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Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
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ABSTRACT

Parallel tetramolecular quadruplexes may be
formed with short oligodeoxynucleotides bearing a
block of three or more guanines. We analyze the
properties of sequence variants of parallel quad-
ruplexes in which each guanine of the central block
was systematically substituted with a different
base. Twelve types of substitutions were assessed
in more than 100 different sequences. We con-
ducted a comparative kinetic analysis of all tetra-
mers. Electrospray mass spectrometry was used to
count the number of inner cations, which is an
indicator of the number of effective tetrads.
In general, the presence of a single substitution
has a strong deleterious impact on quadruplex
stability, resulting in reduced quadruplex lifetime/
thermal stability and in decreased association rate
constants. We demonstrate extremely large differ-
ences in the association rate constants of these
quadruplexes depending on modification position
and type. These results demonstrate that most
guanine substitutions are deleterious to tetramole-
cular quadruplex structure. Despite the presence of
well-defined non-guanine base quartets in a number
of NMR and X-ray structures, our data suggest that
most non-guanine quartets do not participate
favorably in structural stability, and that these
quartets are formed only by virtue of the docking
platform provided by neighboring G-quartets.
Two notable exceptions were found with 8-bromo-
guanine (X) and 6-methyl-isoxanthopterin (P) sub-
stitutions, which accelerate quadruplex formation

by a factor of 10 when present at the 50 end. The
thermodynamic and kinetic data compiled here are
highly valuable for the design of DNA quadruplex
assemblies with tunable association/dissociation
properties.

INTRODUCTION

Guanine-rich regions abound in the human genome and
they have the propensity to fold into higher order DNA
structures such as quadruplexes (1,2) which result from
the hydrophobic stacking of several guanine quartets (3)
(Figure 1). A cation (typically Naþ or Kþ) located
between two quartets participates in cation–dipole inter-
actions with eight guanines, thereby reducing the repul-
sion of the central oxygen atoms, enhancing hydrogen
bond strength and stabilizing quartet stacking. In the past
decade, the level of interest in these peculiar structures has
increased due to the putative roles of quadruplexes in key
biological processes and to recent demonstrations of their
existence in vivo (4–7). G-quadruplexes may have applica-
tions in areas ranging from supramolecular chemistry
to medicinal chemistry and nanotechnology [reviewed in
(8–11)]. Therefore, it is important to understand the rules
that govern the formation of these complexes and to
determine their stabilities and association kinetics.

In the tetramolecular quadruplex configuration
(G4-DNA, Figure 1), all strands are parallel, and all
guanines are in the anti conformation. The conformations
of guanines in G4-DNA are very well known due to a
number of available high-resolution X-ray and NMR
structures. This structural wealth might be explained in
part by the extraordinary stiffness of the G4-DNA motif
(12,13). On the other hand, less is known concerning the

*To whom correspondence should be addressed. Tel: þ33-1 40 79 36 89; Fax: þ33-1 40 79 37 05; Email: mergny@mnhn.fr

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



N

N

N N

O

N

N

N N

N

O

N

H

H

H

H

H

H

R

R

N

N

NN

O

N

N

NN

N

O

N

H

H

H

H

H

H

R

R

N

N

NH

N NH2

O

O

H3C

1
2

45
6

7
8

3
NH

NN

N

O

NH2

7
6

8

9

1

2
3

G P

N

N

N

N NH2

O

O

Q

CH3

NH

NN

H
C

O

NH2

7

NH

NN

N

O

NH2

X

Br

NH

NN

H
N

O

NH2

8

O
NH

NN

N

S

NH2

6

N

NN

N

O

NH2

M

H3C

NH

CH

NN

N

O

I

8

2

6

Figure 1. A G-quartet and bases tested here. Top: Chemical formulae of the bases tested here. I¼ Inosine; 6¼ 6-thioguanine; 7¼ 7-deazaguanine;
8¼ 8-oxoguanine; P¼ 6MI¼ 6-methylisoxanthopterin; Q¼ 3MI¼ 3-methylisoxanthopterin; M¼ 6-methyl guanine; X¼ 8-bromo-guanine. Formula
of the regular DNA and RNA bases (A, C, T, U) are not shown. Lower left: Cycling arrangement of four guanine into a G-quartet. Altering the
NH2 group on position 2 will alter the external ring of H-bonds, whereas modifications of the 8-position should leave the H-bond pattern unaffected.
Altering the carbonyl group at position 6 not only perturbs the central ring of H-bonds, but may also interfere with cation coordination. Lower
right: Scheme of the general folding topology of the TG4T tetramolecular parallel quadruplex.
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kinetics and thermodynamics of tetramolecular quadru-
plexes. Rules have been proposed to describe the proper-
ties of simple, short segments such as T2G4T2 (14).
In previous studies, we analyzed the kinetics of
quadruplex formation with short DNA sequences
(15,16). The kinetic inertia of these quadruplexes allowed
us to study association and dissociation processes
independently. The association rate strongly depended
on strand concentration, with an experimentally
determined order close to four (14,15,17). The correspond-
ing association rate constant kon decreased with increasing
temperature (reflecting a negative activation energy Eon)
and increased with ionic strength.
A number of recent reports demonstrate that tetra-

