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Abstract
Purpose  This study aimed to investigate the bony surface characteristic of the femoral attachment of the medial patellofemo-
ral ligament (MPFL) and the correlation between the relevant layered structures, including muscular aponeurosis and the 
joint capsule, which contribute to patellofemoral joint (PFJ) stability.
Methods  The morphology of the medial aspect of the medial condyle using micro-computed tomography and analysed 
cortical bone thickening in 24 knees was observed. For the macroscopic and histological analyses, 21 and 3 knees were 
allocated, respectively. The Kruskal–Wallis one-way analysis of variance test with Dunn post hoc testing was performed 
for statistical analysis.
Results  At the level of the adductor tubercle, there were no significant differences in cortical bone thickness. At the level 
of the medial epicondyle (MEC), cortical bone thickness was considerably greater than that in other areas of the medial 
condyle (mean ± standard deviation, 0.60 ± 0.20 mm; p < 0.0001). Macroscopic analysis revealed that the deep aponeurosis 
of the vastus medialis obliquus and the tendinous arch of the vastus intermedius distally formed the composite membrane 
and adjoined to the joint capsule to firmly attach to MEC, which was located at 41.3 ± 5.7 mm posterior and 14.2 ± 3.1 mm 
superior to the joint cartilage. Histological analysis showed a composite membrane and adjoining capsule attached to MEC 
via fibrocartilage.
Conclusion  MPFL could be interpreted as part of the deep aponeurosis of the vastus medialis obliquus (VMO) and the ten-
dinous arch of the vastus intermedius, which combined with the joint capsule to attach to MEC. The cortical bone thicken-
ing indicated that the tensile stresses were loaded on MEC in aged cadavers. Involvement of VMO and vastus intermedius 
aponeuroses in restored graft of MPFL could utilise the dynamic stability of surrounding muscles to mimic a native structure.

Keywords  Medial patellofemoral ligament · Vastus medialis obliquus · Vastus intermedius · Aponeurosis · Joint capsule · 
Adductor tubercle · Medial epicondyle · Cortical bone thickness
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Introduction

Medial patellofemoral ligament (MPFL) has been com-
monly reconstructed to treat chronic lateral patellar 
instability [15, 20, 45]. However, there is currently no 
consensus on the method of MPFL reconstruction and 
rehabilitation that best restores natural function. Precise 
anatomical understanding of the MPFL is essential for 
managing the patellofemoral joint (PFJ) stability, espe-
cially since the femoral attachment sites have been demon-
strated at various positions on medial femoral condyle in 
different studies [1, 45]. Histologically, the arrangements 
and boundaries of ligaments, tendons, and aponeuroses 
are vague [35]. Better anatomical understanding of these 
surrounding structures may help elucidate the mechanisms 
of the PFJ stability and further clarify the definition of the 
ligaments [2, 11, 41, 43].

Previously, high stresses transmitted through dense con-
nective tissues, such as tendons, ligaments, and aponeu-
roses, have been shown to influence the morphology and 
cortical bone thickness at the attachment site [11, 25, 27, 
37, 39, 40]. To date, the morphology of the medial condyle 
in relation to the tensile stress involve in the PFJ stability 
has been rarely discussed.

The aim of this study was to investigate the bony sur-
face characteristic of the femoral attachment and the cor-
relation between the relevant layered structures, including 
the muscular aponeurosis and joint capsule, in reference 
to the MPFL attachment. Considering the clinical impli-
cations, the involvement of surrounding aponeuroses in 
restored graft of MPFL could utilise the dynamic stability 
of muscles to mimic the structure of a native knee. It was 
hypothesised that the medial aspect of the medial condyle 
had a particular characteristic corresponding to the sur-
rounding fibrous structures, which would contribute to PFJ 
stability, and after separating the adjoining vastus media-
lis obliquus (VMO), vastus intermedius aponeurosis, and 
joint capsule, the remaining part of these fibrous structures 
was assumed to be the MPFL.

