
REVIEW

Tropomyosin receptor kinase (TRK) biology and the
role of NTRK gene fusions in cancer

A. Amatu1†, A. Sartore-Bianchi1,2†, K. Bencardino1, E. G. Pizzutilo1,2, F. Tosi1,2 & S. Siena1,2*

1Department of Hematology and Oncology, Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan; 2Department of Oncology and Hemato-
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The tropomyosin receptor kinase (TRK) family of receptor tyrosine kinases are encoded by NTRK genes and have a role in the
development and normal functioning of the nervous system. Since the discovery of an oncogenic NTRK gene fusion in
colorectal cancer in 1986, over 80 different fusion partner genes have been identified in a wide array of adult and paediatric
tumours, providing actionable targets for targeted therapy. This review describes the normal function and physiology of TRK
receptors and the biology behind NTRK gene fusions and how they act as oncogenic drivers in cancer. Finally, an overview of
the incidence and prevalence of NTRK gene fusions in various types of cancers is discussed.
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Introduction

The identification of gene fusions in a variety of cancers has pro-

vided actionable targets that have expanded therapeutic options

and facilitated precision medicine. These gene aberrations result

in the expression of fusion proteins with constitutive activity that

become oncogenic drivers [1]. The tropomyosin receptor kinase

(TRK) family of receptor tyrosine kinases are of interest as the

NTRK genes that encode them are involved in gene fusions iden-

tified in a wide range of adult and paediatric tumours.

In this review, we discuss the normal function and physiology

of TRK receptors, the biology behind NTRK gene fusions, the

mechanisms by which NTRK gene fusions become oncogenic

drivers in cancer, and the incidence and prevalence of NTRK

gene fusions in a variety of cancers.

Normal function and physiology of NTRK genes
and TRK receptors

Structure. TRKA, TRKB and TRKC are transmembrane proteins

that comprise the TRK receptor family. TRKA is encoded by the

NTRK1 gene located on chromosome 1q21-q22 [2]. TRKB is

encoded by the NTRK2 gene located on chromosome 9q22.1 [3].

TRKC is encoded by the NTRK3 gene located on chromosome

15q25 [4]. Each of the TRK receptors consists of an extracellular

domain, a transmembrane region and an intracellular region

containing the tyrosine kinase domain. The extracellular domain

contains a cysteine-rich cluster (C1) followed by three leucine-

rich 24-residue repeats (LRR1–3), another cysteine-rich cluster

(C2) and two immunoglobulin-like domains (Ig1 and Ig2;

Figure 1) [5–7]. The LRR1–3 motifs are specific to TRK proteins

and are not found in other receptor tyrosine kinases [6]. The

intracellular region contains five key tyrosine residues (Figure 1):

three within the activation loop of the kinase domain, which are

necessary for full kinase activity, and two on either side of the

tyrosine kinase domain, which serve as phosphorylation-

dependent docking sites for cytoplasmic adaptors and

enzymes [8].

TRK receptors and associated ligands. The TRK receptors are

activated by a family of four proteins called neurotrophins.

Neurotrophins were initially identified as survival molecules for

sensory and sympathetic neurons [9], but are now understood to

play many roles in the development and function of the nervous

system [10]. Each of the four neurotrophins have specificity for a

particular TRK and bind to it with high affinity (Figure 1). Nerve

growth factor (NGF) binds to TRKA [11, 12], both brain-derived
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neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) bind to

TRKB [13–15] and neurotrophin 3 (NT-3) binds to TRKC [16].

NT-3 can bind to all three TRK receptors but has highest affinity

for TRKC and is its sole ligand [14, 15, 17, 18]. Alternative splic-

ing of TRK proteins can alter the interaction between a TRK re-

ceptor and its specific neurotrophin (Figure 2) [10, 19]. For

example, short amino acid sequence insertions observed in the

juxtamembrane region of the extracellular domains of TRKA and

TRKB enhance their binding with non-cognate ligands [20, 21].