molecular quadruplexes may accommodate at least one
unusual quartet (18,19). DNA quadruplex formation is
therefore not restricted to G-repeat sequences. Rather, the
quadruplex fold has a versatile and robust architecture
that is accessible to a range of mixed sequences with the
potential to form various tetrads or even hexads, heptads
and octads. Many articles analyzed these ‘non-G quar-
tets,’ often in the context of parallel tetramolecular
quadruplexes. NMR studies have shown that the thymine
in the center of the TG2TG2C four-stranded quadruplex
forms a thymine quartet (20) and the cytosine in the
TG3CGT quadruplex forms a cytosine quartet (21).
Adenine quartets (22), uracil quartets (23) and bulges
may also be accommodated in RNA quadruplexes (24),
expanding the structural repertoire of quadruplexes.
However, the contributions of these non-G quartets to
the kinetics and energetics of the quadruplex are poorly
understood, and structural methods provide only clues to
the effects of these modifications. Little data is available
for sequences in which the G-tract is interrupted by a
‘mismatch,’ i.e. any base (natural or synthetic) different
from a guanine.
Using the canonical tetramolecular quadruplexes

formed by TG4T and TG5T, we substituted each of the
four or five guanines, respectively, with a variety of bases
(the natural bases A, T, C and U, and the non-natural
bases represented in Figure 1) and analyzed the impacts of
these modifications on the kinetics of formation and
thermal stabilities of the complexes. We demonstrate that,
in most cases, the incorporation of a single modified
quartet not only leads to decreased melting temperature
but also to a decreased association rate. Non-guanine base
quartets are, at best, tolerated in a parallel quadruplex and
generally do not contribute to the stability of the
structure, two exceptions being the 8-bromo-guanine (X)
and 6-methyl-isoxanthopterin (P) substitutions.

MATERIALS AND METHODS

Nomenclature, synthesis and purification of oligonucleotide
sequences

Oligonucleotides were synthesized by Eurogentec
(Seraing, Belgium), except for P (¼ 6MI¼ 6-methylisox-
anthopterin) and Q (¼ 3MI¼ 3-methylisoxanthopterin)
(25,26), which were synthesized by Fidelity Systems, Inc.
(Gaithersburg, MD, USA). Concentrations of all

oligodeoxynucleotides were estimated using extinction
coefficients provided by the manufacturer. A single
letter/number code was chosen for all bases: I for inosine,
6 for 6-thioguanine, etc. (a complete list can be found in
Figure 1, top). Sequences are given in the 50 to 30 direction;
e.g. TG7GGGT is an oligonucleotide in which the second
guanine has been replaced by 7-deazaguanine.

Absorbance measurements

Isothermal and melting experiments were conducted as
previously described (15). Starting from completely
unfolded strands, absorbance was recorded at regular
time intervals (120–300 s) at three to five different
wavelengths in the presence of 110mM KCl, NaCl or
NH4Cl. Oligonucleotide strand concentration was fixed
between 1 and 700 mM. For high concentrations, cuvettes
of 0.5–1mm path length were used (Hellma France).
Experimental points were fitted to a kinetic model,
according to a previous study (15). To allow a comparison
of the association rate constants, we arbitrarily defined the
order of the reaction as four for all oligonucleotides.
This value cannot be experimentally verified in all
experimental conditions, and may somewhat differ [we
previously reported values between 3.4 and 4.1 for
unmodified G-rich oligonucleotides (15)]. To obtain an
accurate value for kon, curves were fitted at all useable
wavelengths (generally 240 and 295 nm, sometimes 260
and/or 375 nm for base P). Numerical values resulted from
two to seven independent kon determinations. Most
melting curves recorded by heating a preformed quad-
ruplex do not correspond to equilibrium melting curves
(hysteresis phenomenon), and the ‘T1/2’ deduced from
these experiments depends on the heating rate (0.488C/min
here) (15). Apparent T1/2 above 908C or below 208C could
not be accurately determined. Overall, 41000 kinetic or
melting experiments were performed.

Gel electrophoresis

Purity of the provided oligonucleotides was initially tested
by denaturing PAGE (data not shown). Samples in water
and formamide were loaded on a 20% polyacrylamide gel
containing Tris-Borate-EDTA (TBE) 1X and 7M urea.
Electrophoresis was performed at 14W to reach a
temperature close to 458C. For kinetic experiments,
association kinetic of G4-DNA was confirmed by non-
denaturing PAGE. In that case, oligonucleotides were all
incubated at a unique concentration (80–100 mM) during
different times in lithium cacodylate 10mM pH 7.2 buffer
with 110mM Naþ or NHþ

4 . Here, 10% sucrose was added
just before loading. This method has a low throughput,
but is useful for very long incubations and to confirm
spectroscopic data. Oligothymidylate markers (dT6, dT12

or dT24) were also loaded on the gel. One should note that
the migration of these markers (short 50dTn oligonucleo-
tides) does not necessarily correspond to single
strands (27): these oligonucleotides were chosen here to
provide an internal migration standard, not to identify
single-stranded or higher order structures.
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Mass spectrometry

ESI-MS experiments were performed as previously
described (28,29). All experiments were performed on a
Q-TOF Ultima Global (Micromass, now Waters,
Manchester, UK) with the Z-spray ESI source. The
capillary voltage was set to �2.2 kV and the cone voltage
to 35V. The RF lens 1 was set to 74V for all the
quadruplexes. The argon pressure inside the collision
hexapole (3.0� 10�5mbar� 5%) and the source pressure
(2.70mbar) were carefully kept constant. Quadruplexes
were prepared in 150mM ammonium acetate. Methanol
(15%) was added to the samples just before injection to
obtain a stable electrospray signal.