Materials and methods

Cadaveric specimen preparations 
and micro‑computed (micro‑CT) tomography 
imaging

The ethical approvals was issued by the institutional 
review board of Tokyo Medical and Dental Univer-
sity (M2018-243-01). Twenty-five knees (11 pairs and 
3 halves, including 13 right and 12 left knees) from 14 

cadavers (six men, eight women; mean age and standard 
deviation, 84.6 ± 10.4 years) were obtained for this study. 
No specimens with a severe deformity of the knee joint 
or past histories of knee surgery were included. All the 
cadavers were donated to the Department of Anatomy of 
the Tokyo Medical and Dental University.

All specimens were fixed in 8% formalin and preserved 
in 30% ethanol. The medial regions of the knee were 
harvested by cutting at the distal one-third of the femur, 
tibial tuberosity, and midline of the sagittal plane using a 
diamond band pathology saw (EXAKT 312; EXKAKT 
Advanced Technologies GmbH, Norderstedt, Germany). 
After removing the skin and subcutaneous soft tissues, 
three-dimensional (3D) images of all medial halves of the 
knee using micro-CT (inspeXio SMX-100CT; Shimadzu 
Corp., Kyoto, Japan) with 200-µm resolution and ImageJ 
(version 1.52; National Institutes of Health, Bethesda, MD, 
USA) were obtained. One knee with a varus deformity on 
the 3D image was excluded. To confirm the correspondence 
between the 3D-CT image and actual bony surface without 
dissection artefacts, the soft tissues were removed in three 
specimens using an 8% sodium hydroxide solution (Wako 
Pure Chemical Industries, Osaka, Japan). In the remaining 
21 specimens, 18 and 3 knees were randomly allocated to 
macroscopic and histological analyses, respectively (Fig. 1).

Cortical bone thickness analysis of the medial 
condyle of the femur

To visualise the distribution of cortical bone thickening 
on the medial condyle of the femur, 8-bit images of 24 

Investigated knees 
(n=25)

13 right and 12 left knees
Removed the skin and subcutaneous tissue

Micro-CT investigation
(n=25)

Obtained 3D-image of the medial femoral condyle

Macroscopic analysis
(n=18)

Observed VMO, VI,
joint capsule, and their 

bony attachment 

Excluded because of 
Varus deformity (n=1)

Histological analysis
(n=3)

Masson’s Trichrome 
staining

Making dry bone 
(n=3)

Immersed in 8% sodium  
hydroxide solution

Cortical bone thickness analysis 
(n=24)

Analyzed the cortical bone thickness using BoneJ

Fig. 1   Flow diagram of the study enrolment process. Micro-CT 
micro-computed tomography, VMO vastus medialis obliquus, VI vas-
tus intermedius
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specimens obtained as described were transferred to ImageJ 
open-source image processing software (National Institute of 
Health, Bethesda, MD). The BoneJ plugin, an ImageJ exten-
sion for bone image analysis and published image processing 
algorithms, was used to define the thickness at a specific 
point by measuring the diameter of the largest sphere that 
fit within the structure of interest [6, 11, 16, 40]. The meas-
urement was accurate for two-decimal places [10, 25]. The 
cortical bone thickness of the medial condyle was mapped 
in 3D images, in which brighter colours represented thicker 
points of the cortical bone.

To quantify the cortical bone thickness of the medial 
condyle, axial images at the middle levels of the adductor 
tubercle and medial epicondyle (MEC) were utilised. The 
locations of the measurements were divided into equal rec-
tangles for the adductor tubercle (2.0 × 6.0 mm) and MEC 
(4.0 × 18.0 mm). The pilot trial was carried out to confirm 
that the rectangle fits the morphology of the cortical bone 
surface without overlapping boundaries in each measur-
ing area. The rectangles were set parallel to the bony sur-
faces. The average cortical bone thickness of each rectangle 
was measured. The measurement was repeated twice in 24 
knees randomly on different days using the same method. To 
determine the test–retest reliability, 48 measurements were 
compared between two examination days. All ICC scores 
were ≥ 0.92 (range 0.92–0.99).

