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Introduction
Lipoxygenases (LOXs) represent a widely distributed family 

of nonheme, nonsulfur, iron-containing dioxygenases that 

 catalyze the regioselective and stereoselective dioxygenation 

of fatty acid substrates containing one or more (Z,Z)-1,4-

 pentadiene moieties (Brash, 1999). Within the mammalian LOX 

family, a distinct subclass of epidermis-type LOX has been 

characterized that are preferentially expressed in skin and few 

other epithelial tissues (Krieg et al., 2002). They include the 

human 15-LOX-2 and its mouse orthologue 8-LOX, 12R-LOX, 

and eLOX-3. Their genes map close together within a gene 

cluster on human chromosome 17p13.1 that was found highly 

conserved within a syntenic region at the central region of 

mouse chromosome 11 (Krieg et al., 2001). Although exhibit-

ing a rather heterogeneous regio- and stereospecifi city, the epi-

dermis-type LOX are phylogenetically closely related, sharing 

�50% amino acid identity. Their differentiation-dependent ex-

pression pattern in epithelial tissues suggests a common physio-

logical role in the regulation of proliferation and differentiation 

of epithelial cells, especially keratinocytes.

The epidermal 12R-LOX and eLOX-3 differ from all other 

mammalian LOX in their unique structural and enzymatic fea-

tures (Boeglin et al., 1998; Krieg et al., 1999; Kinzig et al., 1999). 

Both proteins contain an extra domain located at the surface of the 

catalytic subunit. 12R-LOX represents the only mammalian LOX 

that forms products with R-chirality, and, unlike all other LOX, 

eLOX-3 does not exhibit dioxygenase activity, but functions as a 

hydroperoxide isomerase (Yu et al., 2003). Both enzymes act in 

sequence to convert arachidonic acid via 12R-hydroperoxyeico-

satetraenoic acid (12R-HPETE) to the corresponding hepoxilin-

like epoxyalcohol, 8R-hydroxy-11R,12R-epoxyeicosatrienoic 

acid. This sequence has been hypothesized to be part of a novel 

LOX pathway in skin that plays an important role in terminal dif-

ferentiation (Jobard et al., 2002; Yu et al., 2003).

Recent genetic studies have identifi ed mutations in the 

coding regions of 12R-LOX and eLOX-3 genes in patients with 

autosomal recessive congenital ichthyosis (ARCI), linking for 

the fi rst time mutations of a LOX gene to the development of a 

disease (Jobard et al., 2002; Eckl et al., 2005). ARCI is a clini-

cally and genetically heterogeneous group of skin disorders that 

is associated with hyperkeratosis and impaired skin barrier 
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2R-lipoxygenase (12R-LOX) and the epidermal 

LOX-3 (eLOX-3) constitute a novel LOX pathway 

involved in terminal differentiation in skin. This 

view is supported by recent studies showing that inacti-

vating mutations in 12R-LOX and eLOX-3 are linked to 

the development of autosomal recessive congenital ich-

thyosis. We show that 12R-LOX defi ciency in mice results 

in a severe impairment of skin barrier function. Loss of 

barrier function occurs without alterations in proliferation 

and stratifi ed organization of the keratinocytes, but is 

associated with ultrastructural anomalies in the upper 

granular layer, suggesting perturbance of the assembly/

extrusion of lamellar bodies. Cornifi ed envelopes from 

skin of 12R-LOX–defi cient mice show increased fragility. 

Lipid analysis demonstrates a disordered composition 

of ceramides, in particular a decrease of ester-bound 

ceramide species. Moreover, processing of profi laggrin to 

monomeric fi laggrin is impaired.

This study indicates that the 12R-LOX–eLOX-3 path-

way plays a key role in the process of epidermal barrier 

acquisition by affecting lipid metabolism, as well as 

 protein processing.
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functions (Traupe, 1989). We and others recently showed that 

the point mutations found in the LOX genes of the ARCI  patients 

completely eliminated the catalytic activity of the LOX en-

zymes, indicating that mutational inactivation of either 12R-

LOX or eLOX-3 is causally linked to the ARCI phenotype (Eckl 

et al., 2005; Yu et al., 2005).

To investigate the physiological role of 12R-LOX and to 

analyze the molecular mechanisms that underlie the ichthyosi-

form skin phenotype, we developed mice with targeted inacti-

vation of the 12R-LOX gene. Examination of the resulting 

phenotype has revealed a crucial role of 12R-LOX in the devel-

opment of epidermal barrier function, demonstrating for the 

fi rst time an indispensable function of a LOX isoform for post-

natal survival of mice.

Results
Generation of 12R-LOX–defi cient mice
For targeting the Alox12b gene, we used the Cre-loxP system. A 

targeting vector was constructed by placing a resistance cassette 

fl anked by loxP sites into intron 7 of Alox12b. A third loxP site 

was inserted downstream of exon 8 (Fig. 1 A). This exon en-

codes a highly conserved region containing two of the iron-

binding histidines that are absolutely required for LOX catalytic 

activity (Brash, 1999; Krieg et al., 1999). Thus, Cre-mediated 

excision of this region yields a nonfunctional protein. The tar-

geting construct was electroporated into E14 embryonic stem 

(ES) cells, followed by G418 selection. Two ES cell clones had 

correctly recombined alleles and were used to generate germ-

line chimeras. Heterozygous fl oxed mice (Alox12b+/fl ox) were 

mated with CMV-Cre deleter mice (Schwenk et al., 1995) to 

validate our construct and to generate mice harboring a dis-

rupted Alox12b allele. Correct recombination and complete ex-

cision of the resistance cassette and exon 8 were confi rmed by 

PCR analysis and Southern blot analysis, yielding the expected 

BamHI fragments (Fig. 1, B–D). Heterozygous Alox12b+/− 

mice were intercrossed to generate homozygous mutant mice. 

