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Abstract: Evolution in the fields of science and technology has led to the development of newer
applications based on Artificial Intelligence (AI) technology that have been widely used in medical
sciences. AI-technology has been employed in a wide range of applications related to the diagnosis of
oral diseases that have demonstrated phenomenal precision and accuracy in their performance. The
aim of this systematic review is to report on the diagnostic accuracy and performance of AI-based
models designed for detection, diagnosis, and prediction of dental caries (DC). Eminent electronic
databases (PubMed, Google scholar, Scopus, Web of science, Embase, Cochrane, Saudi Digital Library)
were searched for relevant articles that were published from January 2000 until February 2022. A total
of 34 articles that met the selection criteria were critically analyzed based on QUADAS-2 guidelines.
The certainty of the evidence of the included studies was assessed using the GRADE approach.
AI has been widely applied for prediction of DC, for detection and diagnosis of DC and for classifi-
cation of DC. These models have demonstrated excellent performance and can be used in clinical
practice for enhancing the diagnostic performance, treatment quality and patient outcome and can
also be applied to identify patients with a higher risk of developing DC.

Keywords: artificial intelligence; dental caries; diagnosis; detection; prediction

1. Introduction

Oral diseases like dental caries (DC) and periodontal diseases pose a major disease
burden and are considered non-fatal causes of disability affecting people of all age groups
globally [1]. The pain and discomfort that is often associated with DC may eventually
compromise the individual’s sleep, diet, social well-being and self-esteem which can affect
quality of life [2]. According to the global burden of disease, untreated DC are the most
prevalent and common factor affecting health [1]. On the global scale, it is estimated that
DC are prevalent among 2.3 billion adults with secondary dentition, and among 530 million
children with deciduous dentition [3].

In 2015, the global cost of oral diseases was reported to exceed 540 billion dollars,
consequently leading to major health and financial burden [4]. Early and accurate detection
of DC can enable cost effective preventive measures and more conservative treatment
options, reducing the healthcare costs [5]. Traditionally, visual inspection in combination
with radiographic assessment is the routine diagnostic approach for DC. However, studies
indicated the presence of considerable variability in its reliability and accuracy, affected
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mainly by the level of dentists’ clinical experience. Sensitivity can range between 19–92%
for occlusal and 39–94% for proximal DC [6]. Various parameters like shadow, contrast,
and brightness in radiographs may have an impact on the diagnosis [7].

The recent advancements in techniques used for the detection and diagnosis of DC re-
sulted in the development of novel methods that aim to overcome the constraints of clinical
and radiographic diagnosis. These include ultrasonic detection of caries, laser fluorescence,
digital imaging fiber-optic trans-illumination (FOTI), quantitative light-induced fluores-
cence (QLF), digital subtraction radiography (DSR), tuned aperture computed tomography
(TACT), and electrical conductance measurement (ECM) [8,9]. Laser fluorescence has rela-
tively higher sensitivity in diagnosing early DC in comparison with other methods [10].
However, studies have reported on the limitations of these techniques; FOTI demonstrates
low sensitivity when used for the diagnosis of proximal DC [11] and ultrasonic devices
are only capable of detecting established DC [12]. Caries risk prediction models like the
caries-risk assessment tool (CAT), caries management by risk assessment (CAMBRA), and
Cariogram are commonly used for predicting DC. Nevertheless, these models lack suffi-
cient evidence to prove their effectiveness. A systematic review reported that the sensitivity
and specificity of Cariogram ranged between 41–75% and 65.8–88%, respectively [13].

With the present evolution in the fields of science and technology, newer applications
based on artificial intelligence (AI) technology have been widely used in medical sciences.
These models have demonstrated excellent performance and high accuracy and sensitivity
in performing their intended tasks, including diagnosing eye disorders, and breast and
skin cancers, detection and diagnosis of pulmonary nodules [14–17]. AI models have also
been widely applied in detection, segmentation and classification of coronavirus disease of
2019 (COVID-19) using computerized tomography (CT) medical images and these models
have demonstrated substantial potential in rapid diagnosis of COVID-19 [18]. Hence, with
a growing interest in these AI-based applications, these models have now been employed in
a wide range of applications related to the diagnosis of oral diseases and have demonstrated
phenomenal precision and accuracy in their performance [19–22]. Studies have reported
on the application and performance of the AI models in various disciplines of dentistry,
which includes orthodontics, restorative dentistry and prosthodontics [23–25]. However,
there are no systematic review articles exclusively reporting on application of AI models
on dental caries. Additionally, detecting DC using AI-based models has been found to be
a cost-effective approach, where the AI-based DC detection model demonstrated higher
accuracy in detecting DC in comparison with trained examiners, with fewer chances of
false negative errors [26].

Hence, the aim of this systematic review is to report on the diagnostic accuracy and
performance of AI-based modes designed for detection, diagnosis, and prediction of DC.

2. Materials and Methods
2.1. Search Strategy

This systematic review was executed in compliance with the standards of preferred
reporting items for systematic reviews and meta-analysis for diagnostic test accuracy
(PRISMA-DTA) [27]. The literature search for this paper was based on the population,
intervention, comparison, and outcome (PICO) criteria (Table 1).

Eminent electronic databases (PubMed, Google scholar, Scopus, Web of science, Em-
base, Cochrane, Saudi Digital Library) were searched for relevant articles that were pub-
lished from January 2000 until February 2022. The literature search was based on the
Medical Subject Headings (MeSH) terms like dental caries, tooth decay, cavity, diagnosis,
detection, prediction, artificial intelligence, machine learning, deep learning (DL), auto-
mated system, convolutional neural networks (CNNs), artificial neural networks (ANNs)
and deep neural networks (DCNNs). A combination of these MeSH terms using Boolean
operators and/or were used in the advanced search for the articles. Manual searches for
additional articles was also carried out in the college library based on the reference lists
extracted from the initially selected articles.
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Table 1. Description of the PICO (P = Population, I = Intervention, C = Comparison, O = Outcome) elements.