Macroscopic observation of the fibrous structures 
attaching to the medial epicondyle of the femur

After removing the skin and subcutaneous tissue, the sarto-
rius, gracilis, and semitendinosus muscles were identified 
and reflected anteriorly. Next, the VMO was identified on the 
medial aspect of the knee. To identify the deep aponeurosis 
of the VMO, the VMO muscle portion was first removed. 
Then, the deep aponeurosis of the VMO was reflected ante-
riorly to reveal the vastus intermedius and its tendinous arch. 
The tendinous structures and joint capsule were detached 
en bloc from the medial condyle to clarify the relationships 
between the tendinous structures, joint capsule, and femoral 
attachment. Additionally, the location of the attachment on 
the femur’s medial aspect was measured using a non-digital 
Vernier calliper which allows measurement to one decimal. 
The measurements were taken twice in 18 knees on separate 
days using the same procedure. To validate the accuracy, 36 
measurements were compared between two assessment days. 
All ICC scores were ≥ 0.98 (range 0.98–0.99).

Histological analysis of the medial condyle 
of the femur

Three knees were randomly selected for histological analy-
sis. Specimens were embedded in agar solution (22 g/L) 

and frozen at − 80 °C. Subsequently, specimens were cut 
horizontally into 5-mm-thick blocks using a band saw (WN-
25-3; Nakajima Seisakusho, Osaka, Japan). Two blocks of 
axial slices were selected at the adductor tubercle and MEC 
levels. A 3D-CT image was used to validate the level. En 
bloc specimens were decalcified for 1 week in Plank-Rychlo 
solution (AlCl3:6H2O, 126.7 g/L; HCl, 85.0 mL/L; HCOOH, 
50.0 mL/L) [33, 42, 43]. After decalcification, the blocks 
were dehydrated with a graded ethanol series, embedded in 
paraffin, and serially sectioned (thickness, 5 µm). Finally, 
staining was performed using the Manson trichrome stain-
ing protocol.

Statistical analysis

The Kruskal–Wallis one-way analysis of variance test with 
Dunn post hoc testing was performed to compare the cor-
tical bone thicknesses at measured locations in the axial 
slices at the adductor tubercle and MEC levels. Statistical 
significance was set at p values of < 0.05. To evaluate the 
test–retest reliability, a single observer randomly measured 
the specimens twice on different days in the same approach. 
The intraclass correlation coefficients (ICCs) were deter-
mined for each parameter. A score of > 0.75 was consid-
ered an excellent agreement. Data are presented as mean 
and standard deviation. Statistical analyses were performed 
using PASW Statistics 18 for Windows (SPSS Inc., Chicago, 
IL, USA).

To calculate the sample size for the cortical bone thick-
ness analysis, the estimated cortical bone thickness from a 
previous relevant study that investigated the tibia and fibula 
was utilised [41]. Using the one-way analysis of variance, a 
2-sided type I error of 0.05, 90% power, a minimum sample 
of 18 per area was required (nQuery Advisor® Version 6.01; 
Statistical Solutions Ltd., Saugus, MA, USA). More samples 
were analysed to spare the number of specimens in case 
dropout during the study. The total number of investigated 
specimens in this study was 24.

Results

Bone morphological features of the medial condyle 
of the femur using micro‑CT

Distal to the adductor tubercle, which was small and rough, 
the MEC was shaped as a wide shelving prominence 
(Fig. 2A). The proximal part of the MEC was continuous 
with the distal margin of the adductor tubercle. The anterior 
edge of the MEC was easily identifiable, whereas the poste-
rior and inferior edges were unclear. These bony morpholo-
gies could be additionally confirmed as actual bone using 
chemical debridement (Fig. 2B).
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The cortical bone thickness measurement revealed that 
thickening was evident on the MEC, compared with the 
other areas of the medial condyle (Fig. 3). Data at the level 
of the adductor tubercle and MEC are shown in Table 1.

Layered relationships between the fibrous 
structures attaching the medial epicondyle 
of the femur

The deep aponeurosis of the VMO was observed to transi-
tion into the VMO tendon, which attached to the supero-
medial border of the patella (Fig. 4A, B). The tendinous 
arch of the vastus intermedius was exposed posteriorly to 
the VMO’s deep aponeurosis, which distally merged into the 
tendinous arch of the vastus intermedius to form the com-
posite membrane (Fig. 4C). The joint capsule was under-
laid deep into the composite membrane, which was distally 
intermingled with the joint capsule and firmly attached to 
the MEC (Fig. 4D).