Genotype analysis of 112 newborns from 19 intercrosses dem-

onstrated that wild-type, heterozygous, and homozygous mu-

tant mice were produced in the expected Mendelian ratios, 

indicating no embryonic lethality of the Alox12b−/−mice.

RT-PCR and Western blot analysis demonstrated the ex-

pression of 12R-LOX RNA and protein in skin isolated from 

neonatal mice. The mutated Alox12b RNA lacking exon 8 was 

expressed in heterozygous and homozygous newborn mice, and 

no wild-type RNA was detected in skin from homozygous mu-

tant mice (Fig. 2 A). Wild-type 12R-LOX protein was detected 

in epidermis of wild-type and heterozygous mice, but was ab-

sent in the skin of homozygous Alox12b−/− mice. A predicted 

truncated 12R-LOX was not detectable, indicating translational 

suppression or instability of the mutated protein (Fig. 2 B). The 

lack of 12R-LOX protein expression in the skin of homozygous 

Figure 1. Generation of 12R-LOX–defi cient mice. (A) 
Strategy of Alox12b gene targeting. B, BamHI; neo, the 
neomycin phosphotransferase gene; tk, the thymidine 
 kinase gene. LoxP sites are depicted as open triangles. 
Probes a and b were used to identify recombinant and 
deleted alleles. (B) Southern blot analysis of BamHI-
 digested DNA from wild-type (+/+) mice (lanes 1 and 5), 
from ES cells (lanes 2 and 6), and from heterozygous mice 
(lanes 3, 4, 7, and 8) carrying the fl oxed allele (+/fl ). 
Detection of an 8.7-kb fragment using probe a (left) and a 
4.8-kb fragment using probe b (right) revealed the pres-
ence of the correct recombinated allele. (C) Southern blot 
analysis of BamHI-digested DNA from wild-type (+/+), 
heterozygous (+/−), and homozygous (−/−) mice 
carrying the fl oxed-deleted allele. Detection of a 9.8-kb 
fragment using probe a (left) and probe b (right) revealed 
the correct excision of the resistance cassette and exon 8. 
(D) PCR genotype analysis of tail DNA. Primer combina-
tion ol1231/ol709 was used, amplifying a 1,075-bp 
product of the wild type and a 459-bp product of the 
 deleted allele.
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mutant mice was confi rmed by immunofl uorescence. Using a 

12R-LOX–specifi c mAb, a prominent and specifi c staining 

throughout the plasma membranes of keratinocytes in the stra-

tum granulosum was seen in wild-type mice, but was absent in 

the homozygous mutant mice (Fig. 2 C).

Loss of skin barrier function in 12R-LOX–
defi cient mice
Heterozygous Alox12b+/− mice were phenotypically indistin-

guishable from wild-type mice and reproduced normally. At 

birth, Alox12b−/− mice were hard to distinguish from wild-type 

and heterozygous littermates upon macroscopic inspection. 

However, their skin soon began to develop a red, shiny appear-

ance and became somewhat sticky to the touch (Fig. 3 A). The 

neonates did not feed and became progressively dehydrated. All 

homozygous mutant mice died within 3–5 h after birth.

The macroscopic appearance and the early neonate death 

of the mice suggested a perturbed water barrier. Weighing ex-

periments showed that homozygous Alox12b−/− mice lost 

�30% of their body weight within 3 h, whereas their heterozy-

gous and wild-type littermates maintained their weight (Fig. 3 B). 

Transepidermal water loss (TEWL) of homozygous mutant 

mice was increased by a factor of �8 compared with wild-type 

and heterozygous littermates (Fig. 3 C). Thus, the lethal pheno-

type of the 12R-LOX–defi cient mice most likely resulted from 

water loss as a result of impaired epidermal barrier function.

Barrier formation that starts around E16 in a patterned 

fashion (Hardman et al., 1998) was measured with a whole-

mount skin toluidine blue penetration assay. In wild-type 

animals, the staining pattern reflects the decrease of skin 

permeability from embryonic day (E) 16.5 to E17.5, when the 

barrier development proceeds in a dorsal to ventral pattern, up 

to E18.5, which is when skin has become completely imper-

meable. Skin of homozygous mutant mice, in contrast, re-

mained permeable, as indicated by intense staining (Fig. 4 A). 

We then assessed the permeability of the newborn epidermal 

barrier from outside using the fl uorescent dye Lucifer yellow. 

In skin of 12R-LOX–defi cient mice, the dye was found to pen-

etrate throughout the stratum corneum, whereas it was retained 

in the very top layers in the skin of wild-type mice (Fig. 4 B). 

These fi ndings clearly indicate that both the inside-out and 

the outside-in water barrier function were severely affected in 

the epidermis of 12R-LOX–defi cient mice. We also assessed the 

barrier function of tight junctions by injecting newborn mice 

subcutaneously with biotin and measuring its diffusion into 

the epidermis. Prevention of diffusion was observed in the up-

per granular cells of the skin of homozygous mutant mice, as 

well as in wild-type mice, indicating that 12R-LOX defi ciency 

did not affect the barrier function of tight junctions (unpub-

lished data).