Research Question What is the performance of AI-based models designed for detection, diagnosis and
prediction of DC?

Population Patients who underwent investigation for DC

Intervention AI applications for detection, diagnosis and prediction of DC

Comparison Expert/Specialist opinions, Reference standards/models

Outcome

Measurable or predictive outcomes such as accuracy, sensitivity, specificity,
ROC = receiver operating characteristic curve, AUC = area under the curve,
AUROC = area under the receiver operating characteristic, ICC = intraclass
correlation coefficient, IOU = intersection-over-union, PRC = precision recall curve,
statistical significance, F1 scores, vDSC = volumetric dice similarity coefficient,
sDSC = surface dice similarity coefficient, PPV= positive predictive value,
NPV = negative predictive value, mean decreased gini (MDG), mean decreased
accuracy (MDA) coefficients, intersection over union (IoU), dice coefficient

2.2. Study Selection

Article selection was conducted in two phases. During the initial phase, articles were
selected based on the relevance of the title and abstract to the research question. In this
phase, the article search was done by two authors (S.B.K and F.B) independently, and
this process generated 448 articles. These articles were further screened to eliminate the
duplicates, ultimately leading to the exclusion of 168 articles. The remaining 280 articles
were evaluated based on the eligibility criteria.

2.3. Eligibility Criteria

In this systematic review, the articles were included based on being (a) Original
research articles reporting on application of AI-based models in diagnosis, detection and
prediction of DC, (b) Articles reporting on the data sets used for training/validating
and testing of the model, (c) Articles with clear information on quantifiable performance
outcome measures, (d) The type of study design did not limit its inclusion.

The articles excluded were (a) Articles with only abstracts, without full text availability,
(b) Conference proceedings, commentaries, editorial letters, short communications, review
articles and scientific posters uploaded online, (c) Articles published in non-English languages.

2.4. Data Extraction

280 articles obtained from the initial phase were further evaluated based on these
eligibility criteria. Following this, the number of articles decreased to 35. In the final phase,
the authors’ details and information were concealed and the articles were assigned for
further analysis by two authors (M.A and L.A), who were not involved in the initial phase of
evaluation. In order to determine the degree of consistency between these two authors, inter-
rater reliability was assessed. Cohen’s kappa showed 84% agreement between these authors.
These articles were critically analyzed based on the guidelines of quality assessment and
diagnostic accuracy tool (QUADAS-2) [28]. This is a revised tool used for assessing the
quality of studies that have reported on diagnostic tools. Quality assessment was carried
out based on four main domains (patient selection, index test, reference standard, and
flow and timing), which were evaluated for risk of bias and applicability concerns [28].
The authors further had contrasting opinions about the inclusion of one article that did
not clearly mention the outcome measures. The issue was resolved upon discussion with
another author (A.F), and a decision to exclude the article was made. A total of 34 articles
were subjected to quantitative synthesis (Figure 1).
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Figure 1. Flow chart for screening and selection of articles.

3. Results

Thirty-four articles [29–62] that met the selection criteria were assessed for quantitative
data (Table 2). The research trend shows that most of the research on application of AI on
DC was conducted within the last few years and the trend shows a gradual increase in this
area of research.

3.1. Qualitative Synthesis of the Included Studies

AI has been applied for prediction of DC (n = 8) [29,33,40,45,46,53,55,57], for detection
and diagnosis of DC (n = 24) [30–32,34–36,38,39,41–44,47–50,52,56,58–62], and for classifica-
tion of DC (n = 2) [31,37,45,51]. The data from selected articles were retrieved and entered
into the data sheet.

With this data, performing a meta-analysis was not possible due to the heterogeneity
between the studies in the software and data sets used for assessment of performance of
the AI models. Therefore, the descriptive data was presented based on the application of
AI models for which it has been designed.

3.2. Study Characteristics

The data mainly included details of the study (details of authors, publication year, type
of algorithm architecture used, study objective, number of patients/images/photographs/
radiographs for validating and testing, study factor, study modality, comparisons, evalua-
tion accuracy/average accuracy/statistical significance, outcomes and conclusions).
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Table 2. Details of the studies that have used AI-based models for detection, diagnosis and prediction of DC.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

1
Zanella-
Calzada
et al. [29]

2018 Prospective
cohort ANNs

To analyze the
dietary and

demographic
factors that

determine oral
health and DC

6868 cases for
training, 2944

cases for testing

DC
lesions Data sets

National
Health and
Nutrition
Examina-

tion Survey
Data

Accuracy of 0.69, AUC
values of 0.69 and 0.75 (+)Effective

This ANNs-based
model

demonstrated
high accuracy in
diagnosing DC

based on dietary
and demographic

factors

This model can
help dentists by

providing an easy,
free and fast tool
for the diagnosis

of DC

2 Lee et al.
[30] 2018 Retrospective

cohort DCNNs

Deep CNN
algorithms

(GoogLeNet
Inception v3) for

detection and
diagnosis of DC

on periapical
radiographs

2400 periapical
radiographs for

training, 600
periapical

radiographs for
testing

Gray/white
matter

and
lesions

Periapical
radio-

graphs

Not
mentioned

Accuracy of 89.0%,
88.0%, 82.0% and AUC

of 0.917, 0.890, 0.845
for premolar, molar,

and both premolar and
molar models
respectively.

(+)Effective

This CNNs-based
model

demonstrated
good performance

in detecting DC

This models is of
potential use for

detection and
diagnosis of DC

3 Choi
et al. [31] 2018 Retrospective

cohort CNNs

An automatic
model for

detection of
proximal DC in

periapical
radiographs

475 periapical
radiographs

DC
lesions

Periapical
radio-

graphs

Experts
and naïve

CNN
approach

as
reference
models

F1max 0.74 with False
Positives 0.88 (+)Effective

This model was
superior to the
system using a

naïve CNN.