Viewing from the intra-articular side, the deep part of the 
composite membrane was observed to distally merge with 
the joint capsule and firmly attach to the MEC (Fig. 5). The 
firmly attached area of the composite membrane and joint 
capsule are summarised in Table 2.
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Fig. 2   Morphology of the adductor tubercle and medial epicondyle. 
The medial aspect of the medial condyle of the right femur. The 
medial epicondyle (MEC; white circle) is located distal to the adduc-
tor tubercle (asterisk). The anterior margin of the MEC (dotted line) 
was remarkable in comparison with the posterior and inferior mar-
gins. A The medial condyle was examined using micro-computed 
tomography (micro-CT). B In the same specimen as A, soft tissues 
were chemically removed to assess correlations with the micro-CT 
image. Ant, anterior; Prox, proximal
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Fig. 3   Evaluation of cortical bone thickening in the medial condyle 
of the femur. The cortical thickening maps on the right medial con-
dyle were visualised after processing the micro-computed tomogra-
phy (micro-CT) images. The thicker the cortical bone of the point, 
the brighter the colour of the point. A Three-dimensional image of 
the medial condyle surface. Levels of axial slices are shown as white 
dotted lines. B Axial image at the middle level of the adductor tuber-
cle (asterisk). The mean cortical bone thickness was measured in each 

rectangle from the anterior to posterior part of the adductor tubercle 
(from AT1 to AT5). C Axial image at the level of the apex of the 
medial epicondyle (white circle). The mean cortical bone thickness 
was measured in each rectangle from the anterior to posterior part of 
the medial epicondyle (from ME1 to ME3). The cortical thickness 
distribution (mm) is shown as the spectrum from black to marine 
blue, violet, red, orange, yellow, and white. Ant, anterior; Med, 
medial; Prox, proximal



3746	 Knee Surgery, Sports Traumatology, Arthroscopy (2022) 30:3742–3750

1 3

Histological analyses of the fibrous structures 
on the medial condyle of the femur

At the level of the adductor tubercle, the deep aponeurosis 
of the VMO was identified as a remarkable fibrous layer 
accompanied by a robust muscular portion (Fig. 6A, B). 
The joint capsule was identified as the innermost layer con-
necting the joint cavity. The tendinous arch of the vastus 
intermedius was observed as a thin fibrous layer interposed 
between the deep aponeurosis of the VMO and the joint 
capsule.

At the MEC level, the composite membrane adjoined the 
joint capsule and was attached to the MEC via fibrocartilage 
(Fig. 6A, C).

Discussion

The most important findings of the present study were that 
the cortical bone thickness of the MEC was significantly 
greater than that of the other areas on the medial condyle, 
and the deep aponeurosis of the VMO and the tendinous arch 
of the vastus intermedius formed the composite membrane 
to firmly attach to the MEC via the fibrocartilage.

As previous reports, the bone is a highly adaptive struc-
ture under a mechanical stress load. Since the bone is thicker 
in areas that are subject to high stress, the distribution of 
cortical bone thickening could represent areas of high tensile 
stress, allowing the definition of functional attachment for 
fibrous structures [10, 25, 40]. The present study revealed 
that cortical bone thickening was limited in the MEC. This 
finding suggests that the tensile stress from the stabilising 

structures against lateral patellar translation is focussed on 
the MEC, regardless of the structure attached on it.

The MPFL is considered as a primary restrictor to 
maintain PFJ stability, whereas the medial patellotibial 
ligament (MPTL) and medial patellomeniscal ligament 
(MPML) are regarded as secondary stabilisers [7, 9, 17]. 
The MPFL has been described as a fan-like structure 
extending from the medial part of the femoral condyle to 
the superomedial edge of the patella [3, 19, 32, 45], asso-
ciates with the VMO’s undersurface [13, 19, 26] and con-
nects with the aponeurosis of the vastus intermedius [3, 
23]. However, the layered relationship between the MPFL 
and surrounding structures, including the aponeurosis and 

Table 1   The mean cortical bone thickness on the medial aspect of the 
medial femoral condyle

The area of the measurements is demonstrated in Fig. 2
SD standard deviation, AT adductor tubercle, ME medial epicondyle
*Highly statistically significant difference compared to the other areas 
(p value < 0.0001; the Kruskal–Wallis one-way analysis of variance 
test with Dunn post hoc test was conducted)