Defective processing of profi laggrin 
to fi laggrin monomers
The epidermis of newborn Alox12b−/− mice did not exhibit 

overt abnormalities in the stratifi ed organization of keratinocytes 

Figure 2. The targeted deletion in the Alox12b-gene generates a null 
 mutation. (A) Detection of wild-type and mutant 12R-LOX mRNA in neonatal 
skin by RT-PCR. Primer combination ol230/ol709 was used to amplify a 
346-bp product of the wild type and a 142-bp product of the deleted allele. 
(B) Loss of 12R-LOX protein in neonatal skin of 12R-LOX−/− mice examined 
by Western blot analysis using a polyclonal antiserum raised against a 
12R-LOX–specifi c peptide (top). As a control, the cell lysate of HEK 293 
transfectants exogenously expressing m12R-LOX was used. An antibody 
recognizing actin was used as a control for equal loading (bottom). (C) In 
wild-type mice, immunostaining using a 12R-LOX–specifi c mAb shows 
prominent staining of the plasma membranes of the keratinocytes in the 
granular layers subjacent to the stratum corneum. In 12R-LOX−/− mice, 
these structures appear negative for such a staining. Nuclei are counter-
stained with Hoechst 33258. sc, stratum corneum; sg, stratum granulosum; 
ss, stratum spinosum; sb, stratum basale. Bars, 20 μm. 

Figure 3. Impairment of the epidermal barrier in 12R-LOX−/− mice. (A) 
Macroscopic appearance of wild-type and 12R-LOX−/− mice at birth, and 
2 and 3 h after birth. Note the red, shiny skin and the dehydrated appear-
ance of 12R-LOX−/− mice. (B) Dehydration assay over time. Data are pre-
sented as the percentage of initial body weight in wild-type (+/+, n = 6), 
heterozygous (+/−, n = 9), and homozygous (−/−, n = 11) mu-
tant mice. Only homozygous mutant showed a 10% weight loss/h. 
(C) TEWL assay measured on ventral surface of newborn wild-type (+/+, 
n = 9), heterozygous (+/−, n = 18), and homozygous (−/−, n = 15) 
mutant mice.
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at the level of hematoxylin and eosin–stained paraffi n section 

 images (Fig. 5). No substantial differences were observed in 

the basal, spinous, or granular layers. The stratum corneum, 

however, appeared to be more tightly packed compared with 

that of control skin. To unveil defects in differentiation, we 

analyzed the level of expression and distribution of terminal 

differentiation markers. Western blot analysis revealed that 

the levels of keratin 5 and 10, loricrin, and involucrin were 

not altered in the Alox12b-null versus control mice (Fig. 6). 

However, a complete loss of fi laggrin monomer in knock-

out epidermis was associated with enhanced levels of pro-

teolytically derived intermediates, indicating that proteolytic 

processing of profi laggrin was impaired. On the other hand, 

immunofluorescence showed a comparable distribution of 

the fi laggrin expression in both genotypes. Similarly, other 

markers for epidermal differentiation, such as repetin and des-

mosomal proteins (claudin and occludin), revealed staining 

profi les that did not differ between the 12R-LOX–defi cient 

mice and their wild-type counterparts (unpublished data). 

Immunofl uorescence analysis indicated absence of the hyper-

proliferative keratin 6. Accordingly, the proliferation index 

as determined by Ki67 staining was also unchanged (45.4 ± 

3.2% vs. 46.4 ± 0.6% in control and knockout mice, respec-

tively). This indicates that basal cell proliferation was un-

affected. The structure of the hair follicles also seemed to 

be normal.

Structural abnormalities in skin 
of 12R-LOX–defi cient mice
Histological analysis of methylene blue–stained semithin sec-

tions revealed obvious structural anomalies in the skin of the 

homozygous mutant mice (Fig. 7, A–C). Numerous vacuole-

like structures were observed in the upper granular layers of the 

epidermis underlying the stratum corneum. The vesicles were 

variable in size and irregularly distributed. Ultrathin section 

EM confi rmed these fi ndings at higher resolution (Fig. 7, D–L). 

Although no gross differences could be detected in the horny 

layers of the skin from the Alox12b−/− mice, the cells of the 

Figure 4. Defective development of skin permeability barrier in 12R-
LOX−/− mice. (A) Barrier-dependent dye exclusion assay on wild-type and 
12R-LOX−/− mice at the ages indicated. In control embryos, a decrease in 
skin permeability was observed from E16.5 to E17.5 as the barrier is ac-
quired in the dorsal to ventral pattern, whereas 12R-LOX−/− embryos re-
mained completely stained. (B) Lucifer yellow dye penetration assay of 
newborn wild-type and 12R-LOX−/− mice. Dye penetration (green fl uores-
cence) across the stratum corneum was observed in skin of 12R-LOX−/− 
mice, but not in controls. Sections were counterstained with propidium iodide 
(red fl uorescence). The dotted line shows the border of stratum corneum–
stratum granulosum, the dashed line shows the epidermal–dermal junction. 
Bars, 20 μm.

Figure 5. Histological analysis of 12R-LOX−/−skin. Representative skin 
sections from newborn wild-type and 12R-LOX−/− littermates stained with 
hematoxylin and eosin. Staining shows a more tightly packed SC, but an 
otherwise normal stratifi ed organization of keratinocytes in knockout skin. 
sc, stratum corneum; sg, stratum granulosum; ss, stratum spinosum; sb, 
stratum basale. Bars, 20 μm.