This model was
successful in

detecting
proximal DC

4 Casalegno
et al. [32] 2019 Retrospective

cohort CNNs

DL model for the
automated

detection and
localization of DC

in near-infrared
transillumination

(TI) images

217 grayscale
images

185 for training

DC
lesions

TI
images

Reference
deep

neural
networks
models

and
experts

Mean intersection-
over-union (IOU) score

of 72.7% on a 5-class
segmentation task and
IOU score of 49.5% and
49.0% and ROC curve
of 83.6% and 85.6% for
proximal and occlusal

carious lesions,
respectively

(+)Effective

This DL approach
holds promising

results for
increasing the

speed and
accuracy of caries’

detection

This model can
support dentists

by providing
high-throughput

diagnostic
assistance and

improving patient
outcomes
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

5 Hung
et al. [33] 2019 Retrospective

cohort ANNs

ML model for
diagnostic

prediction of root
caries

7272 cases for
training and 1818

for testing
Variables Data sets

Trained
dental pro-
fessionals

and
reference
models

Accuracy of 97.1%,
precision of 95.1%,
sensitivity of 99.6%,
specificity of 94.3%
and AUC of 0.997

(+)Effective
This model

demonstrated the
best performance

This model can be
implemented for
clinical diagnosis

and can be
utilized by dental

and non-dental
professionals

6 Cantu
et al. [34] 2020 Retrospective

cohort CNNs

To assess the
performance pf a

DL model for
detecting DC on

bitewing
radiographs

3293 Bitewing
radiographs for
training and 252

for testing

DC
lesions

Bitewing
radio-

graphs

4 experi-
enced

dentists

Accuracy of 0.80;
sensitivity of 0.75,
specificity of 0.83

(+)Effective

This CNN-based
model was

significantly more
accurate than the

experienced
dentists.

This model can
assist dentists

particularly in the
detection of initial
caries lesions on

bitewings

7 Geetha
et al. [35] 2020 Cross

sectional ANNs

ANN based
model for

diagnosing DC in
digital

radiographs

145 digital
radiographs

DC
lesions

Intraoral
digital
images
(digital
radio-

graphs)

Experienced
dentist

Accuracy of 97.1%,
false positive (FP) rate
of 2.8%, ROC area of

0.987 and PRC area of
0.987

(+)Effective

This model based
on

back-propagation
neural network
can predict DC
more accurately

Improved
algorithms and

high quantity and
quality datasets

may demonstrate
better results in
clinical dental

practice

8 Schwendicke
et al. [36] 2020 Cross

sectional CNNs

CNN based model
for detecting DC

in
near-infrared-light
transillumination

(NILT) images.

226 extracted
teeth images

DC
lesions

NILT
images

2 experi-
enced

dentists

Mean AUC was 0.74.
Sensitivity of 0.59,

specificity of 0.76, PPV
was 0.63, NPV 0.73

(+)Effective

These models
(Resnet18 and

Resnext50)
showed satisfying

results in
detecting DC

These models can
be of relevance in

settings, like
schools, care

homes or rural
outpost centers
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

9
Karhade
D.S et al.

[37]
2021 Retrospective

cohort ANNs

Automated
MLalgorithm for

classification early
childhood caries

(ECC)

6040
(5123 subjects for

training 1281
subjects for

testing)

Variables Data sets

External
National

Health and
Nutrition
Examina-

tion Survey
(NHANES)
dataset/ 10
trained and
calibrated

clinical
examiners

AUC of (0.74),
Sensitivity of (0.67),
and PPV of (0.64)

(+)Effective

This ML model’s
performance was

similar to the
reference model

This model is
valuable for ECC

screening

10 Duong
et al. [38] 2021 Cross

sectional ANNs

An automated ML
for detecting DC

using smart phone
photographs

620 teeth
(80% for

validating and
20%for testing)

DC
lesions

Photos
using
smart-
phone

4 trained
and

calibrated
dentists

Accuracy of 92.37%,
sensitivity 88.1% and
specificity of 96.6%

best model were and
for “Cavitated versus

(visually
non-cavitated(VNC) +

no Surface
change(NSC)),

whereas for “VNC
versus NSC they were

83.33%, 82.2%, and
66.7% respectively

(+)Effective

This model
demonstrated an

auspicious
potential for

clinical
diagnostics with

reasonable
accuracy and
minimal cost

This support
vector machine
requires further

improvement and
verification

11 Duong
et al. [39] 2021 Cross

sectional CNNs

AI based model
for detection and
classification of
DC using smart

phone
photographs

587 extracted teeth
80% for training,

10% for validating
10% for testing

DC
lesions

Photos
using
smart-
phone

Trained
dentists

Accuracy of 87.39%,
sensitivity of 89.88%,

and specificity of
68.86%

(+)Effective

This model
demonstrated

good accuracy in
the detection of

DC.
GoogleNet

performed better
than ResNet18
and ResNet50

This model needs
to be trained with
both in vivo and

vitro images.
There is a need for

developing a
good imaging
technique for

occlusal surfaces
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

12
Ramos-
Gomez

et al. [40]
2021 Retrospective

cohort ANNs

ML algorithm
(Random forest)
for identifying

survey items that
predict DC

182 subjects Variables Data sets 2 trained
dentists

For classifying active
caries parent’s age

(MDG = 0.84; MDA =
1.97), unmet needs

(MDG = 0.71; MDA =
2.06).