Location of Measurement Mean ± SD (mm)

Adductor tubercle level
 Anterior most (AT1) 0.47 ± 0.10
 Anterior to adductor tubercle (AT2) 0.49 ± 0.11
 Anterior aspect of adductor tubercle (AT3) 0.43 ± 0.09
 Posterior aspect of adductor tubercle (AT4) 0.45 ± 0.09
 Posterior to adductor tubercle (AT5) 0.46 ± 0.12

Medial epicondyle level
 Anterior to medial epicondyle (ME1) 0.36 ± 0.08
 Medial epicondyle (ME2) 0.60 ± 0.20*
 Posterior to medial epicondyle (ME3) 0.36 ± 0.13
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Fig. 4   Layered relationships between the fibrous structures attached 
to the medial epicondyle. A The medial aspect of the right femur. 
The superficial fascia was removed, and the vastus medialis oblique 
(VMO) muscle is shown. B After removing the muscular portion of 
the VMO, the sartorius (Sa), gracilis (Gr), and semitendinosus (St) 
muscles are reflected to the anterior. The deep aponeurosis of the 
VMO (VMO-da) and posterior part of the composite membrane are 
exposed. C The VMO-da is reflected anteriorly. The tendinous arch 
of the vastus intermedius (VI) posterodistally continues to the com-
posite membrane. The dashed line indicates the posterior margin of 
the tendinous arch of the VI. D The VI is reflected anteriorly. The 
composite membrane comprising the VMO-da and tendinous arch 
of the VI attaches to the MEC (black circle). AM, adductor magnus; 
Ga-m, medial head of the gastrocnemius; RF, rectus femoris; SM, 
semimembranosus; TCL, tibial collateral ligament; Ant, anterior; 
Prox, proximal
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joint capsule, has not been comprehensively discussed. In 
the current study, macroscopic and histological analyses 
showed that the deep aponeurosis of the VMO and tendi-
nous arch of the vastus intermedius distally intermingle to 
form the composite membrane, which connects the medial 
side of the patella and the MEC. Based on the ambiguity 
regarding the definition of ligaments, the MPFL could be 
interpreted as part of the adjoining VMO and vastus inter-
medius aponeurosis if the fibrous part of the composite 
membrane was artificially separated. However, in vivo, the 
VMO and vastus intermedius seem to work together to 
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Fig. 5   Attachment of the compositive membrane on the medial con-
dyle of the femur. The tibia was removed from Fig. 3. A The medial 
half of the patellar bone and composite membrane, comprising the 
deep aponeurosis of the vastus medialis obliquus (VMO-da), ten-
dinous arch of the vastus intermedius (VI), and joint capsule, are 
detached en bloc from the medial condyle of the femur and posteri-
orly reflected. Black solid lines indicate the proximal edge of the joint 
cartilage and corresponding part of the joint capsule. B The compos-
ite membrane is detached more posteriorly than A, and the adductor 
tubercle (asterisk) and medial epicondyle (MEC; black circle) are 

shown. C The composite membrane was detached more posteriorly 
than B to expose the firmly attached area to the MEC. Black dotted 
lines indicate the anterior margin of the firmly attached area of the 
composite membrane and the corresponding part of the membrane. 
The location of the firmly attached area on the MEC was measured 
from the medial (X) and proximal (Y) edges of the joint cartilage. D 
Distally reflecting the joint capsule, the connection between the joint 
capsule and tendinous arch of the VI is shown. AM, adductor mag-
nus; Ga-m, medial head of the gastrocnemius; SM, semimembrano-
sus; VI, vastus intermedius; Ant, anterior; Prox, proximal

Table 2   The firmly attached area of the composite membrane and 
joint capsule on the medial aspect of the medial femoral condyle

The area of the measurements is demonstrated in Fig. 5C
SD standard deviation

Location Mean ± SD (mm)

Posterior to the edge of the joint cartilage (X) 41.3 ± 5.6
Superior to the edge of the joint cartilage (Y) 14.2 ± 3.1
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restrain lateral translation of the patellar [28] rather than 
the independent static cord as assumed from the MPFL.

