effects in the sampled image. Fur-
thermore, the diffusive nature of currently-used contrast agents
such as Gadobutrol can confound quantification of blood flow
and generates both false-positives and false-negatives in data
interpretation (Barkhausen et al., 2004). These issues are com-
pounded by the multi-modal causes of perfusion defects, from both
arterial stenosis and diabetes-induced microvascular damage.
Taken altogether, these considerations mean that experimental
determination of optimal protocols is prohibitively expensive and
time consuming.

To address these issues, existing models, typically lumped
parameter in nature, have been used to investigate the transport
of MRI contrast agents. These have been reviewed by Tofts et al.
(1999) who used various ordinary differential equation (ODE)
models and T1-weighted MRI to estimate the kinetic parameters
of diffusible tracers, in an attempt to standardise these models.
However, ODE models of this transient transport process lack the
ability to reproduce spatially-varying phenomena, such as the
delineation of a perfusion defect boundary and effects due to the
regional variation of cardiac physiology.
In previous publications, we have developed multi-compart-
ment porous media models of myocardial perfusion (Michler
et al., 2012; Cookson et al., 2012) and shown their suitability for
simulating the phasic spatial/temporal changes in coronary perfu-
sion. With these models, which couple 1D representations of the
coronary arteries to 3D continuum porous models, both large-ves-
sel and microvascular disease can be represented. The reduced area
of an arterial stenosis can be specified in the 1D model and the per-
meability and porosity of the porous medium model varied locally
to represent microvascular disease. However, to assess all of the
necessary parameter variations of CA transport on a full multi-
compartment, three-dimensional simulation would be extremely
computationally expensive, producing large amounts of data that
are difficult to interpret. Thus, in this study, a simplified approach
to the problem is employed. It is important to clarify that the pur-
pose of this model is to provide a simplified version of the 3D phys-
iologically-realistic, multi-compartment porous medium model, so
as to yield useful insights about its behaviour; as such it is not
intended to be the simplest such reduction possible.

Applying this approach the principal aims of this study are: to
provide a quantitative characterisation of the range of behaviour
possible for different CAs, encompassing both current and possible,
future compounds; to assess the likely errors associated with
quantification of the perfusion state for different contrast agents
parameters; and to understand the relationship between diagnos-
tic precision and contrast agent properties with respect to the
identification of a perfusion defect. The knowledge gained from
these simulations will enable better interpretation of the results
from the 3D simulations performed in physiologically-realistic
geometries, and also to provide guidance for the use of different
contrast agents.

2. Flow in a porous medium

2.1. Darcy flow

Porous media and poroelastic models have been previously used
to simulate perfusion in the work of Huyghe et al. (1992), Vankan
et al. (1997), May-Newman and McCulloch (1998), Chapelle et al.
(2010), Chapelle and Moireau (2014), and more recently our studies
applying this approach within physiologically-realistic left ventricle
geometries (Michler et al., 2012; Cookson et al., 2012). In the latter
papers a multi-compartment Darcy model is used, which contains
multiple separate fluid networks, in order to permit a parameterisa-
tion that best captures the wide range of vessel length scales, and
the widely-varying spatial distribution of blood flow that results.
The work of Hyde et al. (2013a,b) has demonstrated how this type
of multi-compartment Darcy continuum model can be effectively
parameterised from the discrete vascular data collected by van
den Wijngaard et al. (2013).

However, given that the principal transfer of contrast agent to
the tissue occurs in the capillaries, it is sufficient for the purposes
of this study to consider here a standard, single-compartment por-
ous medium. The porous medium, in the domain X, therefore con-
tains two phases, fluid and solid (superscripts f and s, respectively),
which have volume fractions, or porosities /, defined as follows:

/f ¼ Vf

VX ð1aÞ

/s ¼ 1� Vf

VX ð1bÞ

where

VR ¼
Z

R
dR ð2Þ
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for a given region R. Assuming saturation, these definitions imply
that /f þ /s ¼ 1.

The flow of blood through this medium can be described by
Darcy’s law:

lwþ K � rp ¼ 0 in X; ð3aÞ
r �w ¼ u in X; ð3bÞ

where w and p denote the Darcy (or perfusion) velocity and pore
pressure, respectively. The remaining quantities are l > 0, the
dynamic viscosity of the fluid, K , the permeability tensor (symmet-
ric positive definite) of the porous solid, and u, the volumetric
source term. Note that the Darcy velocity is related to the fluid
velocity uf in the following way:

w ¼ /f uf ð4Þ

which indicates the interchangeability of velocity and porosity for a
given Darcy flow. Some details of the numerical method used to
solve this system are given in Section 4.1.

2.2. Transport of passive scalar in a porous medium

Broadly there are two types of contrast agents in which we are
interested. The first are blood-pool CAs (intravascular CAs), which
bind to blood proteins, typically albumin, and are therefore unable
to penetrate the vessel wall and hence are confined to remain
within the vessel lumen. The second are freely-diffusive CAs
(extracellular CAs) which are able to diffuse through the vessel
walls into the extracellular space of the myocardial tissue.

2.2.1. Governing equations
Using the velocity field obtained from Eq. (3), the transport of

contrast agent by the blood can be determined. In the general case,
two equations are required. The first is an advection–diffusion
equation to describe the transport of CA in the blood, and the sec-
ond is a diffusion equation that describes the movement of CA
within the extracellular space.

In the fluid phase the transport of CA is described by the follow-
ing advection–diffusion equation (Beaudoin et al., 2007):

@/f cf

@t
þr � ð/f uf cf Þ ¼ r � ð/f Dfrcf Þ � �f þ q ð5aÞ

The mass concentration of CA, defined relative to the phase volume,
is denoted c. The product /c therefore gives the value of concentra-
tion per total volume. Conversely, the source term q is defined per
unit total volume, as the amount of CA injected into the patient is
independent of the myocardial porosity. The velocity uf is deter-
mined by solving Eq. (3) and Df is the diffusion coefficient of CA
in the blood. The additional sink term �f accounts for the transfer
of CA from the blood into the tissue. Once in the tissue, the trans-
port of the CA through the extracellular space is described by the
following diffusion equation:

@/scs

@t
¼ r � ð/sDsrcsÞ þ �f ð5bÞ

where �f now appears as a source term and Ds is the diffusion coef-
ficient of CA in the tissue.