Predictors of caries
with parent’s age

(MDG = 2.97; MDA =
4.74), with oral health
problems in past 12

months (MDG = 2.20;
MDA = 4.04

(+)Effective
This model

showed potential
for screening DC

This model
showed potential
for screening for

DC among
children using

survey answers

13 Askar
et al. [41] 2021 Cross

sectional CNNs

DL model for
detecting white

spot lesions using
digital camera
photographs

51 patients
2781 labelled teeth

White
spot

Lesions

Digital
camera
images

Trained
dentist

Detecting any lesions
(PPV/NPV) between

0.77–0.80.
For detecting fluorotic
lesions 0.67 (PPV) to

0.86 (NPV).
For detecting

other-than-fluorotic
lesions 0.46 (PPV) to

0.93 (NPV).

(+)Effective

This model
showed satisfying
accuracy to detect
white spot lesions,

particularly
fluorosis

There is a need for
more data sets for
generalizability

14 Chen
et al. [42] 2021 Retrospective

cohort CNNs

DL model for
detecting dental

disease on
periapical

radiographs

2900
DC/

Periodontal
disease
(PDL)

Digital
periapi-

cal
radio-

graphs

Reference
mod-

els/trained
experts

DC and PDL were
detected with

precision, recall, and
average precision

values less than 0.25
for mild level, 0.2–0.3

for moderate level and
0.5–0.6 for severe level
Lesions were generally
detected with precision

and recall between
0.5–0.6 at all levels

(+)Effective

These model can
detect DC using

periapical
radiographs

These models are
best utilized for
the detection of

lesions with
severe levels.

Hence the models
need more

training at each
level

15 Devlin
et al. [43] 2021 Randomized

control trial CNNs

To detect
enamel-only
proximal DC

using AssistDent
artificial

intelligence (AI)
software on

bitewing
radiographs

24 patients DC
lesions

Bitewing
radio-

graphs

6 dental
specialists

(for
grading)

23 dentists
as compari-

son

High accuracy of
diagnosis with

sensitivity of 71% and
decrease in specificity
of 11% are statistically
significant (p < 0.01) in

comparison with
expert dentists

(+)Effective

This model
significantly

improved dentists’
ability to detect

enamel-only
proximal caries

Can be used as a
supportive tool by
dentist to practice

preventive
dentistry
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

16 Bayrakdar
et al. [44] 2021 Retrospective

cohort CNNs

DL models
(VGG-16 and

U-Net) for
automatic caries

detection and
segmentation on

bitewing
radiographs

621 patients (2325
images, 2072 for
training, 200 for

validating and 53
for testing)

DC
lesions

Bitewing
radio-

graphs

5 experi-
enced
experi-
enced

observers

For caries detection
sensitivity 0.84,

precision 0.81, and
F-measure rates 0.84

and for caries
segmentation were

sensitivity 0.86,
precision 0.84, and

F-measure rates 0.84

(+)Effective

These models can
accurately detect
DC. There were
also beneficial in
the segmentation

of DC

The performance
of these models
was superior to

specialists and can
be beneficial for

clinicians in
clinical decision

making

17 Zaorska
et al. [45] 2021 Prospective

cohort CNNs

AI model for
predicting DC

based on chosen
polymorphisms

95 patients DC
lesions Data sets

Logistic
regression

model

Sensitivity of 90,
specificity of 96%

overall accuracy of
93% (p < 0.0001), AUC
was 0.970 (p < 0.0001).
Prediction accuracy of

90.9–98.4%

(+)Effective

This model
displayed high

accuracy in
predicting DC

The knowledge of
potential risk

status could be
useful in

designing oral
hygiene practices

and
recommending

dietery habits for
patients

18 Pang
et al. [46] 2021 Prospective

cohort ANNs

AI based ML
model for caries
risk prediction

based on
environmental

and genetic
factors

953 patients (633
for training and
320 for testing)

DC
lesions Data sets

Logistic
regression

model
AUC of 0.73 (+)Effective

This model could
accurately identify

individuals at
high and very

high caries risk

This is a powerful
tool for

identifying
individuals at

high caries risk at
community-level

19 Zheng
et al. [47] 2021 Cross

sectional CNNs

To evaluate and
compare three
CNNs models

(VGG19, Inception
V3, and ResNet18)

for diagnosing
deep DC.

844 (717 for
training and 127

for testing)

Deep DC
lesions Radiographs

VGG19,
Inception
V3, experi-

enced
dentists

Accuracy = 0.82,
precision = 0.81,
sensitivity = 0.85

specificity = 0.82, AUC
= 0.89,

(+)Effective
CNN model

ResNet18 showed
good performance

With clinical
parameters this

model
demonstrated

enhanced
performance

20 Lian
et al. [48] 2021 Cross

sectional CNNs

To evaluate DL
methods for
detecting DC

lesions (nnU-Net)
and classifying

DC (DenseNet121)
on panoramic
radiographs

1160 (1071 for
training and

validating, 89 for
testing)

DC
lesions

Panoramic
radio-

graphs

6 expert
expert

dentists

IoU 0.785, Dice
coefficient values of

0.663.
Accuracy of 0.986
recall rate of 0.821

(+)Effective

These models
displayed similar
results to that of
expert dentists

These models
need to be

explored for
disease diagnosis

and treatment
planning
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

21 Moran
et al. [49] 2021 Cross

sectional CNNs

CNN model
(Inception) for

identifying
approximal DC in

bitewing
radiographs

112 (45 for testing) DC
lesions

Digital
bitewing

radio-
graphs

ResNet
model Accuracy of 73.3% (+)Effective

This model
demonstrated

promising results
in comparison

with the reference
model

This model can be
used for assisting

clinicians in
decision making

22
Mertens
S et al.

[50]
2021 Randomized

control trial CNNs

CNN model for
detection of

proximal DC
using bitewing

radiographs

140 patients (20
testing)