Isoforms of TRKA and TRKB that lack this insertion are activated

strongly only by NGF and BDNF, respectively. In contrast, with

this insertion, the TRKA splice variant is activated by NT-3 in

addition to NGF [20] and the TRKB splice variant is readily acti-

vated by NT-3 and NT-4 in addition to BDNF [21]. Alternative

splicing of exons encoding parts of the intracellular domains of

TRK receptors may also affect downstream signalling initiated by

neurotrophin binding to the receptor. Such alternatively spliced

TRKB and TRKC isoforms have been observed to contain com-

paratively short cytoplasmic motifs missing the tyrosine kinase

domain, leading to a lack of receptor response to neurotrophins

[22]. For example, alternative splicing of the NTRK3 gene may

lead to amino acid insertion into the TRKC tyrosine kinase do-

main, which in turn results in modified kinase substrate

specificity and impaired ability to promote neuronal cell differen-

tiation [23].

Normal TRK signalling pathway. The TRK signalling pathway is

initiated when neurotrophin binding to TRK receptors at the cell

surface causes the formation of receptor dimers (Figure 3A). The

dimerised receptor autophosphorylates specific tyrosine residues

in the activation loop of the kinase domain [Y676, Y680 and

Y681 in TRKA (Figure 3B) and the corresponding residues in

TRKB and TRKC] [8]. This phosphorylation is required for acti-

vation of the TRK receptor [6] and leads to subsequent

phosphorylation of additional tyrosine residues (Y496 and Y791

in TRKA), enabling docking of cytoplasmic adaptors and

enzymes [5–7], which in turn drives a variety of downstream

signalling pathways [6]. The binding of TRKA by NGF causes

activation of the RAS/MAPK pathway, leading to increased

cellular proliferation and growth via ERK signalling [24, 25].

Neurotrophic binding to TRKB results in activation of the

RAS-ERK, PI3K and PLCc pathway, resulting in neuronal differ-

entiation and survival [24, 25]. TRKC binding to NT-3 causes

preferential activation of the PI3K/AKT pathway, preventing

apoptosis and increasing cell survival [24, 25].

Role in development and physiology. TRK receptors are predom-

inantly expressed in neuronal tissue and play an essential role

during embryonic development as well as in the normal function

of the nervous system [7, 26]. The activation of TRK receptors by

neurotrophins has an impact on a variety of neuronal events,

such as neuronal cell differentiation and survival, cell prolifer-

ation, synaptic formation and plasticity, membrane trafficking,

and axon and dendrite formation [7, 19, 27].

TRK receptors and their respective neurotrophins have been

implicated in the survival and differentiation of sensory ganglia.

TRKA receptors are expressed in almost all nociceptive neurons

in the dorsal root and trigeminal ganglia [28, 29], while dorsal

root ganglia neurons that differentiate in proprioceptive neurons

start expressing TRKC during neurogenesis. Neurons in the

nodose-petrosal ganglion, which conveys visceral sensory infor-

mation about blood pH and pressure, express TRKB and are de-

pendent on BDNF for development and differentiation [30, 31].

TRK receptors and their respective neurotrophins have been

implicated in memory formation and retention, nociception and

proprioception [31, 32], as well as having roles in non-neuronal

tissues including the vasculature, ovaries and immune system

[33–36]. Loss-of-function mutations in NTRK genes can result in
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Figure 1. Structure of TRK receptors and interaction with ligands [5]. The neurotrophins display specific interactions with the three TRK
receptors: NGF binds TRKA, BDNF and NT-4 bind TRKB and NT-3 binds TRKC. NT-3 can also activate TRKA and TRKB albeit with less efficiency.
BDNF, brain-derived neurotrophic factor; C1/C2, cysteine-rich clusters; Ig1/Ig2, immunoglobulin-like domains; LRR1–3, leucine-rich repeats;
NGF, nerve growth factor; NT-3/4, neurotrophin 3/4; TRK, tropomyosin receptor kinase.
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several diseases, indicating the role of TRK receptors in normal

regulation and function. TRKA receptors are involved in pain

sensation; loss-of-function mutations in TRKA are observed in

class IV hereditary sensory and autonomic neuronal disorders

(such as congenital insensitivity to pain with anhidrosis), which

result in impaired ability to sense differences in temperature or

feel pain [37, 38]. Loss-of-function mutations in TRKB result in

energy imbalances, loss of appetite control and subsequent obes-

ity, in addition to defects in learning, memory and nociception

[39–41].

