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Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American

countries, especially in Brazil, whose etiologic agent is the thermodimorphic fungus of the

genus Paracoccidioides, comprising cryptic species of Paracoccidioides brasiliensis, S1,
PS2, PS3 and Paracoccidioides lutzii. The mechanisms involved in the initial interaction of

the fungus with cells of the innate immune response, as dendritic cells (DCs), deserve to be

studied. Prostaglandins (PGs) are eicosanoids that play an important role in modulating

functions of immune cells including DCs. Here we found that human immature DCs derived

from the differentiation of monocytes cultured with GM-CSF and IL-4 release substantial

concentrations of PGE2, which, however, were significantly inhibited after challenge with

P. brasiliensis. In vitro blocking of pattern recognition receptors (PRRs) by monoclonal anti-

bodies showed the involvement of mannose receptor (MR) in PGE2 inhibition by the fungus.

In addition, phenotyping assays showed that after challenge with the fungus, DCs do not

change their phenotype of immature cells to mature ones, as well as do not produce IL-12

p70 or adequate concentrations of TNF-α. Assays using exogenous PGE2 confirmed an as-

sociation between PGE2 inhibition and failure of cells to phenotypically mature in response

to P. brasiliensis. We conclude that a P. brasiliensis evasion mechanism exists associated

to a dysregulation on DCmaturation. These findings may provide novel information for the

understanding of the complex interplay between the host and this fungus.

Introduction
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American coun-
tries, especially in Brazil, whose etiologic agent is the thermodimorphic fungus of the genus
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Paracoccidioides, comprising cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and
Paracoccidioides lutzii [1–3]. Hosts are infected through the respiratory tract by mycelium
propagules found in soil that reach the alveoli where conidia convert to yeast, the infective
form [4, 5]. Thereafter, yeasts can disseminate by lympho-haematogenous route, inducing a
disease with a wide spectrum of symptoms in a small number of individuals suggesting that in
most of exposed subjects innate and adaptive mechanisms efficiently assure resistance [6, 7].
Studies in human and animals have shown that resistance to P. brasiliensis is determined by a
Th1 response [8–15] with TNF-α and IFN-γ playing an essential role [16], while the suscepti-
bility involves a Th2 response with main participation of IL-4, IL-5, IL-10 and TGF-β [17–19].
Recently, an important study showed that individuals with PCM infection (PI) present a pre-
dominant Th1 response while those with chronic/adult form (AF) develop a Th17/Th22 pattern.
The acute, subacute/juvenile form (JF) is the most severe form of the disease being character-
ized by Th2/Th9 type response [20]. Although aforementioned studies have shown that
resistance/susceptibility in PCM can be explained by the involvement of different subpopula-
tions of CD4+ cells, the mechanisms leading to preferential induction of any subpopulation are
still unclear and those involved in the initial interaction of the fungus with cells of the innate
immune response, mainly the dendritic cells (DCs), deserve to be studied.

Dendritic cells have the primary function to bind, capture, kill and process microorganisms,
and migrate to peripheral lymphoid organs where they mature for efficiently triggering and in-
structing a T cell response [21–23]. Thus, the nature of the DCs/microorganisms interactions
defines the predominant type of effector T cells. However, for the most of organisms, including
fungi, the receptors signaling pathways and other molecules involved in this modulation are
poorly understood. Among them pattern recognition receptors (PRRs) take an important role
in the binding of microorganism to DC [24, 25] triggering events that modulate the phagocyto-
sis, antigen processing, induction of oxidative metabolism, and cytokine production [26–29].