RESULTS

Formation of the canonical tetraplexes

All oligonucleotides studied here contain a single block of
guanines and form tetramolecular species. Oligomers
ending with a terminal 50 or 30 guanine, such as TG3–5

or G3–5T, are likely to form complex or higher order
molecular species, as indicated by the CD studies of
Lieberman and Hardin (30). For this reason, we chose two
model sequences with terminal thymines, TG4T and
TG5T. All studies were performed in Kþ, in Naþ and in
NHþ

4 . Data concerning these canonical sequences may be
found in Figure S1, which is published as supporting
information. Interestingly, whereas Kþ is the preferred
cation for both association rate and thermal stability
(highest apparent melting temperatures and highest
association rate constants), Naþ and NHþ

4 exhibit
opposite trends: sodium leads to faster association than
ammonium, but the quadruplexes have a higher melting
temperature in the presence of NHþ

4 than in Naþ. Similar
conclusions were reached for other tetramolecular com-
plexes (data not shown). These results illustrate that it is
essential to evaluate the kinetics of dissociation and
association to obtain a reliable estimate of the thermo-
dynamic stability of these structures. The relative ineffi-
ciency of ammonium ions to promote quadruplex
formation was relatively unexpected as this ion has an
ionic radius close to potassium. One may propose that
these ammonium ions could stabilize an undesired single-
stranded conformation because of their greater propensity
to interact with phosphate groups.

Quadruplex formation with the modified sequences

Variants of these sequences were designed. For most
modifications, we systematically replaced one guanine at a
time in the TG4T and TG5T oligonucleotides (i.e. nine
different positions for single-substitutions). Examples are
provided in Tables S1 and S2. We chose two different
tetramolecular quadruplex motifs (TG4T and TG5T) for
confirmatory purposes, but also because in thermal
denaturation experiments, little or no dissociation was
observed for the TG5T quadruplex and its variants, even
at 908C. The lower T1/2 of the TG4T quadruplex allowed
us to observe and compare the unfolding process. On the
other hand, the longer TG5T quadruplex, with an extra

G-quartet and faster association kinetics, favors quad-
ruplex formation even when highly destabilizing substitu-
tions are incorporated, allowing us to quantitate the
impact of these modifications on the association kinetics.
Determination of the 3D solution structure of all

sequences studied here is beyond the scope of this
article. Nevertheless, before comparing the kinetics and
thermodynamics of these oligomers, we deemed it
necessary to establish that these sequences have the
same global architecture. Quadruplex formation was
confirmed by four independent methods (Figures S2–S4).
Oligonucleotides were analyzed by PAGE, and quadru-
plex formation was revealed by a slow-migrating band as
compared to the migration pattern of the same ‘single-
stranded’ oligomer. Complete or near complete conver-
sion to a lower mobility band was obtained with most
sequences. Furthermore, the isothermal difference and
circular dichroism spectra of these structures were in
agreement with the formation of quadruplexes (31–33).
Finally, electrospray ionization mass spectrometry (ESI-
MS) in the negative ion mode provided unambiguous data
on strand stoichiometry (four identical strands are
involved in a complex).

Association of the isolated strands at low temperature

Isothermal renaturation experiments were used to study
the formation of the quadruplexes; representative exam-
ples are provided in Figures 2A and S5. Starting from the
unfolded species, a time-dependent increase in absorbance
at 295 nm was observed, while an opposite trend was seen
at 240 nm, indicating a single-strands-to-quadruplex
transition. Using various strand concentrations, one
would expect the calculated kon to be concentration-
independent if the order is correct. Association data for
TG5T were fitted with n¼ 4, in agreement with previous
observations (14,15,17). To allow a numerical comparison
of the results, we defined n¼ 4 for all further studies.
These fits were in nearly perfect agreement with the
experimental points. Moreover, the kon values determined
from the curves at different concentrations and at two
different wavelengths (240 and 295 nm) were in excellent
agreement, and a dual wavelength parametric test (34)
failed to reveal the existence of more than two species
(unfolded and associated; Figures 2B and S6).
The association rate constants for the various oligonu-

cleotides are provided in Tables S1–S3 and are compared
in Figure 2C and D, and S7. All values are given in
M�3 s�1, reflecting the order chosen to fit the data.
Important differences may be found among the various
sequences; values for association rate constants ranged
from �1013 to 104M�3 s�1 (i.e. 1 billion-fold difference).
For this reason, all graphs are shown on a semi-log scale.
One should note that, due to the order of four chosen for
the fits, a 1 billion-fold decrease in kon corresponds to a
‘less impressive’, but still highly significant, 1000-fold
higher strand concentration required to obtain a similar
proportion of quadruplex species after the same incuba-
tion time. For nearly all sequences (modified or not),
association was fastest in potassium and slowest in
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ammonium: konðK
þ
Þ4konðNaþÞ4konðNHþ

4 Þ, as observed
for the unmodified sequences.
A vast majority of modified sequences associated at a

much slower rate than the unmodified TG5T oligonucleo-
tide. The most unfavorable modification found in this
study was adenine in central positions. TGAG3T has a kon
108-times lower than TG5T in Kþ. Substitution effects
were strongly position dependent. Contrasting with the
4108-fold difference attained in central positions, the
maximal destabilization for a terminal modification was