Figure 6. Aberrant processing of profi laggrin. Equal amounts of protein 
extracts from wild-type (+/+), heterozygous (+/−), and homozygous mu-
tant (−/−) epidermis were separated trough SDS-PAGE and subjected to 
Western blot analysis using specifi c antibodies against keratin 10 (K10), 
keratin 5 (K5), loricrin (Lor), β-actin (Act), fi laggrin (Fil), and involucrin 
(Inv). Note the aberrant profi laggrin–fi laggrin processing in the knockout 
epidermis with the complete loss of the fi laggrin monomers and the accu-
mulation of proteolytically derived intermediates (arrows).



12R-LOX AND EPIDERMAL BARRIER • EPP ET AL. 177

granular layer regularly contained vesicular structures of variable 

sizes (Fig. 7 E, asterisks). Sometimes they seemed to have fused. 

Most vesicles were electron-lucent with some smaller vesicles 

inside (Fig. 7, I and K). At higher magnifi cations, we could 

 observe lamellar structures adhering to the surrounding mem-

brane (Fig. 7, J and L). Normal looking lamellar bodies were 

also present (Fig. 7 F). Using ruthenium tetroxide after fi xation, 

the typical lipid lamellae within lamellar bodies (Fig. 7 G), as 

well as the stacks of lipid lamellae representing extruded con-

tent of lamellar bodies in the transition zone between the last 

granular cell layer and the fi rst cornifi ed cell (Fig. 7 H), could 

be visualized. No difference in respect to the organization of the 

stacks or number of lamellae could be determined so far.

Increased fragility of cornifi ed envelope (CE)
We prepared CEs from control and 12R-LOX−/− newborn epi-

dermis to assess morphology and resistance to mechanical 

stress. Microscopic examination revealed no obvious structural 

abnormalities of the CEs isolated from mutant mice. Upon ul-

trasound treatment, however, the percentage of intact corneo-

cytes from homozygous mutant mice decreased signifi cantly 

(P > 0.01) faster with time, compared with CEs from wild-type 

and heterozygous littermates, indicating an increased fragility 

of the mutant CEs (Fig. 8).

Altered lipid composition
The structural anomalies in the skin of 12R-LOX–null mice in-

dicated that defects in the lipid metabolism may be associated 

with the observed phenotype. It is well known that lipid constit-

uents, such as free fatty acids, cholesterol, and ceramides, play 

an important role in epidermal barrier function. On the extracel-

lular surface of the CE there is a covalently bound layer of very 

long chain ω-hydroxyceramides and ω-hydroxy-fatty acids, 

called the lipid envelope. The exact function of the lipid envelope 

still remains unclear, but there is evidence that interactions of 

protein-bound lipids with free intercellular lipids contribute to 

the patterned organization of the lamellae seen in EM (Madison, 

2003). It has been shown that alterations in lipid composition of 

free or protein-bound lipids impair barrier function of the skin 

and lead to an increased TEWL (Meguro et al., 2000; Macheleidt 

et al., 2002). We thus determined the levels of these lipids in the 

skin of wild-type and mutant mice. The levels of total fatty acids, 

Figure 7. Ultrastructural anomalies in 12R-LOX−/− mice. 
(A–C) Methylene blue staining images of semithin sections 
from newborn dorsal skin of wild-type (A) and knockout 
mice (B and C). Arrows indicate irregular vesicular struc-
tures in the upper granular layers of the knockout skin. 
(D–L) Back skin of wild-type (D) and 12R-LOX−/− (E–L) 
mice was processed for transmission EM. (D) Normal 
horny and granular layer in wild-type epidermis. Asterisks 
depict keratohyalin granules. (E) Abnormal vesicular struc-
tures (asterisks) within granular layer. (F) Normal lamellar 
bodies (arrows) within granular layer. (G) Normal lamel-
lar body; improved presentation of lamellae stacks by 
 ruthenium tetroxide postfi xation. (H) Improved visualization 
of lipid lamellae stacks between uppermost epidermal cell 
and fi rst keratinized cell. (I and J) Membranous material 
resembling the content of lamellar bodies adheres to the 
marginal membrane of irregular vesicles (arrows). (K and L) 
Details of irregular vesicles; membranous material and 
small vesicle. Bars: (A–C) 10 μm; (D) 2.25 μm; (E) 3 μm; 
(F) 500 nm; (G and H) 50 nm; (I and J) 513/250 nm; 
(K and L) 500/200 nm.
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cholesterol, and total free ceramides were not substantially dif-

ferent between control and 12R-LOX–defi cient mice (not de-

picted). In the free ceramide fraction, we found mainly ceramide 

EOS, NS, and NP, as well as two ceramide AS species (Fig. 9). 

These results are in accordance with previously published results 

(Doering et al., 1999, 2002). However, in the protein-bound frac-

tion, fi ve different species could be detected on HPTLC (B1–5). 

The exact identities of these species still have to be elucidated, 

but B4 is possibly ceramide OS. Signifi cant differences were 

found in the subfractions of ester-bound lipids between wild-

type and knockout mice. Whereas species B1 was found signifi -

cantly increased, three other species (B2, B4, and B5) were 

almost completely absent in knockout epidermis (Fig. 9).

Discussion
We report the successful targeted disruption of Alox12b in mice, 

which refl ects features of ARCI and shows that 12R-LOX has a 

crucial role in the establishment of the epidermal barrier.