P. brasiliensis induces migration of DCs from murine lungs to lymph nodes, however, bone
marrow-derived DCs of these mice have low capability to induce a Th1 response [30], confirm-
ing previous studies on susceptible animals showing that fungus inhibits the expression of class
II MHC molecules as well as IL-12 and TNF- α production by DCs [31], while induces IL-10
production by regulatory DCs [32]. On the other hand, human DCs in response to P. brasilien-
sis express CD83, CD80, CD86, and CCR7, and produce TNF-α, IL-6 and IL-12p40 [33]. Ac-
cordingly, genes encoding the cytokines IL-12 and TNF-α and chemokines CCL22, CCL27 and
CXCL10 are positively regulated in DCs infected with the fungus [34]. Calich’s group proposed
that an exacerbated inflammatory early responsiveness can hinder the development of a pro-
tective specific immune response. In this context, it was observed that DCs from susceptible
animals secrete high levels IL-12 and TNF-α and promote an exacerbated proinflammatory re-
sponse that in turn induces T cell anergy. In opposition, in resistant animals production of
proinflammatory cytokines is accompanied by high levels of TGF-β and concomitant induc-
tion of regulatory T cells. This regulated response facilitates the development of IFN-γ, IL-4
and IL-17 producing effector T cells [35]. Although these studies have elucidated some aspects
of the P. brasiliensis/DCs interaction, the possible role of other potential modulators of this in-
teraction deserves to be considered. Among these modulators we highlight the importance of
eicosanoids, such as prostaglandin E2 (PGE2).

PGE2 plays an important role in modulating the immune response [36]. Its effects are pref-
erably suppressor and can already be detected during the development of the innate immune
response, since it inhibits granulocyte functions [37] as well as the phagocytosis and killing
functions by alveolar macrophages [38, 39] and monocytes [40–42]. This eicosanoid by supres-
sing NK cells activating cytokines such as IL-12 and IL-15 [43, 44] inhibits the cytolytic effector
functions of these cells [45, 46]. PGE2 is also a potent suppressor during adaptive immune
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response. Its effect can be direct on T cell proliferation since it inhibits IL-2 production [47]
and the expression of its receptor [48–49]. However, the most important effect of PGE2 on
adaptive immune response is the ability regulate the balance between different CD4 responses.
In this context, PGE2 shifts the balance from Th1 response toward Th2, by regulating IFN-γ,
a Th1 cytokine, but not the Th2 cytokines IL-4 and IL-5 [50, 51]. In addition to these direct
effects on CD4 T cells, the suppressive effect of PGE2 on Th1 response can also result from its
action on APC cells. It inhibits IL-12 production by monocytes [52] and DCs [53, 54] as well
as the expression of the receptor for this cytokine [55]. These findings were confirmed by
more recent studies showing that skewed Th2 immune response involves expression of
cyclooxygenase-2 (COX-2) in DCs [56]. Others have shown that PGE2 produced by DCs may
be involved in regulatory T cells (Tregs) expansion [57]. Despite all these studies demonstrating
the suppressor impact of PGE2 during the induction of immune responses, some studies have
shown the importance of this mediator in the induction of fully mature DCs capable of homing
to lymph nodes and to be highly effective in priming naive T cells [58, 54, 59, 60].

According to these studies the greater or lesser ability of microorganisms to induce PGE2
production by DCs can influence the maturation of these cells in response to these microorgan-
isms. Additionally, this ability can be influenced by the type of PRR to which this organism will
bind in DCs. Little is known about the receptors involved in PGs production by DCs, but
TLR2, dectin-1, and DC-SIGN appears to be the most involved [61].

Here, we aimed to investigate whether human DCs produce PGE2 in response to P. brasi-
liensis of high and low virulence, the role of PRRs in this production and whether these media-
tors modulate the DC maturation in response to the fungus.

Material and Methods

Subjects
Dendritic cells were differentiated from monocytes of healthy blood donors from University
Hospital of the School of Medicine Botucatu, São Paulo State University, UNESP, after signa-
ture of informed consent form. The study was approved by the Institution Research Ethics
Committee (registration number: 375/2011).

Fungi
We used yeast cells of high virulent and low virulent strains of P. brasiliensis (Pb18 and Pb265,
respectively). To ensure virulence, the isolate was used after three serial animal passages. Yeast
cells were then maintained by weekly sub-cultivation in agar GPY medium (2% glucose, 1%
peptone, 0.5% yeast extract and 2% agar medium GPY at 37°C) and used on the sixth day of
culture. To obtain individual cells, the fungal suspension was homogenized with glass beads in
a Vortex homogenizer (three cycles of 10 s), followed by sedimentation of undissolved lumps at
37°C for 5 minutes. Supernatants with most single cells were collected and counted in a Neu-
bauer chamber, using a phase contrast microscope, considering bright cells as viable, since
dead cells are black. Yeast cells were adjusted to 2 x 105 cells/mL and only suspensions with via-
bility� 90% were used.