1000–5000-fold (meaning that 10–17-fold higher strand
concentrations are required to obtain a similar proportion
of quadruplex species as a function of time) (for e.g.
Figure 2C). Overall, an unfavorable substitution had a
lower detrimental effect when located at the extremities,
leading to ‘V’- or ‘U’-shaped curves in Figures 2D and S7.
This shows that the contributions of the quartets are not
additive: a modified quartet also influences its neighboring
G-quartets. Results obtained in the TG5T series were, in
general, qualitatively confirmed in the TG4T series.
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Figure 2. Analysis of the association curves. (A) Representative example of an isothermal renaturation experiment. Formation of a quadruplex with
the inosine-containing oligonucleotide TIGGGGT (panel A) (15mM strand concentration, at 48C, 0.11M Kþ). Raw absorbance was recorded
simultaneously at two wavelengths (240 nm: blue circles and 295 nm: red inverted triangles). The fitted curves (full lines) are nearly indistinguishable
from the experimental data. Fitted kon values are provided for each curve. (B) Example of a dual wavelength parametric test for TGGIGGT
(identical conditions as in Panel A). In this example, absorbance at 240 nm (left Y-scale, blue circles) and absorbance at 295 nm (right Y-scale, red
triangles) are plotted versus absorbance at 273 nm. Other examples are provided in Supplementary Data. (C) Relative association constant (kon) as
compared to TG5T for oligomers in which the first guanine has been replaced by another base (code as in Figure 1). Data obtained in Kþ (black),
Naþ (blue) or NHþ

4 (red). ‘-’ corresponds to TG4T. Note that these relative values have been normalized for each cation compared to the unmodified
oligonucleotide. kon values in Kþ and Naþ are respectively 2000 and 10 times higher than in NHþ

4 . (D) Association constants in Naþ: Effect of a
single guanine substitution on kon (corresponding curves in Kþ or NHþ

4 are provided as Supplementary Data). The position of the substitution is
indicated on the X-axis: position 1 corresponds to the first guanine (50 side), position 5 to the last guanine (30 side). The relative kon values (�SD) for
the formation of the TG5T variants are indicated on the left Y-axis (kon for the unmodified TG5T sequence under the same conditions¼ 1,
corresponding to a horizontal dotted line). Absolute values are shown on the right Y-axis. Experiments were performed in 0.11M Naþ at 3� 18C.
Note the semi-log scale: for many mutants, a single substitution may lead a tremendous decrease in kon. Only a few cases lead to a higher kon than
TG5T, for example TXGGGGT (blue squares).
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Unexpectedly, two types of substitutions resulted in
faster association rates than for the canonical quadru-
plexes: 8-bromo-guanine (X) and 6-methyl isoxanthop-
terin (P) (Figure 3). These modifications do not show the
‘U’-shape dependence on position, but rather show a
strong asymmetry, with k5

0

on4k3
0

on (see Figure S8B). These
modifications accelerate quadruplex formation only when
present at the 50 end or 50 half. These substitutions were
further studied using non-denaturing gel electrophoresis
(see Figure S9 for TXGGGGT). The case of 6-methyl-
isoxanthopterin (P) is particularly interesting (Figure 3).
This base was previously incorporated in a sequence
compatible with quadruplex formation to act as a
fluorescence reporter group, but its contribution to
quadruplex stability was not investigated (35). This
modified base can also form a quartet with eight hydrogen
bonds (Figure 3A). An illustration of a renaturation
experiment in Naþ is provided in Figure 3B. Faster
quadruplex association was confirmed in Kþ and NHþ

4
(Table S3). CD spectra of quadruplexes were very similar
to TG4T and TG5T (Figure 3C). Confirmation of fast
kinetics in Naþ was obtained by non-denaturing gel
electrophoresis (Figure 3D).

Dissociation of the preformed quadruplexes

Starting from preformed quadruplexes (several days at
0–58C and high strand concentration, 100–1000mM), the
denaturation was followed by recording the absorbance at
240 or 295 nm (15,36) (examples shown in Figures S1C,
and 4A and B). This led to a ‘cooperative’ curve that does
not reflect an equilibrium denaturation process: upon
subsequent cooling, little renaturation of the DNA
quadruplex was obtained, in agreement with the low kon
values. Furthermore, the apparent melting temperature
did not depend on oligonucleotide concentration but
strongly depended on the rate of heating (data not shown)
(33), again indicating that this profile does not correspond
to an equilibrium curve but solely reflects the dissociation
of the quadruplex. T1/2 values are provided for most
oligonucleotides in Figures 4 and S10 and Tables S1–S3.
In general, we found T1=2ðK

þ
Þ4T1=2 ðNHþ

4 Þ4T1=2ðNaþÞ.
Differences in T1/2 reflect differences in thermal lability
(15) and dissociation rate constant (koff) values can be
extracted from the UV-melting curves (16). For most
TG5T variants, no dissociation of the quadruplex could be
observed in potassium (T1/24 908C). Hence, thermal
denaturation data could be collected only for a subset of
sequences. In general, the apparent melting temperature
was highest in Kþ and lowest in Naþ, as observed for the
unmodified sequences.

Most modified quadruplexes had lower thermal stabi-
lities than the unmodified oligonucleotide. Differences in
T1/2 could be extreme; e.g. the T1/2 for TGTGGGT in Naþ

was more than 608C lower than the T1/2 for TG5T under
identical conditions (Figure 4C). From the T1/2 values, the
various modifications could be ranked from mildly
stabilizing to very destabilizing (note that the stabilizing
modifications could only be studied for TG4T variants in
Naþ and NHþ

4 , the T1/2 being 4908C in other cases).
For substitution of the first guanine of the G5 stretch,

X� 84G 44 all others. The ranking of the other
modifications depended on the position and the cation,
with T, A, 7 and C often being very destabilizing (higher
dissociation rate). The ranking was almost independent on
the nature of the monocation (Figures 4 and S10).
Interestingly, this dissociation ranking is different from
the one found for association rates. For example, P, which
was found to accelerate quadruplex formation, never-
theless led to a significant decrease in T1/2.
Substitution effects were strongly position-dependent.