The epidermis is a self-renewing stratifi ed epithelium that 

serves as a protective barrier against mechanical, chemical, and 

biological insults; it is also a water-impermeable barrier that 

prevents excessive loss of body fl uids. This function is critical 

for the survival of all terrestrial vertebrates and is established 

during late embryonic development. Identifi cation of the mo-

lecular nature of the barrier is still under investigation. There 

is consent, however, that specialized structures in the stratum 

Figure 8. Increased fragility of mutant CE. CEs were iso-
lated from 12R-LOX−/− and wild-type epidermis, and 
samples of 5 × 106 CEs in 0.5 ml extraction buffer were 
treated with ultrasound at 4°C. (A) At indicated time 
points, 5-μl aliquots were removed, and the percentage of 
intact CEs was determined with the hematocytometer. 
Data are presented as the mean ± the SD. *, P < 0.01. 
(B) Morphological appearance of wild-type and knockout 
CEs. In untreated CEs, no clear difference between knock-
out and control skin was observed. After 20 min of treat-
ment, most mutant CEs were destroyed, whereas a large 
fraction of wild-type CEs were still intact. Shown is one of 
two independent experiments with similar results. Bars, 
100 μm.

Figure 9. Altered ceramide composition of 12R-LOX−/− 
epidermis. Free and ester-linked epidermal lipids were ex-
tracted and separated using TLC. Ceramides are classi-
fi ed as suggested in previous works (Motta et al., 1993; 
Robson et al., 1994). B1–5 are lipids extracted after alka-
line hydrolysis, most likely ester-linked epidermal lipids. 
(A) A representative TLC analysis of lipids extracted from 
wild-type and knockout epidermis. (B) Individual lipid lev-
els quantifi ed by densitometric analysis. Data are pre-
sented as the mean ± the SEM. n = 3. *, P < 0.01. 
Shown is one of two independent experiments with simi-
lar results.
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corneum, the CE, and extracellular lipid lamellae, as well as 

tight junctions in the granular layers, play essential roles in the 

development of the skin barrier function (Tsuruta et al., 2002; 

Segre, 2003).

The stratum corneum is formed from granular cells during 

terminal differentiation as keratinocytes ascend from the prolif-

erative cell type in the basal layer through the spinous and gran-

ular layers to end up as fl at, dead corneocytes within the 

cornifi ed layer. The CE is assembled underneath the plasma 

membrane by sequential incorporation and transglutaminase-

mediated cross-linking of precursor proteins, followed by the 

covalent attachment of extracellular lipids. At the granular 

layer–stratum corneum interface, the lamellar bodies that are 

thought to be elements of the tubulovesicular TGN fuse with the 

cell membrane and extrude their contents to form a multilamel-

lar lipid complex that fi lls most of the intercellular space.

Pathological abnormalities in the stratum corneum, with 

the subsequent breakdown of epidermal barrier function, are 

observed in various skin diseases, which are referred to as ich-

thyoses. The loss of barrier function can be caused by several 

defects in the molecular mechanisms involved in the proper as-

sembly of the CE or the intercorneocyte lipids. Several defec-

tive genes have been identifi ed in ichthyosiform skin disorders 

so far, including genes coding for CE components (keratins, 

 loricrin, and fi laggrin) and proteins involved in the assembly and 

protein turnover (transglutaminase 1 and LEKTI), and, most 

frequently, genes coding for enzymes involved in lipid meta-

bolism (e.g., fatty aldehyde dehydrogenase, steroid sulfatase, 

glucocerebrosidase, ATP-binding cassette transporter, (for review 

see Richard, 2004). Recent studies from our group and others 

have linked inactivating mutations in the genes of 12R-LOX 

and eLOX-3 to the development of ARCI (Jobard et al., 2002; 

Eckl et al., 2005).

12R-LOX is a member of the LOX multigene family, ex-

hibiting, among mammals, a unique R-stereospecifi city of oxy-

gen insertion. The enzyme is found almost exclusively in skin. 

In mouse epidermis, a predominant mRNA expression was ob-

served in the differentiated keratinocytes (Sun et al., 1998; 

Heidt et al., 2000). By immunofl uorescence analyses, we could 

now localize the 12R-LOX protein at the surface of the keratino-

cytes in the stratum granulosum, indicating a function in late 

epidermal differentiation. Interestingly, an almost identical ex-

pression pattern was observed for eLOX-3 (not depicted), sug-

gesting a colocalization of both LOX in the plasma membranes 

of the stratum granulosum. The implication of 12R-LOX and 

eLOX-3 in ARCI has brought forth the concept that both en-

zymes function in the same metabolic pathway to convert ara-

chidonic acid via 12R-HPETE to hepoxilin- and trioxilin-like 

metabolites that are critically involved in keratinocyte differen-

tiation (Jobard et al., 2002; Eckl et al., 2005; Yu et al., 2005; 

Lefevre et al., 2006). As shown for enzymes of the leukotriene 

synthesis, which form multimeric complexes in the nuclear 

membrane (Mandal et al., 2004), a coordinated membrane orga-

nization of these two enzymes, probably together with other en-

zymes and/or accessory proteins, may be a prerequisite for full 

enzyme activity and the proper generation of the bioactive lipid 

products of the 12R-LOX–eLOX-3 pathway in skin.

Indeed, under cell-free conditions, the recombinant hu-

man 12R-LOX exhibits only low catalytic activity converting 

arachidonic acid to 12R-HPETE, whereas the mouse enzyme 

does not metabolize free arachidonic acid, but only esterifi ed 

substrates, including arachidonic acid and linoleic acid methyl 

esters (Siebert et al., 2001). This has raised the question as to 

the nature of the endogenous substrate and the functional ho-

mology of the mouse and human enzyme (Krieg et al., 1999; Yu 

et al., 2005, 2006). The results of this paper demonstrate an es-

sential role of 12R-LOX in the development of epidermal bar-

rier function in mice, documenting a functional homology of 

the mouse and human enzyme in skin.