DC
lesions

Bitewing
radio-

graphs

5 expert
expert

dentists

ROC of 0.89 and
sensitivity of 0.81 with
statistical significance

(p < 0.05)

(+)Effective

Dentists using AI
model

demonstrated
statistically
significant

performance in
comparison with

other dentists

This model can
increase

diagnostic
accuracy of

dentists

23 Vinayahalingam
et al. [51] 2021 Retrospective

cohort CNNs

To evaluate CNN
based model

(MobileNet V2)
for classifying DC

on panoramic
radiographs

500 (320 for
training, 80 for

validating 100 for
testing)

DC
lesions

Panoramic
radio-

graphs
Reference
standards

Accuracy of 0.87,
sensitivity of 0.86,

specificity of 0.88, AUC
of 0.90, F1 score of 0.86

(+)Effective

This model
displayed good
performance in
detecting DC in

third molars

This model is an
initiation for
developing a

model that can
assist clinicians in

deciding on
removal of third

molars

24 Lee et al.
[52] 2021 Cross

sectional CNNs

To evaluate deep
CNN (U-Net)

models for
detection of DC in

bitewing
radiographs

304 for training,
50 for testing

DC
lesions

Bitewing
radio-

graphs

3 expert
dentists

Precision of 63.29%;
recall of 65.02%;

F1-score of 64.14%
(+)Effective

This model
displayed

considerable
performance in
detecting DC

This model can
help clinicians in

detecting DC
more accurately

25 Hur et al.
[53] 2021 Retrospective

cohort ANNs

MLmodels for
predicting DC on

second molars
associated with
impacted third
molars in CBCT
and panoramic

radiographs

1321 patients
(2642 impacted

mandibular third
molars,1850 for
training and 792

for testing)

DC
lesions

Panoramic
radio-

graphs
and

CBCT
images

Single
predictors

as
reference

ROC of 0.88 to 0.89 (+)Effective

This ML model
demonstrated
significantly

superior
performance in

prediction of DC
in comparison to

other models

This model can be
of great value for

clinicians for
preventive

treatment and
decision making
on third molars
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
Patients/Images/
Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

26
De

Araujo
Faria

et al. [54]
2021 Retrospective

cohort ANNs

AI based model
for prediction and

detection of
radiation-related
caries (RRC) on

panoramic
radiographs

15 head and neck
cancer (HNC)

patients
DC

lesions

Digital
Panoramic

radio-
graphs

2 Expert
dentists

For detection accuracy
of 98.8% AUC = 0.9869
and for prediction and

accuracy of 99.2%,
AUC = 0.9886

(+)Effective

This model
displayed high

accuracy in
detection and

diagnosis of RRC

These models can
aid in designing

preventive dental
care for patients

with HNC

27 Wu et al.
[55] 2021 Prospective

cohort ANNs

MLmodel
identifying

caries-related oral
microbes in

cross-sectional
mother-child

dyads

37 salivary
samples and 36
plaque samples
for children DC

prediction models.
32 plaque samples

for mother DC
prediction models.

DC
lesions Data sets Reference

standards

AUC of 0.82 for the
child’s saliva model,
AUC of 0.78 for the

child’s plaque model,
and AUC of 0.73 for
the mother’s plaque

model

(+)Effective

These models
achieved desirable

results for both
mother and

children

More variables
need to be

considered in the
future for

fine-tuning the
models

28 Mao
et al. [56] 2021 Cross

sectional CNNs

CNN based model
for identifying DC
and restorations

on bitewing
radiographs

278 images (70%
for training and
30% for testing)

DC
lesions

Bitewing
radio-

graphs

Reference
models

GoogleNet,
Vgg19, and
ResNet50

Accuracy of 95.56% for
restoration judgment

and accuracy of 90.30%
for DC judgment

(+)Effective

AlexNet model
demonstrated

high accuracy in
comparison to
other models

This model can
assist dentists in
better decision

making and
treatment
planning

29 Park
et al. [57] 2021 Prospective

cohort ANNs

ML based AI
models (XGBoost,

random forest,
LightGBM

algorithms and
Final model) for
predicting early
childhood caries

4195 (2936 for
training and 1259

for testing)

DC
lesions Data sets

Traditional
regression

model
AUROC = 0.774–0.785 (+)Effective

ML-based models
showed favorable

performance in
predicting DC

Can be useful in
identifying high
risk groups and
implementing

preventive
treatments

30 Huang
et al. [58] 2021 Cross

sectional CNNs

AI based models
AlexNet, VGG-16,

ResNet-152,
Xception, and

ResNext-101 for
detecting DC

748 cross-sectional
2D images(599 for
training and 149

for testing)

DC
lesions

OCT and
micro-

CT
images

5 clinicians

ResNet-152
demonstrated highest

accuracy rate of 95.21%
and sensitivity of

98.85% specificity of
89.83%, and the PPV of
93.48% and NPV was

98.15%,.

(+)Effective

ResNet-152 CNNs
models are better
than clinicians at

distinguishing
pathological tooth
structures using

OCT images

These models can
aid clinicians in

providing patients
with more
accurate

diagnoses
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Table 2. Cont.

Serial
No. Authors Year of

Publication
Study

Design
Algorithm
Architec-

ture
Objective of the

Study

No. of
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Photographs for

Testing

Study
Factor Modality Comparison

if Any

Evaluation
Accuracy/Average

Accuracy/Statistical
Significance

Results
(+)Effective,

(−)Non
Effective (N)

Neutral

Outcomes Authors Sugges-
tions/Conclusions

31 Bayraktar
et al. [59] 2022 Cross

sectional CNNs

Assess the
performance of

CNN based model
(YOLO) for
diagnosis of

interproximal
caries lesions on

bitewing
radiographs

1000 (800 for
training and 200

for testing)

DC
lesions

Digital
bitewing

radio-
graphs

2 experi-
enced

dentists

Accuracy of 94.59%,
sensitivity was 72.26,

specificity was 98.19%,
PPV was 86.58%, NPV
was 95.64% and overall

AUC was 87.19%.