Discovery of aberrant gene fusions and ligand-
independent oncogenic proteins

Discovery of NTRK gene fusions in cancer. Somatic fusions

involving the NTRK genes were first observed in a patient with

colorectal cancer (CRC) in 1986, when Martin-Zanca et al. iden-

tified a chimeric fusion oncogene resulting from an intrachromo-

somal rearrangement at 1q22-23 [42]. This oncogene involved

the tropomyosin 3 gene (TPM3) and a locus that was subsequent-

ly cloned and found to encode a high-affinity NGF receptor

(NTRK1) [12]. Following the discovery of this TPM3-NTRK1

gene fusion, the identification of other NTRK gene fusions in

CRC [43–45] triggered the interest of clinicians in the possible ex-

istence of oncogenic gene fusions in other types of cancers; to

date, over 80 different fusion partner genes have been identified

in a wide array of tumours (Figure 4).

Oncogenic mechanism of NTRK gene fusions. In NTRK gene fu-

sion events, the 30 region of the NTRK gene is joined with the 50

end of a fusion partner gene, either by intrachromosomal or

interchromosomal rearrangement. The resulting fusion gene enc-

odes a protein containing the N-terminus of the fusion partner

joined to the C-terminus of the TRK protein, including the

catalytic tyrosine kinase domain [27]. The majority of character-

ised NTRK gene fusions contain a 50 partner gene sequence

encoding one or more dimerisation domains. These domains me-

diate the corresponding constitutive tyrosine kinase activity that

occurs, thus conferring ligand-independent oncogenic potential

through uninterrupted downstream signalling messages, pro-

moting cell proliferation and survival [27].

Incidence and prevalence of NTRK gene fusions

Incidence and prevalence data for NTRK gene fusions have only

recently become clearer following the increasing availability of

next-generation sequencing (NGS) and comprehensive molecu-

lar testing methods. NTRK gene fusions have been identified in

two main categories of tumours with vastly differing rates of oc-

currence; certain rare cancers present with a high frequency

(>80%) of NTRK gene fusions, while some more common can-

cers present with a lower frequency of NTRK gene fusions

(<25%) [24, 27, 46]. NTRK gene fusions have been estimated to

occur in up to 1% of all solid tumours [27, 46, 47]. Gene fusion

events appear to arise more commonly in the NTRK1 and

NTRK3 genes, with the possible exception of brain tumours [27,

46–48]. Immunohistochemistry (IHC) screening in 1043 various

solid tumours showed TRKA expression in 1.6% of samples,

including CRC, lung cancer, biliary tract carcinoma and thyroid

cancer. Of note, only 5.9% of these showed NTRK gene rear-

rangements, while 88.2% of cases displayed NTRK1 gene copy

number gain without amplification [49]. In a retrospective ana-

lysis of 33 997 patients, screening with a targeted DNA-based

NGS panel (MSK-IMPACT) identified 87 patients (0.26%) with

oncogenic NTRK1–3 gene fusions. The prevalence of NTRK1–3

gene fusions in this group ranged from 0.13% to 17.7% depend-

ing on the various tumour types. Screening with pan-TRK IHC in

this study showed better sensitivity than DNA-based NGS
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Figure 2. Known splice variants of TRKA, TRKB and TRKC [6]. C1/C2, cysteine-rich clusters; Ig1/Ig2, immunoglobulin-like domains; KD, kinase
domain; LRR1–3, leucine-rich repeats; TM, transmembrane; TRK, tropomyosin receptor kinase.
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(87.9% versus 81.1%) but reduced specificity (81.1% versus

99.9%) [50].