2.2.2. Through-wall flux of contrast agent
There are several possible interface conditions that could be

chosen for the transport of CA across the vessel wall, the simplest
being continuity of concentration. The form taken here assumes
that the wall can sustain a concentration gradient, and that the flux
through it occurs at a rate proportional to that gradient across the
interface. At the microscale the flux, f, is therefore:
f / ðcf � csÞ ð6Þ

At the macroscale, which is a continuum representation of the aver-
age behaviour of many vessels within a given volume element, the
same proportionality holds. Following Gerke and van Genuchten
(1993), the mass transfer term becomes:

�f ¼ a/f /sðcf � csÞ ð7Þ

The constants of proportionality are thus a; /f and /s. In an analo-
gous way to the other concentration gradient termrD/f � rc in Eq.
(5a), porosity does not directly multiply the concentration values.
This is because the volume of a pore can be increased while keeping
surface area constant (through an appropriate reconfiguration of
the pore geometry), which preserves the value of the flux. In addi-
tion, this relationship naturally enforces the observation that
should the porosity of either phase go to zero, then no mass transfer
to/from that phase can occur. Finally, other properties being equal,
the case of /f ¼ /s ¼ 0:5 yields maximal flux between the two
phases.

The parameter a represents both the permeability of the vessel
wall to the contrast agent and the efficiency of the vascular geom-
etry at mass transfer. The value of this constant will in future be
determined from experimental data. A value of a ¼ 0 corresponds
to a blood-pool CA, and a > 0 the freely-diffusive agents. Therefore,
the qualitative binary distinction between these two classes of CA
is condensed into a single parameter value in the model. Finally, it
is assumed that the vessel wall membrane is equally permeable in
both directions of mass flux.
2.3. Nondimensionalisation

A nondimensionalisation of the governing equations is per-
formed to provide insight into the key physical processes of the
system, as well as to reveal the main relationships between the
various parameters. Furthermore, by reducing the set of parame-
ters to the minimum necessary to describe the system, the param-
eter space study is faster to perform and the results more straight
forward to analyse.

Before performing the nondimensionalisation, some additional
assumptions are made regarding the material fields. In this study,
both spatial and temporal gradients of porosity and the diffusion
coefficient, D, are ignored. Future studies will allow these fields
to vary so as to enable more specific parameterisations of different
disease states. In the Darcy model, with unit inflow/outflow
boundary conditions, the velocity field is set to be divergence free.
Under these conditions the equations simplify to

@cf

@t
þ uf � rcf ¼ Dfr2cf � a/sðcf � csÞ þ q

/f
ð8aÞ

for the blood, and

@cs

@t
¼ Dsr2cs þ a/f ðcf � csÞ ð8bÞ

for the extracellular space. The following scalings are used to non-
dimensionalise the system (following the example of Shipley and
Chapman (2010)), u ¼ Uu0; t ¼ d

U t0; c ¼ Cc0 and x ¼ dx0, where U is
a typical velocity, C a typical concentration and d an inter-capillary
length. This produces:

@cf

@t
þ uf � rcf ¼ 1

Pe
r2cf � Dað1� /f Þðcf � csÞ þ q

/f
ð9aÞ

@cs

@t
¼ Dr

Pe
r2cs þ Da/f ðcf � csÞ ð9bÞ
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where all variables are now the nondimensional versions but with
the prime omitted for conciseness. A summary of the four dimen-
sionless parameters is given below.

1. Peclet number ðPeÞ ¼ Ud
Df , characterises the relative time scales of

advective and diffusive processes in the blood.
2. Damköhler number ðDaÞ ¼ ad

U , characterises the relative rates
with which contrast agent passes through the vessel wall and
is advected past it by the blood.

3. Diffusivity ratio (DrÞ ¼ Ds

Df , indicates the relative importance of
diffusive processes in the intra- and extravascular spaces.

4. Fluid porosity /f , the volume fraction of the porous medium
occupied by the blood.

A summary of the numerical methods used to solve this coupled
system is given in Section 4.2.
3. Model setup and goals

3.1. Tissue model

Fig. 1 shows the layout of the 2D domain, marked with the loca-
tion of the point source and direction of flow. Two different config-
urations will be used to account for healthy and diseased cases. The
healthy myocardium is represented by a spatially constant
isotropic value of permeability, K ¼ I. For the diseased case, the
associated regional perfusion defect is characterised by very low
Fig. 1. Schematic showing the 2D idealised system. Inlet and outlet flow boundary
conditions are applied, with a point source applied in the transport system. The size
and location of the small defect is marked in the blood domain.

Fig. 2. The perfusion defect is modelled by a circular region of near-zero K. Due to the fac
region. This means that the path of least resistance to the flow is a compromise between
that the circular boundary of the defect is not perfectly reproduced in the velocity field
flow within a localised area of the myocardium. This reduction in
flow rate is accomplished by imposing a circular region of near-
zero permeability in the Darcy model, as implemented in Nolte
et al. (2013). For reasons of numerical compliance, K cannot be
set exactly to zero. Additionally a transition region is defined that
spans two or three elements, which is accomplished using a hyper-
bolic tangent function. The precise form of this masking function is
given by Eq. (10), the parameters of which can be tuned to alter the
size and sharpness of the boundary region of the defect:

Kmask ¼ 0:5ðtanhð�50ðx2 þ y2Þ1=2 þ 15Þ þ 1Þ ð10Þ

This is applied to the unit permeability field in the following way:

K ¼ I ð1� cKmaskÞ ð11Þ

In this study, c ¼ 0:999 and the resultant permeability and axial
velocity fields are shown in Fig. 2. Three sizes of defect are investi-
gated with radii 0:065; 0:17 and 0.29, within a domain one unit in
width and five units in length.
3.2. Aims

The freely-diffusive nature of some contrast agents means that
a quantity of CA becomes stored in the tissue for time scales longer
than the injection and clearance of the CA in the blood pool, con-
founding the correct interpretation of the underlying physiological
state. In clinical terms, during perfusion imaging, a false-negative
result would be that hypoperfusion was present, yet there were
no identifiable perfusion defects in the MR images. A false-positive
is the opposite to this, whereby blood perfusion of a healthy sub-
ject is under-estimated. Both of these scenarios have the potential
to occur as a consequence of the temporary storage of CA in the
tissue.