12R-LOX–defi cient mice exhibited the most severe pheno-

type regarding water barrier dysfunction reported so far. All 

knockout mice died within 3–5 h after birth as a result of severe 

dehydration. The mice lost �10% of their weight per hour. 

Other knockout mouse models with epidermal barrier defects, 

including mice defi cient in KLF4 (Segre et al., 1999), claudin 

(Furuse et al., 2002), E-cadherin (Tunggal et al., 2005), LEKTI 

(Descargues et al., 2005), CAP1 (Leyvraz et al., 2005), and 

FATP4 (Herrmann et al., 2003), exhibited substantially less 

weight loss, resulting in a longer life span of the transgenic 

mice. Analyses of dye permeability and of TEWL clearly dem-

onstrated a severely defective inward and outward epidermal 

barrier function in 12R-LOX–defi cient mice, while the barrier 

function of tight junctions was unaffected. The knockout mice 

failed to develop a functional epidermal barrier, which was ac-

quired in wild-type mice around E17. At this time point, expres-

sion of 12R-LOX, which starts in embryonic skin at E15.5, was 

shown to reach high levels that persists at later embryonic stages 

and in newborn skin (Sun et al., 1998).

Defective skin barrier function typically results in com-

pensatory mechanisms involving epidermal hyperproliferation, 

hyperkeratosis, and/or parakeratosis, which are observed fre-

quently in ichthyosiform human skin and various mouse models 

(Elias, 2004). 12R-LOX–defi cient mice did not display such an 

obvious cutaneous phenotype, which may not develop because 

of the early neonatal lethality. In fact, markers of keratinocyte 

proliferation and terminal differentiation appeared to be unaf-

fected, with the exception of fi laggrin.

This late terminal differentiation marker is the result of 

a complex proteolytic processing of profi laggrin by several en-

zymes, including protein phosphatases, proteases, and protease 

inhibitors (Resing et al., 1984). Only mature fi laggrin aggre-

gates keratin fi laments to form macrofi brils that crisscross the 

cornifi ed cells of the stratum corneum, and it is an integral part 

of CE that contributes to its structural integrity. Thus, the de-

creased mechanical strength of CE from Alox12b−/− mice may 

be caused by the reduced profi laggrin processing. Furthermore, 

fi laggrin monomers are degraded and provide free amino acids 

that, together with derivatives of amino acids and specifi c salts, 

constitute the natural moisturizing factor that is involved in the 

hydration of the stratum corneum (Rawlings et al., 1994). Thus, 

reduction of fi laggrin monomers might explain the more densely 

packed stratum corneum, which could contribute to the impaire-

ment of the barrier function in the mutant mice. In fact, dis-

turbance of the proteolytic profi laggrin processing by gene 
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inactivation has been shown to be associated with impairment 

of barrier function in several mouse models (Presland et al., 

2000; List et al., 2002, 2003; Leyvraz et al., 2005; Descargues 

et al., 2005). In humans, lack of proteolytically processed fi lag-

grin monomers caused by loss-of-function mutations have been 

shown to underlie ichthyosis vulgaris and discussed to be a ma-

jor predisposing factor for atopic dermatitis (Sandilands et al., 

2006; Smith et al., 2006).

An important component of the epidermal barrier is the 

arrangement of intra- and extracellular lipid accumulation in the 

stratum granulosum and stratum corneum, in particular the pro-

cessing of intracellular lipids and the process of their extrusion 

into the intercellular space. Ultrastructural analysis revealed 

structural anomalies in the upper granular layers of the skin of 

12R-LOX knockout mice that may refl ect defects in the lipid 

metabolism associated with the observed phenotype. The fea-

tures of the abnormalities are reminiscent of characteristic alter-

ations found in a subgroup of ichthyosis congenital patients 

(Anton-Lamprecht, 1992). They include electron-lucent vesi-

cles of variable size with lamellar structures reminiscent of the 

content of lamellar bodies adhering to the surrounding mem-

brane. The appearance of these structures suggests that they 

may originate from defects in the assembly and/or extrusion of 

lamellar bodies, probably caused by aberrant lipid processing. 

Electron microscopic examination with ruthenium tetroxide 

postfi xation to preserve lipid structure did not reveal major 

 disturbances of the intercellular lipid lamellae. However, we 

presently cannot exclude more subtle local disturbances of these 

structures. Nevertheless, this analysis refers to a specifi c defect 

in lipid content and organization that may contribute to the 

 barrier impairment observed in Alox12b−/− mice. Although the 

levels of total fatty acids, cholesterol, and free ceramides did 

not show substantial differences between control and mutant 

mice, we observed signifi cant alterations in ester-bound lipids 

from Alox12b−/− mice. Ceramides covalently attached to invo-

lucrin and other CE peptides are major constituents of the corni-

fi ed lipid envelope that surrounds the corneocyte and have 

been discussed to be critical components of the barrier function 

(Elias et al., 2000; Doering et al., 2002). The identity of the lipid 

species altered in the 12R-LOX–defi cient epidermis remains to 

be elucidated.

It also remains to be established weather 12R-LOX is di-

rectly involved in the enzymatic lipid processing or in the gen-

eration of lipid metabolites that are involved in the regulation of 

lipid metabolism. It is of interest to note that the epoxyalcohol 

metabolites produced by the 12R-LOX–eLOX-3 pathway are 

able to transactivate peroxisome proliferator-activated receptors 

(PPARs; Yu, 2005). Recent studies provide evidence for a role 

of PPARs in the regulation of terminal keratinocyte differentia-

tion, including lipid synthesis and processing (Di Poi et al., 

2004; Elias, 2005). Moreover, it was recently reported that 

PPAR activators are able to accelerate permeability barrier re-

covery after acute barrier disruption (Man et al., 2006).