Recent studies have reported the MPFL’s femoral attach-
ment [14, 30, 31, 46] at various sites, including at the adduc-
tor tubercle [24, 44], MEC [3, 5, 23], a point between the 
adductor tubercle and MEC [19, 29] and the gastrocnemius 
tubercle [1]. In short, the location of the MPFL’s attach-
ment to the medial condyle remains inconclusive. Based 
on the results obtained in the present study, the previous 
inconsistency regarding MPFL femoral attachments could 
be explained as follows: although the MPFL could be part 
of the composite membrane, comprising the VMO and vas-
tus intermedius aponeurosis, authors of previous anatomi-
cal studies may have assumed the MPFL to be a cord-like 
structure, artificially separate from the composite mem-
brane, and thus defined the attachment locations differently. 
The actual composite membrane had a broader attachment 
to the MEC than the single point assumed by the cord-like 
MPFL model. In the current study, cortical bone thickening 
and fibrocartilaginous histology could validate the tensile 
stress on the MEC transferred by the composite membrane 
and joint capsule.

This study has several limitations. First, the sample size 
calculation for the cortical bone thickness analysis might 
be not be accurate, since previous data of the tibia and 
fibula and the one-way analysis of variance function were 

substituted. Second, the number of specimens used for the 
histological analysis was limited. Third, only the cadavers of 
older adults were used; therefore, the age was not matched 
with that of the patients with PFJ instability. Lastly, other 
bony morphologies were subject to the tensile stress in the 
relevant area, such as the gastrocnemius tubercle. Further 
studies are warranted to fully cover the thickness of the cor-
tical bone on the medial side of the knee in relation to the 
soft tissue attachments. Consequently, we hope to lay the 
groundwork for subsequent anatomical and biomechanical 
studies with younger age population, or imaging of clinical 
cases of the medial part of the femoral condyle in the future.

This study emphasises certain clinical implications of the 
MPFL. First, considering the closely relationship between 
MPFL and VMO [28], the superior fibre of the MPFL graft 
meshed together with the VMO has been recommended 
during MPFL reconstruction [2, 12]. Based on anatomical 
findings, both the VMO and vastus intermedius were recom-
mended to be involved in MPFL graft to utilise the dynamic 
stability of surrounding muscles to mimic the structure of a 
native knee. Second, since the VMO was thought to medi-
ally pull the patella through the MPFL by muscle contrac-
tion [18, 24], quadriceps strengthening has been the focus 
of conservative management strategies for PFJ stability [4, 
8, 21, 34, 38]. The structural evidence for the effectiveness 
of quadriceps strengthening management could be validated 
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Fig. 6   Histological analyses of the fibrous structures on the medial 
condyle of the femur. A Illustration of the medial aspect of the right 
medial condyle showing levels of the histological sections using Mas-
son trichrome stain in B and C with dotted lines. B Axial section at 
the middle level of the adductor tubercle (asterisk). The deep aponeu-
rosis of the vastus medialis obliquus (VMO-da), tendinous arch of the 

vastus intermedius (VI), and joint capsule are separated to form each 
layer. C The axial section at the middle level of the medial epicon-
dyle (black circle in A). The composite membrane, comprising the 
VMO-da, tendinous arch of the VI, and joint capsule, is attached to 
the medial epicondyle via fibrocartilage. Ant, anterior; Prox, proxi-
mal; Med, medial. Scale, 5 mm
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in the present study. Third, femoral attachment malposition 
is a critical challenge when performing MPFL [18, 22, 24, 
36]. The fact that the MEC corresponded to remarkable cor-
tical bone thickening via fibrocartilaginous attachment of 
the composite membrane might support in determining the 
proper location of femoral tunnel fixation.

Conclusion

The deep aponeurosis of the VMO and tendinous arch of the 
vastus intermedius distally intermingled to form a composite 
membrane, adjoining the joint capsule to attach to the MEC, 
which indicates that the MPFL was no more than a part of 
the adjacent VMO and vastus intermedius aponeurosis. The 
cortical bone thickening indicated that the tensile stresses 
were loaded on the MEC in aged cadavers. Involvement of 
VMO and vastus intermedius aponeuroses in restored graft 
of MPFL could utilise the dynamic stability of surrounding 
muscles to mimic a native structure.
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