For the case of a false-positive, there are two contributing
causes. The first is a local enhancement of the signal at the point
where CA diffuses into the tissue, producing an over-estimation
of perfusion. The second cause is the removal of CA from the fluid
into the tissue leaving less CA available downstream and therefore,
for equal blood volumes, the downstream portion will emit a lower
signal, producing a false-positive effect of under-estimation. These
two effects can combine to produce a disparity in signal between
two regions of tissue that are identically well-perfused, complicat-
ing quantification of blood flow.
t that K is not exactly zero in this region, a very small flux passes through the defect
distance travelled and resistance offered by the permeability field, and hence means
.
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The under-estimation due to this effect will clearly depend on
the Damköhler number, and the downstream distance of the sam-
pling point. For small values of Da, this effect is likely negligible,
but larger values have the potential to create significant errors in
the quantitative interpretation of the perfusion state.

The false-negative effect occurs when a freely-diffusing contrast
agent diffuses through the tissue phase from a region of healthy
perfusion to a region of under perfusion, thereby producing signal
in an unperfused area which should have none. The previously-
described models for healthy and diseased tissue simplify the anal-
ysis of results by separating these two effects.

3.3. Input bolus specification

In the clinic, the contrast agent is generally injected into a
peripheral vein as quickly as is practicable, so as to approximate
a Dirac delta function, though in reality it will be a triangular or
top-hat function. Alternative injection strategies have been pro-
posed, for example the injection of a pre-bolus that is a fraction
of the main bolus in order to enable signal calibration (Ishida
et al., 2011), however an analysis of this approach is outside the
scope of this work.

After having travelled to, and through, the right ventricle and
lungs, this input bolus becomes smeared by dispersion. For an MRI
region-of-interest located in the blood pool of the left ventricle,
the concentration time-signal of this bolus now approximates a
slightly-skewed Gaussian function. This signal is known as the arte-
rial input function, as it is taken to be the input seen by the myocar-
dial circulation, and it can be used in deconvolution techniques for
quantifying perfusion (Hautvast et al., 2012). As a first approxima-
tion to this injection and subsequent dispersion, and neglecting
the small skewness of arterial input function, a transient Gaussian
source term, Eq. (12), is used in the advection–diffusion equation.

q ¼ 1
r
ffiffiffiffiffiffiffi
2p
p e�

1
2

t�Tpeak
r

� �2

ð12Þ

This source term is applied at a single mesh node (0.0, �2.0) i.e. on
the centreline 0.5 units from inflow boundary. The variance of the
bolus is r2, which reflects the speed of the injection into the system,
t is time and Tpeak is the mean of the Gaussian which sets the time
value at which the peak value of the bolus occurs. For ease of anal-
ysis the integral value of the source term is kept at 1.

3.4. Signal response

The equations outlined in Section 2.2 calculate the evolution of
contrast agent concentration in fluid and solid phases. One con-
founding factor to absolute quantification of perfusion is the fact
that for a given imaging voxel, the resultant signal intensity is
determined by an unknown mixture of signals from the fluid and
solid. Therefore, we wish to calculate the total signal produced
for these values of concentration. Typically the contrast agent sig-
nal response curves are formed by a linear region, followed by an
almost-complete saturation, in which further increases in concen-
tration yield only very small increases in signal intensity.

In this study it is mainly assumed that the imaging is performed
within the linear range of the signal response curve. This enables
the greatest applicability of the results and reduces the amount
of confounding information in their analysis. Furthermore, a full
parameterisation of the nonlinearity would be, in combination
with the existing PDE parameter space, too large to consider here.
However, in order to provide some insight as to the likely errors
that can arise when assuming linearity, in Section 8.1 a set of three
nonlinear response curves, taken from (Hsu et al., 2008), are
applied to a selection of the results. See also the work of Ishida
et al. (2009) for further indicative measurements of nonlinear sig-
nal responses.

The total porosity-weighted concentration, cT , is defined in Eq.
(13),

cT ¼ /f cf þ /scs ð13Þ

and which can be taken to represent directly the MR signal intensity
for a linear response curve, without any further post-processing.

Even for this simplified model, a key question is how to best
draw conclusions from the wealth of spatially and temporally-
varying data that these simulations produce. Therefore the follow-
ing clinically-motivated metrics are used to reduce this informa-
tion to a manageable form for analysis.

A single sample point, located at the centre of the domain, is
specified and the three concentration values of porosity-weighted
fluid concentration, porosity-weighted tissue concentration
extracted and porosity-weighted total concentration. From the
resultant time series, the upslope and peak value of concentration
are calculated. The upslope is defined as the maximum gradient of
the curve between t ¼ 0 and the time at which the peak value
occurs (Aquaro et al., 2013).

The value of concentration in the defect displays a large degree
of spatial inhomogeneity, therefore sampling at a single point is
less useful in the diseased simulation in comparison to the healthy
case. For the diseased simulations the average value of concentra-
tion, Eq. (14), is calculated for this region, defined using the same
masking function as for the permeability field.

�cdefect ¼
R

X Kmaskð/f cf þ /scsÞdXR
X Kmask dX

ð14Þ

Errors associated with the mask boundary spanning two elements
are assumed to be unimportant. As with the healthy case, similar
properties of the time-varying average signal are extracted.

4. Numerical methods

The finite element method is used to solve all the models pre-
sented in this paper, all of which are implemented within an in-
house parallelised, multi-physics code, CHeart (Michler et al.,
2012; McCormick et al., 2013; Nordsletten et al., 2010). A brief
description for each model component follows.