Generation of monocyte-derived DCs (mo-DCs)
Peripheral blood mononuclear cells (PBMCS) were separated by Ficoll- Hypaque density gra-
dient (Sigma-Aldrich, St. Louis, MO, USA) (centrifugation at 405 g for 30 minutes). Cells were
collected and erythrocytes were eliminated by treatment with lysis buffer for 5 minutes at room
temperature and 2 times washing with RPMI 1640 culture medium (Sigma-Aldrich). Then,
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cells were suspended in complete culture medium (RPMI 1640 supplemented with 2 mM
L-glutamine, 40 mg/mL gentamicin and 10% inactivated fetal bovine serum) seeded in six-well
tissue culture plates (5 x 106 cells /mL) and allowed to adhere for 2 h at 37°C in an atmosphere
of 5% CO2. Non-adherent cells were then removed by washing plates with RPMI 1640 culture
medium and monocyte rich cultures were incubated with complete culture medium containing
80 ng/mL of rH IL-4 and 80 ng/mL of rH GM-CSF (R&D Systems, Inc, Minneapolis, MN,
USA) for 7 days. After this period, loosely adherent cells (considered as immature dendritic
cells) were collected, washed with RPMI 1640, seeded in to 24-well tissue culture plates (106

cells/mL) and submitted to the different treatments. Flow cytometry assays identified the col-
lected cells as having the CD14low/CD1ahigh/CD83low phenotype, which is characteristic of im-
mature DC. Cells viability was checked during the experiments by using trypan blue
exclusion test.

PGE2 production by DCs
Immature DCs (106/mL) were challenged with Pb18 or Pb265 (2 x 105 yeasts/mL) using a
DCs/yeasts ratio of 5:1, or treated with LPS (5 μg/mL) for 1, 2, 4, 8, 12, 18, 24 or 48 h. Superna-
tants were harvested and assayed for PGE2 levels using a competitive enzyme-linked immuno-
sorbent assay kit (Cayman Chemical Company, Ann Arbor, MI, USA). In some experiments,
DCs were incubated for 2h with monoclonal antibodies: anti-TLR2 (2 μg/106 cells), and/or
anti-MR (2 μg/106 cells) (monoclonal antibodies purchased from Biolegend, San Diego, CA,
USA), anti-dectin-1 (3 μg/106 cells) and anti-DC-SIGN (4 μg/106 cells) before fungus challenge
(monoclonal antibodies purchased from R&D Systems, Minneapolis, MN, USA). These con-
centrations were chosen because they induced the highest percentages of blockage in previous
experiments (data not shown). The protocols were designed in order to block three receptors
keeping only one available.

Flow Cytometry analysis
Monocyte-derived immature DCs were phenotyped by flow cytometry for CD14 (PerCP),
CD1a (FITC) and CD83 (PE) expression in a FACSCaliburTM flow cytometer (BD-Becton,
Dickinson and Company, San Diego, CA, USA) using the CellQuest software (BD-Becton-
Dickinson, Company). In subsequent experiments immature DCs (106/mL) challenged with
Pb18 or Pb265 or treated with LPS and respective controls were evaluated for expression of
HLA-DR (FITC), CD40 (PerCP), CD80 (FITC), CD83 (PE), CD86 (APC), CCR5 (FITC),
CCR7 (PerCP) e CXCR4 (PerCP). In some experiments 100 μg/mL of exogenous PGE2 was
added to DCs challenged with the fungus.