In summary, this study indicates that the 12R-LOX–

eLOX-3 pathway plays a key role in the process of epidermal 

barrier acquisition by affecting lipid metabolism, as well as pro-

tein processing. 

Materials and methods
Generation of 12R-LOX–defi cient mice
Mouse genomic DNA for the targeting vector was cloned from a 129/ola 
mouse PAC library (clone RPCI-21 K13407Q2; obtained from P.J. de Jong 
and K. Osoegawa, Roswell Park Cancer Institute, Buffalo, NY). By using a 
7.4-kb BamHI fragment and a 4.4-kb PCR-generated fragment containing 
exon 7–12, a homology region was cloned into pBluescript KS+ (Strata-
gene) that spanned from 226 nt upstream of exon 3 to 1,081 nt downstream 
of exon 11 (Krieg et al., 1999). A tk/neo selection cassette fl anked by two 
loxP sites was inserted 230 bp upstream of exon 8, replacing a 222-bp 
AccI fragment; a third loxP site was inserted 84 bp downstream of exon 8, 
deleting a BamHI site (Fig. 1 A). The linearized targeting vector was electro-
porated into ES cells. Screening was done by PCR at both the 5′- and 3′-end 
using primer pairs consisting of one vector-specifi c primer and one endo-
genous Alox12b-specifi c primer located outside of the targeting region. The 
primers used were as follows: 5′-end screening, 5′-C C G T C G A C C T C G A C-
C A G C C T G T C T A C A -3′ and 5′-C T G A G G C C A G A A G A T C A C A A G T T C A A G -
3′; 3′-end screening, 5′-G A G G C A T C C G G G G A T C A T A A C T T C G T A T A -3′ and 
5′-C A G G T A T A G T T C G C A A G C A G G T G G -3′. Alox12b gene targeting was 
further verifi ed by Southern blot hybridization of BamHI-digested genomic 
DNA using 5′- and 3′-end probes fl anking the recombination arms (Fig. 1 A). 
Two homologous recombinants were identifi ed out of 300 analyzed. ES 
cells were injected into C57BL/6 blastocysts to generate chimeric mice, 
which were mated with C57BL/6 females. F1 heterozygotes (Alox12b+/fl ox) 
were then crossed to 129S6. Mice were bred at the central animal facility 
of the German Cancer Research Center. All animals were kept under an 
artifi cial day/night rhythm and were fed standard food pellets (Altromin), 
with sterile water available ad libitum. The animal experiments were 
 performed in accordance with the guidelines of the Arbeitsmeinschaft der 
Tierschutzbeauftragten in Baden-Württemberg (Offi cials for Animal Welfare) 
and were approved by the Regierrungspräsidum Karlsruhe, Germany.

To convert the targeted allele into a mutant allele structurally lacking 
the essential exon 8 of the Alox12b gene, F3 Alox12b+/fl ox heterozygotes 
were crossed with CMV-Cre transgenic mice exhibiting ubiquitous Cre ex-
pression (Schwenk et al., 1995). Complete excision of the resistance cas-
sette and exon 8 in offspring mice was confi rmed by Southern blot and 
PCR analyses (Fig. 1 C). Heterozygous mutant mice (Alox12b+/−) were 
bred with 129S6, and their heterozygous offspring were intercrossed to 
obtain homozygous mutant mice (Alox12b−/−). Genotyping was per-
formed by PCR using 100 ng DNA isolated from tail and organs as a tem-
plate and the primers ol1231 (5′-A C C C T C C C C T G C T G C T G T T G C -3′) and 
ol709 (5′-A G A G A C C T C C C T T G T T G A G A A G -3′) to distinguish the 459-bp 
mutant allele band from the 1,075-bp wild-type band (Fig. 1 D).

RNA isolation and RT-PCR
Total RNA was isolated from epidermis as previously described (Kinzig 
et al., 1999) and mRNA was reverse transcribed with MuLV reverse transcrip-
tase using the SuperScript II fi rst strand synthesis system (Invitrogen). The 
resulting cDNA was subjected to PCR with the primer pairs ol230 (5′-C T G-
T G C C C C G A T G T G C T T G C T G -3′) and ol709 (3′-A G A G A C C T C C C T T G T T G-
A G A A G -5′) for 12R-LOX. As a control, β-actin cDNA was amplifi ed as a 
housekeeping gene.

Antibodies
Rabbit polyclonal antipeptide antibodies against 12R-LOX and eLOX-3 have 
been previously described (Eckl et al., 2005). Mouse anti–12R-LOX mAb 
were raised using GST-12R-LOX fusion protein as immunogen. Other primary 
antibodies used were goat anti-actin (Santa Cruz Biotechnology), rabbit 
anti–Claudin-1, rabbit anti-occludin (both from Invitrogen), mouse anti-fi laggrin 
(Monosan), rabbit anti-keratin 5, rabbit anti-keratin 10, rabbit anti-involucrin, 
and rabbit anti-Ki67 (all from CRP). Secondary antibodies used were Alexa 
Fluor 488 goat anti–mouse IgG (Invitrogen), CY3 anti–rabbit IgG (BD Biosci-
ences), and anti–goat antibodies (Santa Cruz Biotechnology).

Epidermal protein extraction and Western blot analysis
Trunk epidermis of newborn mice was separated mechanically from the 
dermis after incubation for 30 s at 56°C in PBS. Epidermal proteins were 
extracted as described elsewhere (Tunggal et al., 2005; Leyvraz et al., 
2005), and Western blot analysis was performed as previously described 
(Eckl et al., 2005).