4.1. Darcy perfusion model

The 2D spatial domain is discretised using linear Lagrange
quadrilateral elements, of size 0.02 units, with velocity and pres-
sure represented by quadratic Lagrange basis functions. This sys-
tem is solved using the primal, or pressure, formulation, which is
obtained by the substitution of the Darcy flux equation into the
continuity equation. No-flux boundary conditions are imposed on
the long edges of the domain, with fixed unit inflow/outflow veloc-
ity conditions applied to the short edges, for both the healthy and
diseased cases. For full numerical details see (Michler et al., 2012).

4.2. Coupled advection–diffusion-reaction transport model

Similar to the Darcy solution, the spatial domain is discretised
using linear Lagrange quadrilateral elements, as are the concentra-
tion and source variables. The input velocity field u is represented
on the same quadratic basis on which it was solved. To ameliorate
the numerical instability of the associated advection operator, the
Streamline-Upwinding Petrov–Galerkin (SUPG) stabilisation
scheme (Brooks and Hughes, 1982) is used. The discrete forms of
these equations are assembled into a single matrix system, there-
fore solving for cf and cs simultaneously. The time integration of
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this global system from a zero initial condition is performed
implicitly, using a backward Euler scheme. All four boundaries
are set to a zero Neumann value, which enforces a condition of zero
diffusive flux.
5. Results

5.1. Parameter space

It is the aim of this study to understand the behaviour of this
system for a wide range of parameter values, which is a superset
of values that includes those for contrast agents currently in use
in clinical practice and experiments. This choice of range will pro-
vide a reference for any future contrast agents that might be devel-
oped. However, there are still limits to these ranges beyond which
it is unlikely to be necessary to simulate. The particular choices of
parameter values are justified below.
5.1.1. Peclet number
The value of Pe is likely to be large for these contrast agents,

however to encompass the conditions experienced during a full
cycle of pulsatile flow, during which velocities will at times be very
low, the following range of values is used 10–10,000.
5.1.2. Damköhler number
A Damköhler number of 0 corresponds to the blood pool con-

trast agent. Results will be presented for Da in the range 0–100.
5.1.3. Diffusivity ratio
It is unlikely that the diffusion coefficient of the CA in the tissue

will be many orders of magnitude higher than in the blood. There-
fore, the range of diffusivity ratio under investigation will be 0.01–
10.
5.1.4. Fluid porosity
A small range of porosity values are examined here, 0.14–0.18,

which encompasses the capillaries, but also assesses the impact of
increased porosity due to the presence of larger blood vessels, if a
contrast agent were developed that permeated through the walls
of these vessels.
6. Healthy case

Fig. 3 shows a representative set of time series data for the con-
centration value at the sampling point, for varying values of Da in
the range 0 to 1. The total concentration is displayed in black, with
the contributions from the fluid and tissue in light and dark grey
respectively.

Fig. 3a, where Da ¼ 0, corresponds to a blood-pool contrast
agent, which manifests as zero tissue signal and coincident concen-
trations for the fluid and total. The effect of increasing diffusivity
into the extracellular space to Da ¼ 0:1, Fig. 3b, is small, at which
value there a small amount of contrast agent in the tissue. This
storage lengthens the tail of the previously-Gaussian concentration
distribution, and introduces a kink at which the downward gradi-
ent changes sharply. This kink marks the abrupt change in compo-
sition of the total concentration value that occurs when the bolus
in the fluid has passed by the sampling point, leaving only a contri-
bution from the tissue. This effect becomes more pronounced as Da
is increased up to a value of one, in Fig. 3f. It is clear from these fig-
ures that a large change in system behaviour, both qualitative and
quantitative, occurs between the values of Da ¼ 0:1 and Da ¼ 1:0.
6.1. Estimation of parameters for current contrast agents

A survey of medical literature (Kelle et al., 2010; Chiribiri et al.,
2011; Makowski et al., 2010; Köstler et al., 2008; Ritter et al., 2006;
Su et al., 2007; Jerosch-Herold et al., 2004) was performed to iden-
tify the typical pointwise signal intensity curves measured during
contrast agent enhanced MR perfusion imaging. These curves have
been amalgamated into a single idealised representation in Fig. 4
to illustrate the possible range of behaviour. Given that only Da sig-
nificantly affects the tail of the signal, the other parameters tend-
ing to have more symmetrical effects, user observation of the
signal can be used to estimate Da, and be done so independently
of the other parameters. Based on this comparison, Da is estimated
to be in the range 0.25–2.0.

With regard to the diffusivity ratio, it is assumed that the diffu-
sion coefficient of the CA in blood is roughly the same as in the
extracellular fluid. However, the effective, or observed, diffusion
coefficients at the macroscale in the porous medium will take dif-
ferent values. Just as for the Damköhler number, the effective dif-
fusion coefficient of the CA is governed by more than just its
chemical properties, with the geometric and physical properties
of the vessels and tissue also influencing the macroscale behaviour
of the CA. In particular, the pore geometry and porosity of the por-
ous phase will determine the ease with which a molecule can dif-
fuse within the bulk volume (Grathwohl, 1998). Other things being
equal, the ratio of porosities in the two pore spaces will determine
the ratio of their diffusivities in the bulk volume. A range of 15–
33% porosity of the extracellular space has been used in bi-domain
models of electrical activation of cardiac tissue (Stinstra et al.,
2006), which therefore implies a porosity of the total volume in
the range 12–28%. This suggests a Dr of 1–2, however, allowing a
factor two of uncertainty to account for the two different pore
morphologies, suggests a plausible range of values for Dr is
�0.5–5.0.

It should be noted that the model presented here is somewhat
phenomenological in terms of the parameters Da and Dr. Any geo-
metric and other complexities are absorbed into the parameter val-
ues, to be more precisely determined from controlled experiments
and formal parameter estimation techniques, rather than using a
mechanistic approach to derive estimates based on idealisations
of the pore or cell structure. The sensitivity of the system behav-
iour to the various parameters will be examined in the following
sections, with reference to plots of the key signal characteristics
of peak value and signal upslope.