NTRK gene fusions are pathognomonic in certain rare paediatric
and adult cancers. Infantile fibrosarcoma (IFS), a malignant tu-

mour of fibroblasts, represents <1% of all paediatric cancers but

is the most commonly occurring non-rhabdomyosarcoma soft

tissue sarcoma in children under 1 year of age [47]. IFS is virtually

identical histologically to the cellular variant of congenital meso-

blastic nephroma (CMN), an infantile spindle cell tumour of the

kidney that occurs in the same age group and represents �5% of

all childhood renal neoplasms. In 1998, Knezevich et al. discov-

ered a recurrent ETV6-NTRK3 gene fusion in IFS, which was

found to occur in �70% of cases of IFS [51]. The same year, two

other groups identified the same ETV6-NTRK3 gene fusion in the

cellular variant of CMN, establishing a genetic link between IFS

and cellular CMN [52, 53]. Thereafter, identification of the

ETV6-NTRK3 translocation has become a useful diagnostic

marker for IFS/CMN, and the presence of this gene fusion is con-

sidered pathognomonic for these two rare cancers. Several add-

itional novel translocations involving NTRK genes have

subsequently been described in IFS/CMN [54, 55] (Figure 4);

consequently, genomic testing using break-apart fluorescence in

situ hybridisation specific for ETV6 may be insufficient both as a

diagnostic and predictive marker [56].

Secretory breast carcinoma (SBC) is one of the rarest types of

breast carcinomas, accounting for �0.15% of all breast cancers

[57]. It is characterised by intracellular and extracellular eosino-

philic secretions and usually presents as a triple-negative breast

carcinoma with an immunohistochemical profile akin to basal-

like breast carcinoma. Tognon et al. first reported an ETV6-

NTRK3 gene fusion in 12 out of the 13 cases of SBC by identifying

the corresponding chromosomal translocation t(12; 15)(p13;

q25) [58].

Mammary analogue secretory carcinoma (MASC) is a rare

neoplasm of minor and major salivary glands morphologically

and immunohistochemically similar to SBC. Since it was first

described in 2010 by Skálová et al. [59], fewer than 300 cases have

been reported in the literature [60]. Skálová et al. found that of 14

cases of MASC, all but one was characterised by the ETV6-

NTRK3 gene fusion [59]. While ETV6-NTRK3 is the most com-

mon gene fusion seen in MASC, other rearrangements involving

ETV6 and NTRK1 or NTRK2 have been identified [53]. On the

other hand, no partner genes other than ETV6 have been

described in cases of MASC harbouring NTRK3 rearrangement

(Figure 4).
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Figure 3. TRK signalling pathway. (A) Overview of TRK signalling pathway; (B) activation of TRKA. C1/C2, cysteine-rich clusters; Ig1/Ig2,
immunoglobulin-like domains; LRR1–3, leucine-rich repeats; NGF, nerve growth factor; TRK, tropomyosin receptor kinase, TRKi, tropomyosin
receptor kinase inhibitor.
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NTRK gene fusions in common cancers. Thyroid cancer:
Papillary thyroid carcinoma (PTC) is the most common type of

thyroid cancer, accounting for 80% of all thyroid cancer cases

[61]. Since the identification of NTRK1 as an oncogenic driver in

PTC by Bongarzone et al. in 1989 [62], the reported frequency of

NTRK1 rearrangement in PTC has been shown to range from

<5% to 25% [63–68]. More recently, novel NTRK3 fusion genes

have been discovered in PTC, with ETV6-NTRK3 being the most

common rearrangement found after any RET-PTC isoform in

The Cancer Genome Atlas Project [61]. While the prevalence of

ETV6-NTRK3 in PTC in adults is very low (1%), it is the second

most common rearrangement seen in radiation-associated PTC

[69, 70].