Overall, an unfavorable substitution had a less detrimental
effect when located at the extremities. However, asymme-
trical effects were also observed, e.g. for the 8 and X
modifications. A similar observation was reached in
another study: TXGGT and TGXGT formed a more
stable quadruplex than the unmodified sequence, whereas
TGGXT was much less stable than the natural counter-
part (18). Within ‘central’ positions (2, 3 or 4 in the TG5T
variants), no general rule emerged. Position 3 was not
necessarily more destabilizing than position 2 or 4. Results
obtained in the TG5T series were qualitatively confirmed
in the TG4T series (compare Figure 4C and D). However,
a number of modified sequences failed to melt in the TG5T
series, as mentioned previously.
Whereas the canonical TG5T quadruplex resisted

boiling in Naþ for a few minutes, variant quadruplexes
incorporating a single central A, T or 7 base could collapse
below physiological temperature (Figure 4). Only a few
modifications (X and 8) led to an equal or higher thermal
stability than a guanine, and this effect was generally
restricted to the terminal positions (1 and 5, or 1 and 4).
This property could not be evidenced for TG5T variants,
as the canonical quadruplex already exhibits a T1/2� 908C
under all conditions. In contrast, the denaturation of the
TG4T quadruplex in Naþ (Figure 4D) and NHþ

4 (Figure
S10D) could be observed.

Addressing the relative equilibrium stability of the
quadruplexes

As explained above, the thermal denaturation experi-
ments do not give access to equilibrium data. Dissociation
rate constant (koff) values could be extracted from the
UV-melting curves (16). Most modified quadruplexes had
a higher dissociation rate constant than the canonical
quadruplex. In an Arrhenius representation, data points
could be fitted with a straight line, in agreement with a
simple melting process, allowing us to determine a
positive activation energy of dissociation (Eoff) (Figure
S11). To illustrate the differences in the dissociation
process, one can also calculate the lifetimes of the
different quadruplexes (t1/2¼ ln(2)/koff) at a given tem-
perature. For example, at 448C [d(TGGGXT)]4 has a 20-
fold shorter lifetime than the corresponding unmodified
[d(TG4T)]4. A notable exception to this rule is the
[d(TXGGGT)]4 quadruplex, which is 50-fold longer
lived than [d(TG4T)]4. Thus, most substitutions, but not
all, had very debilitating effects on quadruplex thermal
stability and lifetime.
The determination of the equilibrium association

constant can, in principle, be done by calculating the
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kon/koff ratio at a given temperature. Unfortunately, kon
and koff values are experimentally accessible in a different
temperature range: the higher the T1/2, the less reliable the
koff extrapolation at 38C, not talking of the sequences with
T1/24 908C. Nevertheless, it is clear that, at low
temperature and at the chosen concentrations, the
equilibrium is highly displaced towards the tetramer in
all cases (as confirmed by mass spectrometry), so the
estimation of relative equilibrium stabilities by traditional
methods is hardly conceivable. We therefore used a mass
spectrometry-based approach consisting in counting the
number of ammonium cations present in the tetramers. In
contrary to Naþ and Kþ cations, non-tightly bound NHþ

4
cations escape from the complex before it reaches the

detector, but NHþ
4 cations coordinated between stable

adjacent tetrads remain in the complex (28). For the
unmodified sequences, when the proper soft experimental
conditions are used, (n� 1) ammonium ions are found in
the [d(TGnT)]4 quadruplexes, as shown in Figure S4. In
the case of [d(T8GGGGT)]4, four ammonium ions were
detected, suggesting that this modified tetrad forms a
sufficiently stable architecture to keep the coordinated
ammonium ion sandwiched between adjacent G4-tetrads.
However, for all other modifications, an average of less
than four ammonium ions is detected. The number of
ammonium ions embedded in the structure is plotted for
each substitution in Figure 5. This number can be
interpreted as indicative of the number of effective tetrads
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in the quadruplex. There is usually a good agreement
between the mass spectrometry results and the associa-
tion/dissociation data: for example TGAGGGT, which
has a very low kon, also displays the lowest average
number of ammoniums (1.7).
We initially hoped that further refinements of the

relative ammonium stabilities could be obtained by
tandem mass spectrometry experiments (selecting a com-
plex with a given number of ammoniums and fragmenting
it at variable collision energies), and these details are
provided as supporting information for the interested
reader (Figure S12 and S13). Unfortunately, we found a
weak correlation between the stability in the gas phase
deduced from MS/MS experiments and the stability in
solution, at least for this system. Nevertheless, these MS/
MS experiments may still be useful to obtain further
insight into the possible dissociation pathway of the
structural cations, and they might be of interest for
those interested in the modeling/calculation of cation–
quadruplex interactions.

DISCUSSION

In the present study, we analyzed the effects of 12 different
base substitutions on the kinetics and thermodynamics of
parallel tetramolecular quadruplexes. The data were
compared with the parallel-stranded tetramolecular quad-
ruplexes formed by TG4T and TG5T. Most isothermal
and melting experiments could be analyzed in the frame-
work of an all-or-none process, in agreement with
Petraccone et al., who demonstrated that the quadru-
plex-to-single strand transition of TG4T involved only two

significant spectral species, suggesting a simple dissocia-
tion pathway (17). To our knowledge, the present work is
the first experimental attempt to quantify and compare a
variety of modified quadruplex sequences.