6.2. Effect of varying Da and /f

In Fig. 5a and b, showing the change in peak concentration and
upslope with Da and /f , it is clear that in the range of porosity
examined, these signal characteristics are largely insensitive to
the specific value of /f . Therefore, in subsequent plots, /f will be
fixed to a value of 0.14 and only the remaining three parameters
varied.

More interesting is the non-monotonic behaviour around
Da � 7:5, which occurs for the following reasons. As Da is increased
from a value of 0 up to 7.5, a ‘‘steal effect’’ becomes increasingly
significant as an increasing amount of CA is taken into the tissue
upstream of the sample point. This reduces the amount of CA that
is transported downstream by the flow to the sample point,
thereby reducing the peak value. This effect causes the potential
for false-positive readings to occur.

As Da is increased beyond a value of 7.5, the peak concentration
rises again. In these cases, the upstream steal effect is so strong
that a large portion of the contrast agent is taken from the fluid
into the tissue, where it is stored before slowly leaking back into
the vessels. The majority of the signal measured downstream
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Fig. 3. Time variation (seconds) of concentration measured at the central sampling point in the healthy tissue model, showing the relative contributions of the fluid and solid
phases to the total observed concentration. For all cases Pe ¼ 1000; Dr ¼ 1 and /f ¼ 0:14, with Da varying.

Fig. 4. An idealised schematic representation of the range of MRI perfusion signals
reported in the clinical literature. Comparison with simulation results suggests Da
is in the range 0.25–2.0.
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therefore derives from the tissue phase, the contrast agent having
diffused through the tissue to the sample point. This is confirmed
by the composition of the total signal in Fig. 6.
The non-unique nature of peak concentration and upslope
means that for inverse approaches, these properties by themselves
are unsuitable for identifying the value of Da. However, compari-
son of the signals for two values of Da either side of Da ¼ 7:5 shows
that the shape of the curve varies greatly, in particular in the tail.

For Da < 7:5 the curve is approximately Gaussian in the front,
with a skewed Gaussian profile in the tail, the length of which is
dependent on Da and Pe. This profile occurs because the concentra-
tion is transported by the flow, from an initial Gaussian distribu-
tion, which is shifted, scaled and stretched due to both the
diffusion in the blood, and diffusion into the extracellular space.
However, for Da > 7:5 the signal is more symmetric in shape, but
also stretched over a longer time period, as the concentration is
moving into the observation zone principally through diffusion.

The upslope of the concentration signal also reduces with
increasing Da in the range 0–1. This is again due to the upstream
steal effect. The gradient of the signal reduces because the quantity
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Fig. 6. The profile of the concentration signal changes drastically in the range of Da ¼ 1—7:5. From the Gaussian curve with long tail at Da ¼ 0:75, increasing the value of Da
gradually causes a shift back to a symmetric Gaussian distribution, except that the principal transport downstream now occurs in the tissue phase. This shift in signal shape
permits an estimation of the values of Da encountered in clinical imaging.
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of contrast agent that diffuses into the extracellular space is also
proportional to the concentration difference, and not only to Da.
Therefore, the peak of the input bolus is reduced to a greater extent
than the rest of the curve. As Da increases, this reduction in the
gradient is accentuated.

Finally, within the range of 0:25 < Da < 2, it is observed that
the greatest sensitivity to changes in /f occurs for Da � 0:7, yield-
ing up to 25% change in signal properties. Therefore from the per-
spective of reducing this sensitivity to changes in /f , as will occur
due to regional, physiological variations and during myocardial
contraction, the ideal value of Da lies either below or above this
value, where any changes in signal characteristics become
negligible.
6.3. Effect of varying Da and Dr

Fig. 7 shows the variation of peak concentration and upslope
with varying Da and Dr. For Da < 0:1, the curves are virtually indis-
tinguishable, but a small difference emerges as Da is increased by
an order of magnitude. Beyond Da ¼ 1 the curves rapidly diverge,
and for Da ¼ 100 there is an order of magnitude difference in peak
concentration between Dr ¼ 10 and Dr ¼ 0:01, and the situation is
similar for the upslope.

This greater sensitivity to Dr for values of Da > 1 is due to the
much greater quantity of CA that enters the tissue for these param-
eter values. Altering Dr, and by implication Ds, will then have a
more noticeable impact on the total signal. Below Da ¼ 0:1, there
is simply too small a contribution from the cs for any changes in
it to be significant to the total signal.

For Da ¼ 1, increasing Dr from 0.01 to 1 yields less than a 10%
change in the upslope, though the peak value reduces by up to
20%. These changes in signal characteristics have the virtue of
being bounded with regard to the errors they might propagate.
Conversely, increasing Dr above a value of one, could have a large
and potentially unbounded impact on the signal characteristics. An
order of magnitude increase in Dr from 1 to 10, brings about a 22%
reduction in the upslope and a 29% reduction in peak concentra-
tion, which is due to the CA diffusing more rapidly away from
the sampling point. Increasing Dr further will only amplify this
effect.

The curves once again display the non-monotonic behaviour
seen in Fig. 5 for all values of Dr, though the effect is muted when
Dr ¼ 10. This is because the contrast agent rapidly enters the extra-
cellular space, where it then undergoes rapid diffusion, counteract-
ing the coalescing effect of storage in the tissue that otherwise
occurs for small Dr. In essence, the larger the diffusion coefficient
in the tissue, the closer this scenario of CA transport in the tissue
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Fig. 7. Variation of concentration signal properties with Da and Dr. For Da < 1 these
increasingly sensitive with further increases in Da. Estimated current values of Da indic
will mimic that transport in the blood. The key cause of the non-
monotonic behaviour is the much slower transport away from
the point source that occurs in the tissue.