Cytokine production
Immature DCs (106/mL) were challenged with Pb18 or Pb265 or treated with LPS (5 μg/mL)
for 48 h and culture supernatants were evaluated for IL-12p70 and TNF-α production using
commercial duoset ELISA kits (BD OptEIA-Becton, Dickinson and Company). IL-12p70 pro-
duction was also determined by using an other commercial duoset ELISA kit (R&D Systems)
and a cytometric bead assay (CBA) (BD-Becton,Dickinson and Company). In some experi-
ments 100 μg/mL of exogenous PGE2 was added to DCs challenged with the fungus.

Statistical analysis
Statistical analysis was performed by using the GraPhpad Prism Version 5.01 for Windows,
GraphPad Software, Inc. (San Diego, CA, USA). Significant differences among groups were
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determined by analysis of variance test (ANOVA) for dependent samples, and the averages
compared by Multiple Correlations Tukey-Kramer test, assuming as true every case in which
the probability of error was less than 5% (p< 0,05).

Results

PGE2 production by DCs challenged with P. brasiliensis
After confirmation that cells had a phenotype of immature DCs (CD14low/CD1ahigh/CD83low)
we aimed to evaluate whether they produce PGE2 in response to challenge with P. brasiliensis.
We tested both, Pb18 and Pb265, precisely because differences in the ability to produce PGE2
and the consequences of this process, for example, greater or lesser ability to induce maturation
of DCs, could be one of the factors that determine the differences in virulence presented by
these two strains.

Cultures were evaluated at 1, 2, 4, 8, 12, 18, 24 and 48 h. Cell stimulation with LPS was con-
sidered as a positive control for PGE2 production. Despite some differences detected among
the periods PGE2 production by control DCs was relatively stable, with minimum and maxi-
mum production of 80.304 ± 10.94 pg/mL (12 h) and 119.434 ± 6.141 pg/mL (48 h), respective-
ly. Stimulation with LPS promoted a significant and progressive increase in PGE2 production
(158.8 ± 26.30 pg/mL at 1 h to 372.8 ± 36.36 pg/mL at 48 h). On the other hand, challenge with
Pb18 and Pb265, significantly inhibited PGE2 production emphasizing that in some periods (2,
8 and 18 h) inhibition induced by Pb265 was higher than Pb18 (Fig. 1).

Involvement of MR, TLR2, Dectin-1 and DC-SIGN in PGE2 inhibition
induced by P. brasiliensis
Once observed that Pb18 and Pb265 are able to inhibit PGE2 production by DCs, we aimed to
evaluate which PRRs are involved in this process. For this purpose, we used a schedule in
which three receptors were blocked by specific antibodies and only one remained available
each time. After blocking, cells were challenged with Pb18 or Pb265 for 4 or 24 h. We found
that PGE2 production was inhibited only when mannose receptor (MR) were kept available, in-
dicating its role in the process. Individual availability of the TLR2, Dectin-1 or DC-SIGN re-
sulted in levels quite similar or even higher than those detected for control DCs (Fig. 2).

DCs maturation induced by P. brasiliensis
Our next objective was to evaluate whether P. brasiliensis induces maturation of human DCs
featured by phenotypic changes. For this purpose expression of CD40, CD80, CD83, CD86,
HLA-DR, CXCR4, CCR5 and CCR7 was assessed 48 h after fungus challenge. This period was
chosen as ideal for maturation analysis, because it was when we detected the higher levels of
PGE2 after cells stimulation with LPS. We observed that challenge with Pb18 or Pb265 was not
able to increase the number of DCs expressing CD40, CD83, CCR5 and CCR7. Conversely,
other maturation markers CD80, HLA-DR, and CXCR4 were reduced by both strains while
CD83 and CD86 were reduced by Pb265 (Fig. 3). CD80 was the only molecule with increased
percentage of cells after challenge with strain Pb18. Nevertheless, when median of fluorescence
intensity (MFI) was evaluated, we observed a significant decrease in response to two strains
suggesting that expression of this molecule, similarly to the other above cited, was not positive-
ly regulated by P. brasiliensis. Together, these data demonstrate that the yeast fail to induce
DCs maturation. The finding that the fungus does not induce increased expression of mole-
cules involved in cells maturation or even in some cases inhibits this expression is not related
to the lack of cell viability. Viability checking, frequently performed, was always above 90%.
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Some results with LPS are also a further demonstration of fungal effects reliability. Although
expression of some molecules has not been increased probably due to problems with antibodies
labeling (cytometry assays), other molecules such as CD83 and CD40 were increased in re-
sponse to LPS, whereas depressed in response to the fungus.