Colorectal and appendiceal cancer: Following the identifica-

tion of TPM3-NTRK1 as an oncogenic driver in CRC in 1986

[42], the third most common form of cancer, nothing further

was reported about this gene fusion until almost 30 years later

when Ardini et al. characterised the TPM3-NTRK1 rearrange-

ment at the genomic level for the first time, finding that the

observed breakpoint within exon 8 of NTRK1 in CRC differed

from those previously identified for the TPM3-NTRK1 gene fu-

sion in PTC. This group also developed and validated an IHC

method for the identification of TRKA-positive clinical speci-

mens, offering a readily applicable approach to screening CRC

for TRKA overexpression and thus identifying those cases that

could potentially benefit from targeted therapy [43]. Further

cases of CRC harbouring either NTRK1 or NTRK3 gene fusions

involving different partner genes have subsequently been

reported and, in some cases, demonstrated pharmacologically ac-

tionable (Figure 4) [44, 45, 71–73]. A recent molecular profiling

study used a plasma-based cell-free circulating tumour DNA

NGS assay to detect gene fusions in 4290 patients with CRC.

Using different gene panels, including one testing for NTRK1

(but not NTRK2 or NTRK3) gene fusions, only three (0.07%)

cases were detected [74]. These data are consistent with the preva-

lence previously found using a tissue-based NGS assay [75].

Notably, gene fusions seem to be associated with high mutation

burden [74], and microsatellite instability (MSI) is frequently

found in CRCs harbouring NTRK gene fusions [44, 71, 76].

Hypothetically, the increased mutational frequency in MSI-high

CRCs could explain the higher incidence of NTRK gene rear-

rangements as well as NTRK mutations [77]. To date, only

NTRK2 fusions have been identified in cases of appendiceal

adenocarcinoma [73, 78].

Lung cancer: Lung cancer is the leading cause of cancer-related

mortality in the world. Non-small-cell lung cancer (NSCLC) is

the most common type of lung cancer, accounting for 85% of all

lung cancer cases [79]. NTRK1 gene rearrangements in NSCLC

were first described in 2013 among a subset of patients with

NSCLC with adenocarcinoma histology and no detectable EGFR,

KRAS, ALK or ROS1 alterations (3/91; 3.3%) [80]. In a larger and

unselected cohort of 1378 patients with NSCLC, NTRK1 gene

fusions were detected in two patients (0.1%) [81]. NTRK2 and

NTRK3 gene fusions in NSCLC have also been described [48, 82].

Overall, NTRK gene fusions occur at a frequency of

�0.1%�1.0% [27, 80, 81] (Figure 4).

Sarcoma: NTRK gene fusions are relatively rare in soft tissue

sarcoma. Testing on 1272 soft tissue sarcoma samples identified

eight cases (<1%) with NTRK1 or NTRK3 gene fusions, with

one-half of these found in patients under the age of 5 years [83].

Recurrent NTRK1 gene fusions have been noted in soft tissue sar-

comas characterised by a prominent myopericytic/haemangio-

pericytic growth pattern [84]. Several studies involving the

genetic sequencing of tumour samples have led to the character-

isation of novel subtypes of sarcoma not previously described.

Undifferentiated uterine sarcoma is a diagnosis of exclusion after

more common uterine mesenchymal tumours, such as leiomyo-

sarcoma, have been ruled out. From a database of gynaecological

cancer patients, Chiang et al. prospectively identified four NTRK

gene fusion-positive undifferentiated uterine sarcomas with

spindle cell morphology that were morphologically and immu-

nophenotypically unique from leiomyosarcoma and other undif-

ferentiated uterine sarcoma. This discovery suggested a novel

uterine sarcoma subtype defined by the presence of recurrent

NTRK gene fusions [85]. Similarly, Agaram et al. described a

novel and distinct subset of NTRK1 gene fusion-positive soft tis-

sue tumours occurring in children and young adults resembling

lipofibromatosis (LPF) but displaying cytologic atypia and a

neural immunophenotype. These tumours have been provision-

ally named LPF-like neural tumours and are defined by NTRK1

oncogenic activation [86]. ETV6-NTRK3 gene fusions have also

been identified in inflammatory myofibroblastic tumours in ado-

lescent and adult patients [87], especially in ALK-negative

tumours [88, 89].