In the parameter range, 0:25 < Da < 2 and 0:5 < Dr < 5, esti-
mated to be relevant to current contrast agents, both signal prop-
erties are far more sensitive to changes in Da than to Dr.
Specifically, there is a doubling of peak value between the
extremes of Da but only a maximum 25% difference possible when
altering Dr alone. Similarly for signal upslope, there is a factor 3.5
change between the limits of Da and again a 25% difference possi-
ble when varying Dr alone.
6.4. Effect of varying Da and Pe

Fig. 8a and b shows that both of the signal properties change in
broadly the same way when varying Da and Pe. A higher value of
Pe, for a given value of Da, produces both a higher peak value
and a higher upslope. Upslope and peak value are strongly corre-
lated, however, though a larger peak value will generally require
a larger gradient, their minimum points for these properties occur
at different values of Da – for peak concentration at Da ¼ 1,
whereas for upslope Da � 10.

For the whole range of Da, the curves for each Pe remain dis-
tinct, in contrast to /f and Dr. This is because the influence of Pec-
let number is in the fluid phase, and hence its impact is not
dependent on there being a non-negligible quantity of contrast
agent in the tissue phase, as is the case for Dr. A lower value of
Pe causes greater lateral diffusion of the CA bolus during transit
to the sample point, consequently reducing the quantity of CA that
reaches this point.

In quantitative terms, both properties roughly triple with each
order-of-magnitude increase of Pe. For a given Pe, they are most
sensitive to Da in the range 0.1–1.0. For Da < 0:01 the properties
are highly insensitive to changes in Da, as very little CA is diffusing
into the tissue, and so it is a case of small changes to a small quan-
tity. Within the range 0:25 < Da < 2 peak concentration begins to
display non-monotonic behaviour, whereas signal upslope does
not, suggesting that for current contrast agents, quantification
methods based on upslope could be more reliable.
6.5. Summary

The contrast agents currently used are estimated to exist in the
trough of the graphs, where there is a non-monotonic change in
signal properties to Da and where the signal response is highly sen-
sitive to Da. This implies that the results of both perfusion images
and, as motivated by this study, future simulations in 3D
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physiologically-realistic geometries will also be sensitive to the
estimated value of the Damköhler number. This suggests the need
for controlled experiments in order to determine these parameters
more precisely. Furthermore, as Damköhler number is a function of
velocity, its value will change throughout a heart cycle. Although
current imaging protocols that use a temporal resolution of one
heart beat generate results that appear to reflect mean flow
(Jerosch-Herold et al., 2004), future, novel protocols could conceiv-
ably sample multiple times per cycle. In such circumstances, the
assumptions underlying the independence of result with cardiac
phase might no longer hold and the sensitivity of the signal param-
eters to Da could be significant for the interpretation of those
images.
7. Diseased case

Fig. 9 shows time series data for the total concentration in the
three different defects, for the following values of
Da ¼ 0:1; 0:5; 1 and 10. For Da ¼ 0:1, the shape of the curve is
much the same as occurs in the point-sampling in the healthy
model. This trend is roughly preserved throughout for the smallest
defect. This is due to the short diffusion distances allowing the
whole area of the defect to behave similarly to healthy tissue, pro-
ducing false-negative readings.

As the defect size is increased, the spatial inhomogeneity within
it increases and for Da P 0:5 the signals deviate strongly from the
point-wise measurements in the healthy case. This is most notice-
able in the tail of the curves, which have much slower decay rates
than the healthy model.

7.1. Effect of varying Da and Dr

Broadly, with a few exceptions, the trends for the peak concen-
tration in the defect case match those for the healthy case. Increas-
ing Da initially causes a reduction to a minimum value, followed by
a subsequent increase. For the healthy case the minima occurred at
Da � 7:5, whereas in the defect case it is mainly Da � 1, as indi-
cated in Fig. 10. This implies that the non-monotonic behaviour
will be more significant in the presence of a defect for current con-
trast agents.

For the upslope value there is negligible increase for Da > 1,
with the large defect seeing the biggest increase. This is due to
the large defect area capturing more of the CA, whereas for the
smaller defects it is more readily transported around the defect.
This can be understood by considering the limiting case of a defect
that spans the width of the domain, in which scenario the bolus
has no other path to the outflow but through the defect. Regardless
of the behaviour for Da > 1, this value marks a distinct change in
the signal properties.

Once again, for a given Da, increasing Dr reduces the peak and
upslope due to greater diffusion of the bolus before the defect area.
As for the healthy case, this effect is minimal for Da < 1, as little
contrast agent diffuses into the tissue. For some combinations of
Pe or Dr, and defect size, there is a local maximum in both the peak
and upslope at Da � 25. Typically this happens only for Pe P 1000
or Dr 6 1. The mechanism behind this is difficult to isolate, but is
likely due to complex interaction of the various parameters and
the defect region, in a manner that cannot occur in the healthy
model.

Within the estimated parameter range of Da and Dr, the varia-
tion of both signal quantities is far more dependent on changes in
Da than on Dr, with upslope essentially insensitive to changes in
Dr. This implies that for current CAs it is the ease with which they
permeate through the vessel wall, rather than Ds, that governs the
likelihood of false-negative signals occurring. Furthermore, if using
this type of model to aid in detecting perfusion defect size, the sig-
nificant overlap in the values for peak concentration value could
confound analysis, whereas for upslope, the area of overlap is
smaller, and confined to values of Da J 0:9 for the medium and
large defects only. This again suggests that signal upslope is a more
robust indicator of perfusion defect size, than is peak concentration
value.
7.2. Effect of varying Da and Pe

By similar reasoning, for a given value of Da, increasing the Pec-
let number – which can be achieved by a reduction of diffusivity –
increases the peak and upslope values. As for the healthy case, this
effect occurs for all values of Da, as shown in Fig. 11, but only at
high values of Dr. The trends for varying Da and Pe remain the
same for each defect, but the upslope and peak value increases
with defect size, as expected. The main exception is the large
defect, for high Da, when its spatial dominance ensures that it cap-
tures the contrast agent regardless.