Cytokines production by DCs challenged with P. brasiliensis
In addition to the analysis of surface molecules, we aimed to evaluate IL-12 and TNF-α produc-
tion, whose increases are also indicative of DCs maturation. We observed that both Pb265 and
Pb18 induce DCs to release TNF- α but the levels were always lower than those induced by LPS
(Fig. 4). On the contrary, we found that P. brasiliensis is not able to induce significant IL-12p70
production by DCs. Negative results were obtained by both ELISA (two different kits) and
CBA assay. Overall, the results reinforce the view that the fungus is not able to induce

Fig 1. PGE2 production by DCs activated with LPS or challenged with Pb18 or Pb265 (DCs/Pb ratio 5:1) for different periods. The results are
expressed in mean ± SD of experiments performed with cells from 5 subjects. Statistically significant differences between groups in the same period are
indicated: *p< 0.05; ** p< 0.01; ***p<0.001 versus control DC; o p< 0.05 versus Pb18.

doi:10.1371/journal.pone.0120948.g001
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maturation of DCs, as evidenced by the lack of changes on expression of molecules and pro-
duction of some cytokines essential for activating CD4+ lymphocytes.

Effect of exogenous PGE2 on the phenotypic maturation of DCs
challenged or not with P. brasiliensis
With exception of CD40 and CXCR4, exogenous PGE2 significantly increased the percentage
of control cells (not challenged) expressing all the tested molecules (CD80, CD83, CD86, HLA-
DR, CCR5, and CCR7) which confirms the effect of this mediator on positively modulating
phenotypic maturation of DCs. Of most importance, it also increased the percentage of cells
challenged with Pb18 and Pb265 expressing all the molecules, although the results for CD40,
CD86 e CXCR4 (for Pb265) were not significant. In relation to HLA-DR the results detected
for control and challenged cells were confirmed by MFI assays (Fig. 5).

Fig 2. Involvement of MR, TLR2, Dectin-1 and DC-SIGN on PGE2 production inhibition induced by P. brasiliensis in human DCs.Cells were
incubated with anti-MR, anti-TLR2, anti-Dectin-1 and/or anti-DC-SIGNmonoclonal antibodies for 1 h, challenged with Pb18 or Pb265 (DCs/yeast ratio 5:1)
for 4 and 24 h, and evaluated for PGE2 production by ELISA. The results are expressed in mean ± SD of independent experiments performed with cells
obtained from 4 subjects. Statistically significant differences between groups are indicated: *p< 0.05 versus control DCs and other available receptors.

doi:10.1371/journal.pone.0120948.g002
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In addition to modulation of DCs phenotype, exogenous PGE2 also promote alterations in
TNF-α production (Fig. 6), whose levels after treatment were similar to those induced by LPS
(Fig. 4). On other hand, DCs did not produce IL-12p70 even after exogenous PGE2 treatment.
Taken together, data on DC phenotype and cytokine production suggest that P. brasiliensis
fails to induce DC maturation, at least in part because PGE2 production is inhibited.

Fig 3. Percentage of cells, mean of fluorescence intensity (MFI), and representative dot plots relative
to the expression of CD40, CD80 (A) CD83, CD86 (B), HLA-DR, CXCR4 (C) CCR5, and CCR7 (D) by DCs
after challenge with Pb18 and Pb265 or activation with LPS for 48 h. The results are expressed in
mean ± SD of experiments performed with cells obtained from 4 subjects. Statistically significant differences
between groups are indicated: *p< 0.05 versus DCs.