Central nervous system cancers: NTRK gene fusions have been

identified in both paediatric and adult primary central nervous

system (CNS) tumours, including glioblastoma multiforme

(GBM), paediatric gliomas and astrocytomas [27]. Frattini et al.

analysed 185 samples of GBM and discovered 2 NTRK1 gene

fusions (1%) with two different 50 fusion partners (NFASC-

NTRK1 and BCAN-NTRK1) [90]. Several additional NTRK

translocations have subsequently been described in GBM

(Figure 4). In a series of 127 paediatric high-grade gliomas

(HGGs), Wu et al. reported recurrent fusions involving NTRK

genes in 4% of diffuse intrinsic pontine gliomas and 10% of non-

brainstem HGGs (NBS-HGGs). Notably, 40% (4/10) of NBS-

HGGs in children aged<3 years harboured an NTRK gene fusion

[91]. Different fusions involving NTRK genes have also been

reported in low-grade gliomas (Figure 2). Low-grade neuroepi-

thelial tumours (LGNTs) are a diverse group of CNS tumours

presenting in children and young adults; pilocytic astrocytomas

are the most common LGNT seen in children. Jones et al. used

whole-genome sequencing to analyse 96 pilocytic astrocytomas

and identified two novel NTRK2 gene fusions (QKI-NTRK2 and

NACC2-NTRK2) in three samples [92]. Qaddoumi et al. also uti-

lised whole-genome sequencing to analyse 91 less common

LGNTs and identified two tumours harbouring NTRK2 translo-

cations, including a novel SLMAP-NTRK2 gene fusion found in a

case of parietal ganglioglioma [93]. NTRK rearrangements have

also been reported in diffuse leptomeningeal glioneuronal

tumours [94]; rare CNS neoplasms that were included in the

2016 update of the World Health Organization classification

[95]. In addition, cancers that can harbour NTRK gene fusions,
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such as lung cancers and melanomas, have a proclivity for CNS

metastases [27, 96].

Spitzoid tumours/melanoma: Various translocations involving

NTRK1 or NTRK3 have been reported in spitzoid melanocytic

neoplasms as well as in compound Spitz nevi [97–99]. More re-

cently, an NGS analysis was carried out by Lezcano et al. in order

to assess the frequency of NTRK gene rearrangements in non-

spitzoid metastatic melanomas. Among 751 cases, they identified

three cutaneous primary melanomas (3/395; 0.8%) and one mu-

cosal/paramucosal melanoma (1/113; 0.9%) harbouring NTRK1

or NTRK2 gene fusions [100].

Other tumour types: TRK fusions have also been reported in

intrahepatic cholangiocarcinomas [101], breast cancer [102],

quadruple wild-type (ETV6-NTRK3) gastrointestinal stromal

tumours [103, 104], gallbladder adenocarcinomas [73], pancreat-

ic carcinomas [105], sinus-nasal low-grade non-intestinal-type

adenocarcinomas [106] and neuroendocrine tumours of the

small bowel [107]. In addition to being present in solid tumours,

NTRK gene fusions are also detected in acute lymphoblastic leu-

kaemia (ALL) [108] and acute myeloid leukaemia [109] at a fre-

quency of<5% [6].

Preclinical and clinical evidence that NTRK gene
fusions are oncogenic drivers

Preclinical studies with inhibitors of TRK proteins have further

substantiated the role of NTRK gene fusions as oncogenic drivers.

Mouse models of genetically engineered NTRK gene fusion-

positive cancers have been shown to develop highly aggressive

tumours. Two such studies involved a conditional knock-in

model of carrying the Etv6-NTRK3 gene fusion [109] and a

chromosomal engineered glioma model harbouring the Bcan-

Ntrk1 gene fusion [110]. In both models, the tumours were effect-

ively controlled using TRK inhibitors, indicating that the TRK fu-

sion protein was implicated in the proliferation and survival of

tumour cells. In a separate in vitro study, analysis of CRC cell lines

revealed NTRK1 overexpression that was associated with gene

translocation. When this gene was suppressed through the use of

short interfering RNA or TRKA inhibition, the ensuing reduction

in protein expression or activity significantly impaired cell

growth and increased apoptosis, suggesting functional depend-

ency [111]. Furthermore, studies in mice demonstrated that con-

ditional expression of an Etv6-NTRK3 gene fusion was sufficient

to initiate mammary tumourigenesis [112]. Importantly, NTRK

gene fusions appear to be mutually exclusive to other gene altera-

tions, suggesting that they may act as the sole oncogenic drivers

in the tumours that harbour them [48, 82, 113].