(+)Effective

This CNN-based
model showed

good performance
with high

accuracy scores

This model can
assist clinicians in

diagnosing
interproximal DC

32 Zhang
et al. [60] 2022 Cross

sectional CNNs

To assess the
performance of

CNN based model
(ConvNet) for
detecting DC

using oral
photographs

625 Subjects (3932)
oral

photographs(2507
for training and
1125 for testing)

DC
lesions

Oral pho-
tographs

3 board
certified
dentists

AUC of 85.65%,
sensitivity of 81.90% (+)Effective

The DL model
displayed

promising results
in detecting DC

on oral
photographs

This is a
cost-effective tool
for screening of

DC

33 Kühnisch
et al. [61] 2022 Retrospective

cohort CNNs

To evaluate a
(CNNs) based

model for
detection and

categorization of
DC using oral
photographs

2417 photographs
(1891 for training

and 479 for
testing)

DC
lesions

Oral pho-
tographs

Expert
standards

Accuracy of 92.5%,
sensitivity of 89.6;
specificity of 94.3;
AUC was 0.964

(+)Effective

This DL model
displayed
promising
accuracy in

detecting DC
using intraoral
photographs

This model can be
of potential use
and feasible in

future

34 Zhu et al.
[62] 2022 Retrospective

cohort CNNs

A CNNs based
model CariesNet

to delineate
different caries

degrees on
panoramic

radiographs

1159 (900 for
training, 135 for

validating and 124
for testing)

DC
lesions

Panoramic
radio-

graphs
Reference

models

Mean Dice coefficient
of 93.64%, accuracy of
93.61%,F1 score 92.87,
precision of 94.09 and

recall of 86.01

(+)Effective

This CNN-based
model effectively

segmented the DC
lesions from
panoramic

radiographs

This model was
successful in

segmenting even
small lesions from

large images

ML = machine learning, ANNs = artificial neural networks, CNNs = convolutional neural networks, DCNNs = deep neural networks, c-index = concordance index, CT = computed
tomography scans, CBCT = cone-beam computed tomography, OCT = optical coherence tomography.
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3.3. Outcome Measures

The outcome was measured in terms of task performance efficiency. The outcome
measures were reported in terms of accuracy, sensitivity, specificity, ROC = receiver operat-
ing characteristic curve, AUC = area under the curve, AUROC = area under the receiver
operating characteristic, ICC = intraclass correlation coefficient, IOU = intersection-over-
union, PRC = precision recall curve, statistical significance, F1 Scores, vDSC = volumetric
dice similarity coefficient, sDSC = surface dice similarity coefficient, PPV = positive predic-
tive value, NPV = negative predictive value, MDG = mean decreased gini, MDA = mean
decreased accuracy coefficients, IoU = intersection over union, dice coefficient [23–56].

3.4. Risk of Bias Assessment and Applicability Concerns

The quality assessment of the 18 articles included in this study was done using the
guidelines of QUADAS-2 [13]. This tool was originally produced in 2003 by collaboration
between the Centre for Reviews and Dissemination, University of York, and the Academic
Medical Centre at the University of Amsterdam. Modified versions have been adopted by
Cochrane Collaboration, NICE and AHRQ. The current version is widely used in systematic
reviews to evaluate the risk of bias and applicability of primary diagnostic accuracy studies.
QUADAS-2, consists of four key domains: patient selection; index test; reference standard;
flow and timing. The current assessment of risk and applicability based on QUADAS-2
shows that the majority of studies have low risk and a very small number of studies show
high risk of bias. (Supplementary Table S1) (Figure 2).
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3.5. Assessment of Strength of Evidence

The articles included in this systematic review were assessed for the certainty of the
evidence using the grading of recommendations assessment, development and evaluation
(GRADE) approach. The certainty of evidence is rated based on five domains: risk of bias,
inconsistency, indirectness, imprecision, or publication bias and are ultimately categorized
as either very low, low, moderate, or high certainty of evidence [63] (Table 3).



Diagnostics 2022, 12, 1083 14 of 20

Table 3. Assessment of Strength of Evidence.

Outcome Strength of Evidence (GRADE)

Application and performance in AI models in prediction of DC
[29,33,40,45,46,53,55,56] ⊕⊕⊕#

Application and performance in AI models in detection and
diagnosis of DC

[30–32,34–36,38,39,41–44,47–50,52,54,56,58–62]
⊕⊕⊕⊕

Application and performance in classification of DC [37,42] ⊕⊕⊕#

⊕⊕⊕⊕ Strong Evidence; ⊕⊕⊕# Moderate Evidence.

4. Discussion

Oral diseases like DC and periodontal diseases are some of the major public health
issues affecting people of all age groups in developing and developed countries. In most
cases, DC remain undiagnosed because of deep fissures and tight interproximal contacts,
making them difficult to be detected in the early stages, eventually leading to their detection
in the advanced stages. Early detection of DC reduces the disease burden and need for
invasive treatment procedures which can ultimately improve treatment outcome [32].
Clinical oral examination using a dental probe/explorer along with radiographs is regarded
as the most conventional method in detecting DC. However, studies have also reported on
the variations in accuracy and reliability among clinicians using this method, influenced by
their clinical experience [7,64,65].

Automated decision support systems based on AI technology are new developments
in the field of medical sciences. AI-based models have also been widely applied in the
field of dentistry and have demonstrated exceptional performance in tooth detection, tooth
numbering, diagnosing and predicting oral cancer, periodontal diseases, and root fractures,
orthodontic diagnosis, and detection of jaw lesions, cysts and tumors [19–22]. Considering
the challenges and limitations dentists face in detecting DC during clinical examination,
there is a need for developing AI-based automated models that can assist dentists in
decision making, increasing the accuracy of DC detection and diagnosis.