doi:10.1371/journal.pone.0120948.g003
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Discussion
Studies on the modulatory role of PGE2 on host immune response to P. brasiliensis are scarce,
particularly in relation to DCs. In this context, this study aimed to evaluate whether human
DCs produce PGE2 in response to challenge with high and low virulent strains of P. brasiliensis,
the involvement of PRRs in this process, as well as the modulatory role of this eicosanoid on
maturation of these cells. These objectives were supported by previous results from our labora-
tory showing that Pb18 and Pb265 induce PGE2 production by monocytes and that this eicosa-
noid, in an autocrine way, inhibits antifungal activity of these cells [40–42]. Thus, this fungus
would induce PGE2 production by monocytes as an escape mechanism from effector functions
of these cells. However, contrary to detected for monocytes, in the present study we observed

Fig 4. TNF-α production by DCs challenged with Pb18 or Pb265 or activated by LPS for 48 h, andmeasured by ELISA. The results are expressed as
mean ± SD of independent experiments performed with cells obtained from 4 subjects. Statistically significant differences between groups are indicated:
*p< 0.05.

doi:10.1371/journal.pone.0120948.g004
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that both Pb18 and Pb265 inhibit PGE2 production by DCs. In addition, PGE2 inhibition was
associated with impaired maturation of DCs in response to the fungus, as confirmed by low ex-
pression of CD40, CD80, CD83, CD86, HLA-DR, CXCR4, CCR5 and CCR7.

This association between inhibition of PGE2 and no DC maturation was strongly indicative
that lack of adequate levels of this mediator is responsible for maturation failure. Experiments
adding exogenous PGE2 to cultures challenged with the fungus confirmed this mechanism
since the treatment induced an increase in the percentage of cells expressing CD80, CCR7,
CCR5 and HLA-DR in response to both strains, and of CD83 and CXCR4 in response to
Pb265. Our findings are corroborated by previous reports that addition of PGE2 to a mixture of
cytokines such as IL-1β and TNF-α is essential for DCs maturation, since it considerably in-
creases the expression of costimulatory molecules by these cells [59], and is fundamental for
the expression of CCR7 [60].

CD40 is a critical coestimulatory molecule in the activation of T [62] lymphocytes, together
with CD80, CD86 and mainly HLA-DR [63, 64]. CD83 molecule, besides participating in T cell
activation is the main marker of DC maturation [65]. CCR7 binds the chemokines CCL19 and
CCL21 derived from lymph nodes and its expression on DCs increases their ability to migrate
to these organs [59, 60]. Therefore, our results showing that P. brasiliensis, by inhibiting PGE2
production, does not effectively induce an increase in the expression of these molecules,

Fig 5. Effect of exogenous PGE2 on percentage of cells, mean of fluorescence intensity (MFI) relative
to the expression of CD40, CD80 (A) CD83, CD86 (B), HLA-DR, CXCR4 (C) CCR5, and CCR7 (D) by DCs
after challenge or not with Pb18 and Pb265. The results are expressed in mean ± SD of experiments
performed with cells obtained from 4 subjects. Statistically significant differences between groups are
indicated: *p< 0.05 versus without PGE2.

doi:10.1371/journal.pone.0120948.g005
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strongly suggest that, in vivo, the contact of fungus with DCs hinders the migration of these
cells to secondary lymphoid organs, as well as their ability to activate T cells and hence initiate
an adaptive immune response. Our results allow us to suggest that P. brasiliensis uses opposite
mechanisms to scape monocytes and DCs responses, since increased production of PGE2 by
monocytes inhibits their fungicidal mechanism, while impaired production by DCs avoid
their maturation.

We also demonstrated that mannose receptor (MR) is the PRR involved in PGE2 inhibition
by P. brasiliensis which emphasizes the role of this receptor in the escape mechanisms of some
fungi. Accordingly, endocytosis of Candida albicans by MR pathway results in inhibition of

Fig 6. Effect of exogenous PGE2 on TNF-α production by DCs challenged with Pb18 or Pb265 by 48 h and evaluated by ELISA. The results are
expressed in mean ± SD of experiments performed with cells obtained from 4 subjects. Statistically significant differences between groups are indicated:
*p< 0.05 versus without PGE2.

doi:10.1371/journal.pone.0120948.g006
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NADPH oxidase pathway that is essential for fungus elimination by phagocytes [66]. Specifi-
cally in relation to P. brasiliensis previous studies suggest that it can use MR as an evasion
mechanism. A particular study has shown that gp43 fraction, the immunodominant antigen of
P. brasiliensis, binds to MR to inhibit phagocytic and fungicidal capacity of murine peritoneal
macrophages [67]. In a recent study, we observed that P. brasiliensis phagocytized by binding
to MR is able to grow inside human monocytes. In addition, IL-18 positively modulates this
process by increasing fungus binding to MR receptors [68].