Although many oligomers adopt relatively similar
conformations, the kinetics of these complexes may vary
greatly. We showed that the consideration of Tm (or T1/2)
as the sole indicator of quadruplex thermodynamics may
lead to a profound underestimation of the energetic
penalty imposed by a single guanine replacement. It is
essential to evaluate the kinetics of both dissociation and
association to obtain a reliable estimate of the thermo-
dynamic penalty imposed by the sequence modification. It
is striking that for quadruplexes, a ‘mismatch’ has a
deleterious impact on both the association and dissocia-
tion processes, whereas for duplexes and triplexes, a
mismatched base-pair or base-triplet affects the dissocia-
tion process (37,38). A possible explanation for this
behavior comes from the differences in length among
these motifs. Only four to five base quartets are formed in
quadruplexes, and a mismatch is more likely to affect the
nucleation event for initial quadruplex association.

The 50/30 asymmetry observed in the influence of
stabilizing modifications also gives interesting insights
into the nucleation process. One may therefore be tempted
to propose that the rate-limiting step involves the 50 side of
the strands. All three favorable modifications (8, X and P)
accelerated formation or decelerated dissociation of
quadruplexes only when located on the 50 side. In X and
P modifications, the respective bromo- and methyl
substituents may favor the initial hydrophobic collapse
that brings strands together. However, as this asymmetry
is not observed for all substitutions, this putative
directional nucleation-zipping mechanism for quadruplex
formation is probably less pronounced than for triplexes
(39). The extremely deleterious impact of a central guanine
substitution on association also indicates that the central
guanines participate in the rate-limiting step. It is also
worth noticing that with these three modifications (P, X
and 8), the syn conformation is (or is likely to be) favored
as compared to a regular guanine (40) suggesting the
implication of the syn G at the 50 end in the nucleation
process. In the publications reporting quadruplex struc-
tures based on the (3þ 1) or mixed parallel–antiparallel
scaffold (41–46) the Gs on the 50 part of the quadruplex
are mostly syn. These 50 syn bases might also participate in
the stability of the quadruplex (for X and 8).

The structure of this kinetic intermediate remains
elusive but some observations help to eliminate some
possibilities: (i) a Hoogsteen duplex or triplex is an
extremely unstable, and therefore unlikely, intermediate
(13), (ii) transient strand dimers and trimers have been
evidenced by mass spectrometry (47), (iii) monocations
participate in the stabilization of this kinetic intermediate
(15,16), (iv) association is faster at low temperature (15),
(v) the experimental order of the reaction is close to four
(14–17) while (vi) a four-body collision is an impossible
event. Starting from the double-dimer to tetramer path-
way proposed by Wyatt et al. (14) and the ‘cross-like’ two-
stranded assemblies proposed by Stefl et al. (13), one may
envision that the rate-limiting step is the formation of
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4

ions present in the quadruplexes: MS analysis. ESI-MS spectra
obtained in gentle condition help in understanding the formation of
these tetramolecular structures, not only by providing the strand
stoichiometry but also an unambiguous determination of the number
of contributing structural cations. The position of each substitution
is indicated on the X-axis. The mean number of ammonium
ions (NNH4

) present in the complexes is obtained from equation:
NNH4

¼ ½4� IðG4with 4NH4
Þ þ 3� IðG4with 3NH4

Þ þ 2� IðG4with 2NH4
Þ þ

1� IðG4with 1NH4
Þ�=Sum½IðG4allÞ� where I(G4n) are the relative inten-

sities of the quadruplex with different number of ammonium ions. Note
that the P and Q modifications were not shown here.
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‘nucleation’ quartets, with four guanines unlikely to
originate from four different strands. Two of these
guanines must then originate from the same strand (for
example, one ‘central’ and the other towards the 50 end,
thereby explaining a certain asymmetry) and some of these
bases transiently adopt a syn conformation. This transient
geometry could be facilitated by the presence of some
modifications, (X or P for example), for which the syn
conformation is preferred. A long guanine tract facilitates
the formation of two (and perhaps three) stacked quartet,
which captures one to two monocations and defines the
nucleation event. This could explain the puzzling observa-
tion that the longer the guanine tract, the faster the
association and this is in agreement with the negative
activation energy of association (Eon¼�29 kcal/mol for
TG4T) found for tetramolecular quadruplexes (15). These
initial quartet(s) are embedded in a two-stranded dimer,
rather than a Hoogsteen duplex, and will then undergo a
series of rearrangements involving the association of
additional strands, possible formation of a trimer, syn to
anti conversion (again, the presence of syn bases in the
final structure may be proposed for some of the analogs;
in that case anti to syn conversion of a few residues could
be imagined), formation of extra quartets and progressive
slippage of strands in order that all guanines in a quartet
correspond to the same base in the four strands.

The wealth of data compiled here can serve as a basis
for future structural interpretation. Interestingly, Stefl
et al. already performed molecular dynamics simulations
of DNA quadruplex molecules containing modified
bases (48). The incorporation of 6-thioguanine (6) or
6-methylguanine (M) sharply destabilized four-stranded
G-DNA structures, whereas inosine (I) had a limited
effect. The first two modifications prevented proper cation
coordination and created a steric clash in the central part
of the quartet, whereas inosine could still form a quartet,
even though the external ring of H-bonds is lost. All these
predictions are verified in our experiments. Also, the
higher destabilization observed with central modifications,
together with the mass spectrometry measurements of
the number of coordinated cations, suggest that the
stability should be interpreted in terms of nearest
neighbors (two neighboring quartets and the associated
cations) instead of quartets only.