Additional preclinical and clinical studies of tyrosine kinase

inhibitors have provided further evidence of NTRK gene fusions

as oncogenic drivers. Entrectinib (RDX-101, NMS-P626), a mul-

tikinase inhibitor, was shown to suppress TPM3-TRKA protein

phosphorylation in mice with CRC harbouring a TPM3-NTRK1

gene fusion [43], and further showed efficacy in three clinical tri-

als including patients with NTRK gene fusions [114, 115].

Larotrectinib is a highly selective TRK inhibitor recently

approved by the US Food and Drug Administration* for the

treatment of adult and paediatric patients with solid tumours

that harbour an NTRK gene fusion. Larotrectinib inhibited fu-

sion protein signalling, in vitro proliferation and in vivo tumour

growth in models derived from human cancer cells harbouring

NTRK gene fusions [80, 97], as well as demonstrated clinical effi-

cacy and safety in three clinical trials [46, 116, 117]. Resistance to

larotrectinib and entrectinib can occur through the development

of NTRK gene mutations, which involves amino acid substitu-

tions in the solvent-front, gatekeeper residues of the NTRK genes

(NTRK1 p. G667C, NTRK3 p. G696A) and xDFG motif substitu-

tions [114, 118]. Second-generation TRK inhibitors, such as

selitrectinib (BAY 2731954, LOXO-195), are under clinical devel-

opment based on their ability to overcome acquired resistance

mediated by these acquired recurrent mutations [114].

Other NTRK alterations, such as mutations, amplifications

and mRNA overexpression, were found in �14% of 13 467 adult

and paediatric pan-cancer tumour samples obtained from The

Cancer Genome Atlas and the St Jude PeCan database [119].

NTRK mutations occur less frequently than amplifications or

mRNA overexpression [119], but may be enriched in MSI-high

CRCs [77]. These NTRK mutations are different from the

acquired mutations described as a resistance mechanism to TRK

inhibitors; as expected, the known acquired NTRK mutations

that confer resistance were not observed in any of the 13 467

treatment-naı̈ve tumours [119]. NTRK point mutations them-

selves are generally not activating oncogenic events [120] and

have limited response to larotrectinib, as demonstrated in a phase

I clinical trial of larotrectinib [117] where none of the patients

with NTRK point mutations had an objective response to laro-

trectinib; in contrast, objective responses were seen in seven of

eight patients with tumours harbouring NTRK gene fusions. The

oncogenic role of TRK overexpression and NTRK gene amplifica-

tion also remains unclear [6]. In the same trial with larotrectinib,

one patient with a tumour harbouring an NTRK1 gene amplifica-

tion had a single 11 mm target lesion shrink by 5 mm (45.5%).

The duration of response for this patient was 3.7 months, whereas

in the patients with TRK fusion cancer the median duration of re-

sponse had not been reached at a median follow-up of

26.9 months [117].

Lessons learned

NTRK gene fusions can be drivers of cancer progression and, as

such, their oncogenic products can be therapeutically targeted.

Specific NTRK gene fusions have been identified in various

tumours and can be found with high prevalence in certain rare

adult and paediatric tumour types, even becoming a defining

diagnostic feature, and at low prevalence in most common can-

cers. Advances in both NTRK gene fusion detection and targeted

therapies to inhibit TRK are changing the diagnostic and thera-

peutic landscape of treatment of these cancers [46, 96].

*Note added in proof: The European Medicines Agency granted marketing authorisation for larotrectinib on 23 September 2019 as monotherapy for the treatment of adult and
paediatric patients with solid tumours that display a neurotrophic tyrosine receptor kinase (NTRK) gene fusion, and who have disease that is locally advanced, metastatic or
where surgical resection is likely to result in severe morbidity, and who have no satisfactory treatment options.
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