We also evaluated whether DCs challenged with the fungus increase their production of IL-
12 and TNF-α, two important cytokines for DCs maturation. We observed that exposition of
DCs to P. brasiliensis does not induce production of IL-12p70. DCs and macrophages are the
main source of this cytokine in response to intracellular microorganisms [69, 70] which has a
key role in the modulation of Th1 response. Therefore, fail of DCs to produce IL-12p70 in re-
sponse to P. brasiliensis avoid their role in instructing CD4+ to a Th1 response essential for
host resistance to this microorganism This result is in agreement with previous studies showing
that P. brasiliensis or its main antigen gp43 inhibit IL-12 production by murine BM-DCs [71].
However, fail of DCs to produce IL-12 in response to the fungus is not associated to inhibition
on PGE2 levels, as exogenous treatment did not result in cytokine increase. Indeed, previous
studies reported that DCs activated in the presence of PGE2 lose their ability to secrete IL-12
[72, 67, 73].

TNF-α is a pleiotropic cytokine that regulates a broad range of biological events, including
cell differentiation, proliferation, tissue development and death, as well as inflammation, innate
and adaptive immune responses [74–77]. DCs maturation is highly dependent on TNF pro-
duction [78–80] and we observed that fungus induce TNF-α production by DCs, but it levels
were significantly increase after PGE2 treatment. This finding lead us to consider that inhibi-
tion of PGE2 results in the production of lower levels of TNF-α, that are insufficient to ensure
DCs maturation.

Our findings support studies with PCM patients showing that only DCs from treated pa-
tients are effectively activated and show high expression of HLA-DR, CD86 and DC-SIGN, as
well as IL-12 production. Thus, during active disease a dysregulation in DCs maturation can be
detected and consequent fail to provide optimal costimulation for T cell proliferation may
occur [81].

It has to be emphasized that no significant differences between responses induced by Pb18
and Pb265 were observed. The capacity of modulating host immune response by fungus strains
is dependent on variations in their cell wall components [82, 16, 83] since they can account for
fungus binding to different receptors of the innate immune response. More virulent strains of
P. brasiliensis (as Pb18) show a smaller amount of β-glucan in their wall composition, while
strains with low virulence (as Pb265) have a large amount of this carbohydrate [84] which indi-
cates that these two strains present different capacities to bind to dectin-1, the receptor that
recognizes β-glucan. In this context, as PG inhibition involves MR and not dectin-1, variations
in β-glucan wall presented by two strains possibly do not interfere with this process, which can
explain the similar responses detected between the two strains.

Overall, our results allow include P. brasiliensis in the growing list of microorganisms that
impair DCs maturation and functions to evade a protective adaptive response. This mechanism
has been detected in diseases caused by varicella-zoster [85] herpes simplex [78] vaccinia [86],
measles [87], Trypanosoma cruzi [88], Salmonella [89],Mycobacterium tuberculosis [90, 91],
Mycobacterium leprae [92] and Cryptococcus gattii [80].

In summary, we have found that P. brasiliensis, by binding to MR, inhibits PGE2 production
by DCs which results in the production of lower TNF-α levels and consequent deregulation on
DCs maturation in response to this fungus. However, the consequences of this process for
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delivering signals required for the induction of an efficient T cell response against the fungus,
need to be determined. To answer this question, in a current study in our lab, we aimed to ana-
lysing the global transcriptional profile of DCs in response to the fungus, as well as of CD4+

cells in response to DCs. Together, the results will provide novel information for understanding
the complex interplay between the host and P. brasiliensis and may support further
therapeutic approaches.
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