Fig. 11 shows that the distinguishability of defect size based on
signal characteristics, within the currently relevant range of Da, is
much improved by increasing the Peclet number, though for signal
upslope between Da � 0:8—2, the differences are smaller. Outside
this range, for large Da this is not so much the case and the dis-
criminatory power of the metric is vastly reduced. These results
suggest that there is a benefit to making the diffusion coefficient
of the CA in blood as small as possible. However, although a certain
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Fig. 9. Time series data of the total concentration within the different defects – small (left), medium (middle) and large (right). As the defect size is increased the similarity of
the signal trace to the healthy case diminishes, particularly for Da P 0:5.
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amount of extravascular diffusivity is acceptable, the data suggest
that Da � 0:8 is a reasonable limit, beyond which confounding
effects could start to become large. Finally, the choice of diffusion
coefficient within the extracellular space appears to be largely
unimportant, particularly for upslope-based quantification
methods.
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Fig. 10. Effects of varying Da and Dr for three different sizes of perfusion defect, showing that in the diseased model the non-monotonic behaviour in signal properties is
centred around a value of Da ¼ 1. Estimated current values of Da indicated by dashed vertical lines.

A.N. Cookson et al. / Medical Image Analysis 18 (2014) 1200–1216 1211
A final point to note is that the Peclet number in question is the
global Peclet number based on the fluid velocity and global domain
size. However, a local Peclet number can be computed within the
defect itself, based on the local velocity, the diffusion coefficient
and defect radius. Several computations were performed with dif-
ferent strengths of masking applied to the permeability field in the
Darcy flow model, so as to generate flow solutions with different
velocities inside the defect area. For a given defect the local Peclet
number within the region of the defect showed the expected cor-
relation with the time evolution of the averaged concentration.
However, there is no universal trend between the different defects.
This can be understood by once again examining Fig. 9, which
shows a qualitative change in shape in the time series curves as
the defect size is increased.

8. Application to imaging practice

In this section the results of the model are applied to address some
of the issues and techniques relevant to current clinical imaging.
8.1. Nonlinear signal response

Thus far all of the results presented in Sections 6 and 7 have
been calculated assuming that a linear relationship exists between
CA concentration and MR signal. In practice, it is known that these
CAs display significant nonlinear behaviour. Therefore, to assess
and understand the possible errors that might arise if the assump-
tion of signal linearity is made, three nonlinear signal response
curves of varying nonlinearity have been chosen based on the data
presented in (Hsu et al., 2008) and used to reprocess the time ser-
ies data. Peak value and upslope were then recalculated and per-
centage error between linear and nonlinear values determined,
which are shown in Fig. 12.

Signal response A is the most severely nonlinear and signal
response C the least nonlinear, and as expected the errors are larg-
est for case A and roughly a factor of 3 smaller for case C. In all
cases the error displays the same non-monotonic behaviour as in
the underlying trends for peak value and upslope, with the lowest
errors occurring for 1 < Da < 10. For each response curve the
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Fig. 11. Effects of varying Da and Pe for three different sizes of perfusion defect, again showing that in the diseased model the non-monotonic behaviour in signal properties is
centred around a value of Da ¼ 1. Estimated current values of Da indicated by dashed vertical lines.
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percentage errors for peak concentration and upslope are roughly
equal for any given pair of Pe and Da.

With the largest errors occurring for very low or high values of
Da, the results suggest that particular care and attention is
required in practical imaging to correct for the signal nonlinearity,
such as with dual-bolus techniques and deconvolution methods.
Alternatively, a contrast agent with Da � 1 is much more forgiving
from this perspective and in fact for response curve C, the error
could be acceptable without any extra correction required. How-
ever, given that CAs with low Da have other desirable properties
it is therefore useful to note that effort spent reducing their nonlin-
ear signal characteristics will be of great benefit to imaging
practice.
8.2. Fermi deconvolution

The deconvolution approach to perfusion quantification
(Hautvast et al., 2012) assumes that the myocardial signal cmyo
can be computed by the convolution of an arterial input function
cin and an impulse response function hðtÞ that represents the myo-
cardial system (Jerosch-Herold et al., 1998).

cmyo ¼
Z t

0
cinhðs� tÞds ¼ cinðtÞ � hðtÞ ð15Þ

Various possibilities have been suggested for the choice of hðtÞ,
many of which are outlined in (Jerosch-Herold, 2010 and
Zarinabad et al., 2013). The method studied here assumes that
hðtÞ can be represented by a Fermi function (Jerosch-Herold et al.,
1998), a form which has previously been shown to be a reasonable
approximation to the myocardial system (Axel, 1983). The Fermi
function is defined:

hðtÞ ¼ F
expðkðt � s0 � sonsetÞÞ þ 1

Hðt � sonsetÞ ð16Þ

where Hðt � sonsetÞ is the Heaviside step function, F is proportional
to the flow rate (taken as the peak value of the Fermi function),
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s0 sets the width of the function and k governs the decay rate. The
following minimisation problem:

kcmyoðtÞ � cinðtÞ � hðtÞk2 ð17Þ

is solved to determine the vales of F; k and s0, with sonset initially
measured from cmyo and cin. The Levenberg–Marquardt nonlinear
least squares algorithm was used to minimise Eq. (17).

Traditionally sonset has been solely determined by the user from
the point-wise signals, however, Zarinabad et al. (2014) have
shown that for point-wise quantification the Fermi fit is very sen-
sitive to the choice of sonset , and that by allowing this parameter to
vary in an additional outer-loop of minimisation, a better quality of
data fitting is possible. Performing the optimisation with sonset

fixed produced mixed results, with particularly poor fits for
Da < 1. Throughout the fitting procedure, it was observed that
the results were highly sensitive to the parameter sonset , with even
small changes from the optimal value causing large deterioration
of the fit. However, adopting the method of Zarinabad et al.
Zarinabad et al. (2014) greatly improved the quality of fit for all
values of Da, lending support to the value of this technique.

The final results of this deconvolution are shown in Fig. 13
which plots the variation of estimated flow rate for varying Da,
for Pe ¼ 104. The non-monotonic behaviour identified in Figs. 7
and 8 is once again evident, the estimated flow reaching a mini-
mum at Da ¼ 1. The fitted function was observed to be very close
for Da ¼ 100 and still a good fit for Da < 0:1 although the upslope
of the signal was not accurately represented.