Histological and immunofl uorescence analysis
For light microscopic observation, samples were fi xed for 24 h with 4% 
formalin in PBS, dehydrated in 70% ethanol, and embedded in paraffi n. 
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5-μm sections were mounted on slides, dewaxed, rehydrated, and stained 
with hematoxylin and eosin. For methylene blue staining, skin was fi xed 
with 1% glutaraldehyde for 24 h and embedded in epon. 1-μm sections 
were stained with methylene blue. For immunofl uorescence microscopy, 
cryosections (3-μm thick) were fi xed in acetone for 10 min at −20°C and 
permeabilized with 0.05% Triton X-100 in PBS and fl ushed with PBS. The 
slides were blocked in 1% BSA in PBS for 1 h and incubated with the pri-
mary antibody for 1 h. After washing three times (10 min each) in PBS, 
samples were incubated with a fl uorescent dye coupled with antibody and 
Hoechst 33258 diluted in blocking buffer for 30 min and washed three 
times. Sections were embedded in mounting medium (DakoCytomation) 
and examined by light microscopy using a photomicroscope (Axioplan 2) 
with a 25× Plan-Neofl uar objective (both Carl Zeiss MicroImaging, Inc.). 
Images were acquired with a high sensibility digital black/white AxioCam 
(Carl Zeiss MicroImaging, Inc.).

Preparation of CEs and sonication experiments
CEs were purifi ed and sonicated at 4°C for various time points in a bath 
sonicator, as previously described (Koch et al., 2000).

Functional analyses of the epidermal barrier
To determine the rate of fl uid loss, newborns were separated from their 
mother and kept at 37°C. The body weight was monitored every 30 min, 
until time of death of homozygous mutant mice. The rate of TEWL from the 
skin of newborn mice was determined by using a Tewameter (Courage + 
Khazaka). For penetration assays, backs of newborn mice were immersed 
in 1 mM Lucifer yellow in PBS at 37°C. After 1 h incubation, mice were 
killed and the skin was dissected out. Frozen sections were counterstained 
with propidium iodide and penetration of the dye was assessed by immuno-
fl uorescence microscopy.

Toluidine blue staining of mouse embryos
The developmental stage of mouse embryos was determined based on the 
assumption that fertilization occurred in the middle of the dark cycle the 
day before plugs were identifi ed. The embryos were subjected to methanol 
dehydration and subsequent rehydration, as previously described (Koch 
et al., 2000), washed in PBS for 1 min, and stained for 30 min in 0.1% 
 toluidine blue O/PBS. After destaining in PBS for 15 min, the embryos 
were photographed.

EM
All specimens were fi xed for at least 2 h at room temperature in 3% glutar-
aldehyde solution in 0.1 M cacodylate buffer, pH 7.4, cut into pieces of 
�1 mm3, washed in buffer, postfi xed for 1 h at 4°C in 1% osmium tetroxide 
or in 0.5% ruthenium tetroxide, rinsed in water, dehydrated through 
graded ethanol solutions, transferred into propylene oxide, and embedded 
in epoxy resin (Glycidether 100; Merck). Ultrathin sections were treated 
with uranyl acetate and lead citrate and examined with an electron micro-
scope (EM 400; Philips).

Lipid analysis
Chemicals. Ceramide AS was purchased from Sigma-Aldrich. Ceramide 
NS was provided by Sederma, and ceramides EOS, EOP, NP, and AP 
were provided by Degussa.

Lipid extraction. Lipid extraction followed a previously described 
protocol (Doering et al., 1999) with slight modifi cations. In brief, epider-
mis homogenate was extracted twice, fi rst overnight with chloroform (meth-
anol 1:2 at room temperature) and second with 2 ml chloroform (methanol 
2:1 for 1 h at room temperature). The organic layers of both extraction 
steps were combined, the solvent was removed using a Christ Speed-Vac 
Alpha RVC/Alpha 2–4 (Christ), and the residue was redissolved in 100 μl 
methanol/chloroform at a 1:1 ratio.

For recovery of protein-bound lipids, the pretreated pellet was incu-
bated with 1 ml of 1 N NaOH in methanol at a ratio of 19:1, followed by 
extraction with 2 ml of chloroform for 1 h at 37°C. The organic layer was 
removed and washed with 3 ml of PBS–buffer; after phase separation, the 
solvent of the organic layer was evaporated in the Speed-Vac and the resi-
due was redissolved in 100 μl methanol/chloroform at a ratio of 1:1. Lipid 
extracts were stored at −20°C until use.

Lipid HPTLC. Analysis of epidermal lipids by HPTLC followed a previ-
ously described protocol (Farwanah et al., 2002). In brief, 50 μl of a sam-
ple were applied on a prewashed TLC plate, together with reference lipids, 
using an Automatic TLC Sampler 4 (CAMAG). The development of the 
plates has been performed automatically using an AMD-2 apparatus 
(CAMAG). The AMD procedure used included a 17-step gradient of decreas-

ing polarity, as previously described (Farwanah et al., 2002). After drying, 
the plates were sprayed with an aqueous solution of 10% CuSO4 (wt/vol), 
8% H3PO4 (vol/vol), and 5% methanol (vol/vol) using a ChromaJet DS20 
(Sarstedt), charred in a drying oven at 180°C for 30 min, and, fi nally, 
scanned using a TLC Scanner 3 (CAMAG). Integration and quantifi cation 
based on peak areas were performed using WinCATS software (CAMAG). 
Quantitative results for all ceramides were related to ceramide NP.
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