One of the major findings of our study is that most
substitutions are extremely detrimental to quadruplex
stability, as shown by substantial decreases in both the
association rate and the thermal stability of the complex.
In particular, all natural bases (A, C, T and U) fall in this
category. Non-G quartets in genomic DNA are therefore
clearly not favorable to the energetics of the quadruplexes:
they are tolerated at best. This is independent of the
nature of the monocation: with a few exceptions, an
unfavorable substitution in Kþ remains unfavorable in
Naþ and NHþ

4 . Despite the presence of well-defined non-
guanine base quartets in a number of NMR and X-ray
structures, our data suggest that these quartets do not
participate favorably in structural stability and are formed
only by virtue of the docking platform provided by
neighboring G-quartets.

Our study also provides useful guidelines for the future
conception of synthetic DNA assemblies based on
quadruplex formation. Comparing the association con-
stants found for a variety of substitutions led us to
propose the following conclusions: (i) the central part of
the quartet (the central ring of H-bonds and O6 carbonyl
groups) is vital to its stability: altering this part not only
leads to the loss of one H-bond, but may also hamper
coordination of the central cation. (ii) Removal of the
external ring of H-bonds leads to a moderate decrease in
the association rate (ex: inosine). However, if one not only
remove these H-bonds but perturbs the geometry/planar-
ity of the quartet as a result of a steric clash, as for
7-deazaguanine, the penalty is more severe. (iii) One is left
with a limited freedom to play with the 8-position and, in
a few cases (8-bromo-guanine), substitutions may even
become favorable. Modifications that do not affect the
cyclic hydrogen bond pattern nor the central carbonyl
groups are well tolerated and may effectively replace
guanines, although syn/anti sugar configuration prefer-
ences play a role. (iv) Finally, the purine geometry is not
an absolute requirement to form a stable quartet:
isoxanthopterine is fully compatible with quadruplex
formation, and other planar bicyclic groups may also
form a quartet. In that case, we believe that the presence
of a central carbonyl group is required (i.e. at a position
equivalent to the O6 group of guanine) and should be
H-bonded to a H-bond donor group (likely an amino
group) from another base. (v) The conclusions reached
here apply to base quartets in which, by virtue of the
tetramolecular system, all four bases are substituted.
It should be interesting to compare this system with
intramolecular quadruplexes, in which a single base may
be replaced in each quartet [for example: (49)].
The two ‘non-canonical’ modifications X and P even

lead to faster quadruplex formations than the all-guanine
reference sequences. The only substitution that leads to a
stability improvement in both association and dissociation
parameters (as compared to guanine) is 8-bromo-guanine
(X), when inserted at the 50 end (position 1). However,
the case of P substitution is also highly interesting on the
application point of view, because this modification in the
50 side leads to an increase of both the association and
dissociation rates. Reversible devices based on P-modified
quadruplexes could therefore have a higher turnover than
the classical G-quadruplexes. The thermodynamic and
kinetic data compiled here is highly valuable for the design
of DNA quadruplex assemblies with tunable association/
dissociation properties. So far, guanines are still a
quartet0s best friends!
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Nucleic Acids Research, 2007, Vol. 35, No. 9 3073



Lejeune’ fellowship. V.G. is a Research Associate of the
FNRS (Fonds National de la Recherche Scientifique,
Belgium) and F.R. is currently a FNRS post-doctoral
fellow. Funding to pay the Open Access publication
charge was provided by INSERM.

Conflict of interest statement. None declared.

REFERENCES

1. Neidle,S. and Parkinson,G.N. (2003) The structure of telomeric
DNA. Curr. Opin. Struct. Biol., 13, 275–283.

2. Burge,S., Parkinson,G.N., Hazel,P., Todd,A.K. and Neidle,S.
(2006) Quadruplex DNA: sequence, topology and structure. Nucleic
Acids Res., 34, 5402–5415.

3. Gellert,M., Lipsett,M.N. and Davies,D.R. (1962) Helix formation
by guanylic acid. Proc. Natl. Acad. Sci. USA, 48, 2013–2018.

4. Grand,C.L., Powell,T.J., Nagle,R.B., Bearss,D.J., Tye,D., Gleason-
Guzman,M. and Hurley,L.H. (2004) Mutations in the G-quad-
ruplex silencer element and their relationship to c-MYC over-
expression, NM23 repression, and therapeutic rescue. Proc. Natl.
Acad. Sci. USA, 101, 6140–6145.

5. Schaffitzel,C., Berger,I., Postberg,J., Hanes,J., Lipps,H.J. and
Plückthun,A. (2001) In vitro generated antibodies specific for
telomeric guanine quadruplex DNA react with Stylonychia lemnae
macronuclei. Proc. Natl. Acad. Sci. USA, 98, 8572–8577.

6. Duquette,M.L., Handa,P., Vincent,J.A., Taylor,A.F. and
Maizels,N. (2004) Intracellular transcription of G-rich DNAs
induces formation of G-loops, novel structures containing G4
DNA. Genes Dev., 18, 1618–1629.

7. Paeschke,K., Simonsson,T., Postberg,J., Rhodes,D. and Lipps,H.
(2005) Telomere end-binding proteins control the formation of
G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol., 12,
847–854.

8. Davis,J.T. (2004) G-quartets 40 years later: from 50-GMP to
molecular biology and supramolecular chemistry. Angew. Chem. Int.
Ed., 43, 668–698.