The trough in the curve for 0:1 < Da < 10 is evidence of the
poorest quality curve fits, which is due the Fermi function being
unsuitable for matching to a skewed Gaussian function of the kind
shown in Fig. 3d and causes an under-estimation of flow in this
parameter regime. For the peak magnitude of the Fermi function
to accurately represent the peak of the signal, the resultant tail
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of the predicted signal would greatly overestimate the real tail,
causing large errors. The error is observed to be minimised by
under-estimating the peak, but fitting much closer to most of the
tail. This false-positive effect that occurs with the Fermi function
for these values of Da, suggests that if contrast agents with these
parameters are to be used, then a different deconvolution function
should be taken. Alternatively, if Fermi deconvolution is the
favoured method, then contrast agents with low values of Da
should perhaps be used in conjunction with it instead.

8.3. Perfusion reserve index

Another clinical metric that is often computed is the perfusion
reserve index (Jerosch-Herold et al., 1998), which can be approxi-
mated via the normalised ratio of signal upslopes measured during
both rest and stress protocols. A detailed examination of this tech-
nique is best accomplished using a 3D model in a left ventricle geom-
etry (Nolte et al., 2013) that has been parameterised for both rest and
stress physiological conditions. However, the model used here is
capable of yielding some preliminary recommendations for regarding
the suitability of different contrast agents for use in this technique.

For healthy tissue it is known that during a stress test, the
velocity will roughly increase by a factor of three. This implies that
Pe will likewise triple and that Da will be lowered by a third. There-
fore when using Fig. 8b to estimate the way upslopes will alter
with this change in velocity, both changes with Pe and Da must
be accounted for. For a very low baseline Pe, due to a CA with a very
large diffusion coefficient, there is little change in upslope with a
change in Pe, particularly for Da > 1 and therefore the perfusion
reserve index would potentially be unreliable and susceptible to
noise in this parameter range.

However, for Pe > 1000, the combination of Da and Pe means
that the biggest changes in upslope, come in the range
0:1 < Da < 10, i.e. to the left of the minimum point. Conversely,
for Da > 10, the increase in upslope with Pe is partially offset by
the reduction in upslope as Da reduces. Finally, Da < 0:1 sees
roughly constant upslope for reducing velocity, and therefore the
only change in upslope arises due to the increase in Pe. This sug-
gests that a value of Da in the range 0.1–10 is likely the best choice
for perfusion reserve calculations, in terms of robustness in the
presence of noise, followed by values of Da < 0:1. Least suitable
for this technique are high values of Da.

8.4. Limitations

The model presented in this study has a number of limitations,
foremost among these is the simplified geometry which is unsuit-
able for simulating patient specific scenarios or for evaluating met-
rics that inherently rely on physiological geometric detail, such as
gradientograms Hautvast et al. (2011). Further, it is possible that in
the diseased model the largest defect overestimates the upslope
and peak value due to a combination of its size and the imposed-
flow boundary condition.

It has been assumed throughout this study that, for both a lin-
ear and nonlinear signal response function, the observed MR signal
intensity is directly related to the contrast agent concentration. In
either case, a phenomenological relationship has been assumed
without making attempts to model the various underlying phar-
macokinetic processes that generate the resulting MRI signal
response Li et al. (2005). This means, for example, that currently
the model cannot account for processes such as transcytolemmal
water exchange for extra-cellular contrast agents, which has been
shown to generate incorrect estimations of signal intensity and
other derived quantities Coelho-Filho et al. (2013a).

As used here, the model is currently able to simulate the behav-
iour of intra-vascular and extra-cellular contrast agents, but not
intracellular contrast agents. However, it is worth noting that both
the model and our finite element modelling software Cheart are
easily able to account for these additional details. For example, to
model the transport of intra-cellular contrast agents within the
intra-cellular space simply requires the coupling of an additional
diffusion equation into the system. Similarly, specific pharmacoki-
netic effects could also be incorporated into the model via an
appropriate system of ODEs, in a similar way to the implementa-
tion of the monodomain model of cardiac electrical activation in
CHeart Vigueras et al. (2014).
9. Conclusions

This study of a simplified model of contrast agent transport in
the myocardium has shown the model’s capability for producing
physically plausible results in both healthy and disease scenarios.
A wide-ranging parameter space study of the four relevant param-
eters – Peclet number, Damköhler number, diffusivity ratio and
fluid porosity – revealed non-monotonic behaviour with respect
to the Damköhler number. Furthermore, increased sensitivity of
the model to other parameters was observed for large values of
Da. The high sensitivity of the signal properties to the Damköhler
number, particularly around the estimated current value, could
present a challenge for formal parameter estimation techniques
applied to noisy data. It also suggests that the signal curve proper-
ties could change significantly for novel sampling protocols that
sample multiple times per heart cycle, which could complicate
any future analyses of imaging data that relies on properties such
as signal upslope. The results have also shown that, when correlat-
ing signal properties to perfusion defect size, the signal upslope is
generally a more robust metric than peak concentration value par-
ticularly if it were to be used in conjunction with a model-based
quantification method under parameter value uncertainty. More
specifically, keeping Da below 0.8 for any future contrast agents
would further improve these properties.

However, the results from Section 8 examining the effect of
nonlinear signal response, flow quantification via Fermi deconvo-
lution and the perfusion reserve index, have shown that there is
no single best set of contrast agent parameters. The transport prop-
erties of the contrast agents interact in different ways with these
different aspects of practical imaging. Therefore, these findings
should be used to design or select the appropriate contrast agent
for a specific imaging protocol and post-processing method. Alter-
natively for a given contract agent the results reveal which aspects
of the imaging process will require the most care in order to
achieve the best results.



A.N. Cookson et al. / Medical Image Analysis 18 (2014) 1200–1216 1215
In future studies these findings will be applied to better under-
stand the behaviour of 3D physiologically-realistic simulations in
left-ventricle geometries, but with the knowledge that the results
will be sensitive to the choice of contrast agent through-wall
diffusivity.
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