Several factors influence the risk of developing DC like oral hygiene practices, dietary
habits, socio-economic status, utilization of dental care services, in addition to attitude
towards oral health [66]. Hence, identifying the factors that determine the risk of devel-
oping DC in an individual is essential for its prevention. AI-based models have been
widely applied for prediction of DC. Zanella-Calzada et al. [29] reported on an AI-based
model for analyzing the dietary and demographic factors that determine DC using data
sets, where the model demonstrated an accuracy of 0.69 and AUC values of 0.69 and
0.75. This model showed good accuracy for classifying individuals with and without
caries based on dietary and demographic factors. The main advantage of this model is
that the data used for training the model was obtained from subjects from different re-
gions, hence providing robustness in results, and eliminating the bias to subject selection.
Hung M et al. [33] proposed an AI-based ML model for diagnostic prediction of root caries.
This model demonstrated an excellent performance with an accuracy of 97.1%, a precision
of 95.1%, the sensitivity of 99.6%, the specificity of 94.3% and an AUC of 0.997. Although
the model demonstrated excellent performance, there were certain limitations related to
the data sets used for its development. In this model, the data was obtained from a sample
of the United States (US) population, and therefore, would be more representative of the
US nationals and not of patients with different demographic data. Another important
limitation was that the authors did not consider some important covariates like lifestyle
and oral hygiene factors.

Ramos-Gomez et al. [40] described an AI-based ML algorithm (Random Forest) for
identifying survey items that predict DC. The model demonstrated a mean decreased Gini
coefficient (MDG) of 0.84; and a mean decreased accuracy (MDA) of 1.97 for classifying
active DC based on parent’s age. For predicting DC based on parents age, the model
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demonstrated an MDG = 2.97; MDA = 4.74. This model can be of potential use for screening
children for DC based on the survey data. The study had several limitations which
include the limited sample size for testing obtained from limited hospital records that
are not representative of the general population. In addition, the data regarding children’s
oral hygiene practices were obtained from their parents, giving rise to social desirability
bias. Zaorska et al. [45] reported on an AI model for predicting DC based on chosen
polymorphisms. The model demonstrated a sensitivity of 90%, a specificity of 96%, an
overall accuracy of 93% (p < 0.0001) and the AUC was 0.970 (p < 0.0001). Prediction
accuracy of 90.9–98.4% was achieved by this model. The main strength of this model was
the homogeneous age and gender of study subjects, and that the assessment of performance
was carried out using two different statistical approaches, rendering results that are more
reliable. However, the sample used for validating the model was limited. Pang et al. [46]
reported on an AI-based ML model for caries risk prediction based on environmental and
genetic factors. The model demonstrated an AUC of 0.73. This model could accurately
identify individuals at high and very high caries risk. However, the sample was confined
to only one center and early signs of DC were not detected in this study. In a study by
Hur et al. [53] an ML model for predicting DC on second molars associated with impacted
third molars was tested. This model demonstrated good accuracy with a ROC of 0.88 to
0.89. However, the authors did not consider the major DC contributing factors like oral
hygiene and dietary intake of sugars. Park et al. [57] also reported on an ML model for
predicting early childhood caries. The model demonstrated a favorable performance with
an AUROC of 0.774–0.785. Limitations of this study included low specificity values and
potential bias resulting from the consideration of maternal variables solely. Additionally,
the authors did not consider important variables like feeding practices, sugar intake and
usage of fluoride.

Undiagnosed and untreated DC are major public health problems affecting billions of
people worldwide. Early detection of DC can significantly reduce the need for invasive
treatment and ultimately the cost of care. Hence, diagnostic tools with high accuracy
in detecting DC are needed. Lee et al. [30] reported on a DL model for detecting and
diagnosing DC on periapical radiographs. The model demonstrated an accuracy of 89.0%,
88.0%, 82.0% and AUC of 0.917 for premolar, molar, and both premolar and molar models
respectively. DL model CapsNet is a recently developed model made of deep players and
is very effective for processing visual factors from posture, speed, hue, and texture [67].
Therefore, models of this nature are enabled with improved and optimized features for
the detection and diagnosis of DC [68]. Although the model demonstrated considerable
performance, there were limitations related to unconsidered clinical parameters, limited
number of radiographs, and the inclusion of permanent teeth only [30]. Choi et al. [31]
reported on an automated model for the detection of proximal DC in periapical radio-
graphs. The proposed model was found to be superior to the system using naïve CNNs.
Casalegno et al. [32] reported on a DL model for the automated detection and localization
of DC. This model demonstrated promising results with increased speed and accuracy
in detecting DC. However, the model had some shortcomings, where physically unreal-
istic labeling of artifacts took place, especially in underexposed and overexposed areas.
Cantu et al. [34] proposed a DL model for detecting DC on bitewing radiographs. The
model demonstrated an accuracy of 0.80; sensitivity of 0.75 and specificity of 0.83. The
accuracy of this model was higher than that of experienced dentists in detecting initial
lesions. The main strength of this study was the large number of balanced data sets used in
training and testing. These results were similar to the results of another study conducted by
Lee et al. [52] on a deep CNNs (U-Net) model for detection of DC on bitewing radiographs,
where the model demonstrated a precision of 63.29%, a recall of 65.02%, and an F1-score of
64.14%. However, the limitation of this study was related to the small number of data sets.
Geetha et al. [35] reported on an AI-based model for diagnosing DC on digital radiographs.
The model showed excellent performance with an accuracy of 97.1%, a false positive (FP)
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rate of 2.8% and a ROC area of 0.987. However, the model must be improved to enable
classification of DC based on lesion depth.