9. Alberti,P., Bourdoncle,A., Saccà,B., Lacroix,L. and Mergny,J.L.
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(2005) Kinetics of tetramolecular quadruplexes. Nucleic Acids Res.,
33, 81–94.

16. Mergny,J.L., De Cian,A., Amrane,S. and Webba da Silva,M. (2006)
Kinetics of double-chain reversals bridging contiguous quartets in
tetramolecular quadruplexes. Nucleic Acids Res., 34, 2386–2397.

17. Petraccone,L., Pagano,B., Esposito,V., Randazzo,A., Piccialli,G.,
Barone,G., Mattia,C.A. and Giancola,C. (2005) Thermodynamics
and kinetics of PNA-DNA quadruplex-forming chimeras. J. Am.
Chem. Soc., 127, 16215–16223.

18. Esposito,V., Randazzo,A., Piccialli,G., Petraccone,L., Giancola,C.
and Mayol,L. (2004) Effects of an 8-bromodeoxyguanosine incor-
poration on the parallel quadruplex structure [d(TGGGT)](4). Org.
Biomol. Chem., 2, 313–318.

19. Petraccone,L., Erra,E., Esposito,V., Randazzo,A., Galeone,A.,
Barone,G. and Giancola,C. (2005) Biophysical properties of
quadruple helices of modified human telomeric DNA. Biopolymers,
77, 75–85.

20. Patel,P.K. and Hosur,R.V. (1999) NMR observation of T-tetrads in
a parallel stranded DNA quadruplex formed by Saccharomyces
cerevisiae telomere repeats. Nucleic Acid Res., 27, 2457–2464.

21. Patel,P.K., Bhavesh,N.S. and Hosur,R.V. (2000) NMR
observation of a novel C-tetrad in the structure of the SV40
repeat sequence GGGCGG. Biochem. Biophys. Res. Commun., 270,
967–971.

22. Pan,B.C., Xiong,Y., Shi,K., Deng,J.P. and Sundaralingam,M.
(2003) Crystal structure of an RNA purine-rich tetraplex containing
adenine tetrads: implications for specific binding in RNA tetra-
plexes. Structure, 11, 815–823.

23. Cheong,C.J. and Moore,P.B. (1992) Solution structure of an
unusually stable RNA tetraplex containing G-quartet and U-quartet
structures. Biochemistry, 31, 8406–8414.

24. Pan,B.C., Xiong,Y., Shi,K. and Sundaralingam,M. (2003) Crystal
structure of a bulged RNA tetraplex at 1.1 angstrom resolution:
implications for a novel binding site in RNA tetraplex. Structure,
11, 1423–1430.

25. Driscoll,S.L., Hawkins,M.E., Balis,F.M., Pfleiderer,W. and
Laws,W.R. (1997) Fluorescence properties of a new guanosine
analog incorporated into small oligonucleotides. Biophys. J., 73,
3277–3286.

26. Hawkins,M.E., Pfleiderer,W., Balis,F.M., Porter,D. and
Knutson,J.R. (1997) Fluorescence properties of pteridine nucleoside
analogs as monomers and incorporated into oligonucleotides. Anal.
Biochem., 244, 86–95.

27. Kejnovska,I., Kypr,J. and Vorlickova,M. (2007) Oligo(dT) is not a
correct native PAGE marker for single-stranded DNA. Biochem.
Biophys. Res. Commun., 353, 776–779.

28. Rosu,F., Gabelica,V., Houssier,C., Colson,P. and De Pauw,E.
(2002) Triplex and quadruplex DNA structures studied by electro-
spray mass spectrometry. Rapid Commun. Mass Spectrom., 16,
1729–1736.

29. Rosu,F., Gabelica,V., Shin-ya,K. and DePauw,E. (2003)
Telomestatin induced stabilization of the human telomeric DNA
quadruplex monitored by electrospray mass spectrometry. Chem.
Commun., 34, 2702–2703.

30. Lieberman,D.V. and Hardin,C.C. (2004) Extraction of information
on the buildup and consumption of reactive intermediates from
quadruplex DNA assembly time courses. Biochim. Biophysica. Acta,
1679, 59–64.

31. Mergny,J.L., Phan,A.T. and Lacroix,L. (1998) Following G-quartet
formation by UV-spectroscopy. FEBS Lett., 435, 74–78.

32. Mergny,J.L., Li,J., Lacroix,L., Amrane,S. and Chaires,J.B. (2005)
Thermal difference spectra: a specific signature for nucleic acid
structures. Nucleic Acids Res., 33, e138.

33. Petraccone,L., Erra,E., Randazzo,A. and Giancola,C. (2006)
Energetic aspects of locked nucleic acids quadruplex association and
dissociation. Biopolymers, 83, 584–594.

34. Wallimann,P., Kennedy,R.J., Miller,J.S., Shalango,W. and
Kenp,D.S. (2003) Dual wavelength parametric test of two-state
models for circular dichroism spectra of helical polypeptides:
anomalous dichroic properties of alanine-rich peptides. J. Am.
Chem. Soc., 125, 1203–1220.

35. Myers,J.C., Moore,S.A. and Shamoo,Y. (2003) Structure-based
incorporation of 6-methyl-8-(2-deoxy-beta-ribofuranosyl)isox-
anthopteridine into the human telomeric repeat DNA as a probe for
UP1 binding and destabilization of G-tetrad structures. J. Biol.
Chem., 278, 42300–42306.
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