Another study conducted by Schwendicke et al. [36] also reported on an AI-based
model for detecting DC. The performance of this model was comparable with that of
trained dentists. The limitation of this study was related to the reliability of the examiners.
Duong et al. [37] also reported on an AI-based model for detecting DC using photographs
on smart phones. The model demonstrated an accuracy of 92.37%, a sensitivity of 88.1%
and a specificity of 96.6%. However, there was no heterogeneity in the data sets and the
presence of plaque, debris, stains and shadow may have affected the results. A study
conducted by Zhang et al. [60] suggested a CNNs-based model (ConvNet) for detecting
DC using oral photographs. The model demonstrated an AUC of 85.65% and a sensitivity
of 81.90%. However, the dataset was collected from a single organization, which can limit
its applicability. In addition, factors like the presence of plaque and stains could have
affected the obtained results. Another study conducted by Kühnisch et al. [61] reported on
a CNNs-based model for detection and categorization of DC using oral photographs. In
this study, the model demonstrated an excellent accuracy of 92.5%, a sensitivity of 89.6%,
and a specificity of 94.3%. This study had taken into consideration the limitations of the
previously reported studies and therefore only considered photographs that were free from
plaque, calculus and saliva.

A study by Devlin et al. [43] proposed an AI-based model for detecting enamel-only
proximal DC using bitewing radiographs. The model demonstrated significant results
in comparison with expert dentists. Bayrakdar et al. [44] also reported on AI-based DL
models (VGG-16 and U-Net) for automatic caries detection and segmentation on bitew-
ing radiographs. These models demonstrated superior performance in comparison with
experienced specialists. However, this study was compromised by the limited data sets
obtained from one center. Zheng et al. [47] compared three CNNs models (VGG19, Incep-
tion V3, and ResNet18) for diagnosing deep DC. CNNs model ResNet18 showed good
performance in comparison with the other two models and the trained dentists. However,
diagnosis of cases was done by a panel of experienced dentists, which is not the gold
standard for diagnosing deep DC and pulpitis. Nevertheless, histological testing, which
is the gold standard, is not practically feasible in clinical practice [69]. Another study
conducted by Moran et al. [49] reported on a CNNs model (Inception) for identifying ap-
proximal DC on bitewing radiographs. The model demonstrated an accuracy of 73.3%. This
model demonstrated promising results in comparison with the reference model (ResNet).
Mertens et al. [50] reported on a CNNs model for the detection of proximal DC using
bitewing radiographs. The model demonstrated a ROC of 0.89 and a sensitivity of 0.81
and showed significant results in comparison with five expert dentists. The main strength
of this study was its design being a randomized controlled trial. On the other hand, the
main drawback was related to the limited sample of data sets which were obtained from
one center. Another study conducted by Mao et al. [56] used a CNNs-based model for
identifying DC on bitewing radiographs. The model demonstrated an accuracy of 90.30%
for detecting DC. The AlexNet model showed a high accuracy in comparison with other
models. To achieve better accuracy, the authors had reduced the size of photographs used
in the training process, which reduced training time and increased the accuracy of the
model. A study conducted by Bayraktar et al. [59] described a CNNs based model (YOLO)
for the diagnosis of interproximal caries lesions on bitewing radiographs. The model
demonstrated an excellent accuracy of 94.59%, a sensitivity of 72.26%, and a specificity of
98.19%. The main strength of this study was the large number of data sets which yielded
near perfect results. However, the model could not classify the DC lesions according to
their location in enamel and/or dentin.

Lian et al. [48] also reported on DL models for detecting DC and classifying DC on
panoramic radiographs. The models demonstrated Dice coefficient values of 0.663 and an
accuracy of 0.986. Their performance was similar to that of expert dentists. The strength
of this study was the large data which was meticulously collected and labeled by three
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expert dentists. Controversial results were additionally revised by a fourth expert dentist.
However, the panoramic radiographs used in this study were obtained from one single
machine, hence, the performance may vary with panoramic radiographs obtained using
equipment from another company. A study conducted by De Araujo Faria et al. [54]
reported on an AI-based model for the prediction and detection of radiation-related caries
(RRC) on panoramic radiographs. This model demonstrated an excellent detection accuracy
of 98.8% and an AUC of 0.9869. For prediction, it showed an accuracy of 99.2% and an AUC
of 0.9886. However, the limited sample size may have affected the results, as the patients in
that particular center were usually at an advanced DC stage by the time the radiographs
were obtained. Zhu et al. [62] also reported on a CNNs-based model (CariesNet) to delineate
different degrees of caries on panoramic radiographs. The model demonstrated an excellent
performance with a mean dice coefficient of 93.64%, an accuracy of 93.61%, an F1 score of
92.87% and a precision of 94.09%. The large number of datasets used to train and validate
the model was a strength of this study.

Huang et al. [68] reported on AI-based models AlexNet, VGG-16, ResNet-152, Xcep-
tion, and ResNext-101 for detecting DC on OCT and micro-CT images. ResNet-152 demon-
strated the highest accuracy rate of 95.21% and a sensitivity of 98.85% in comparison with
the other three models. However, the study utilized a manual verification process, where
human errors are inevitable.

5. Conclusions

AI models have been widely explored for prediction, detection and diagnosis of DC.
These models have demonstrated excellent performance and can be used in clinical practice
for identifying patients with higher DC risk and can also aid in enhancing the diagnostic,
treatment quality and patient outcome. The results of the predictive models can help in
planning preventive dental care, designing oral hygiene care and dietary plans for patients
with high risk of DC. These models can assist dentists as a supportive tool in clinical
practice and can also assist non-dental professionals in detecting and diagnosing DC more
accurately in schools and rural health centers. Although these models have demonstrated
excellent performance, there are certain limitations related to the size and heterogeneity
of the data sets reported in most of these articles. Hence, these models need additional
training and validation for better performance.
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