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Chronic kidney disease affects 40% of adults aged 65 and older. Anemia of CKD is present in 30% of
patients with CKD and is associated with increased cardiovascular risk, decreased quality of life, and
increased mortality. Hepcidin-25 (hepcidin), the key iron regulating hormone, prevents iron egress from
macrophages and thus prevents normal recycling of the iron needed to support erythropoiesis. Hepcidin
levels are increased in adults and children with CKD. Vitamin D insufficiency is highly prevalent in CKD
and is associated with erythropoietin hyporesponsiveness. Recently, hepcidin levels were found to be
inversely correlated with vitamin D status in CKD. The aim of this study was to investigate the role of
vitamin D in the regulation of hepcidin expression in vitro and in vivo. This study reports that 1,25-
dihydroxyvitamin D3 (1,25(0H);D3), the hormonally active form of vitamin D, is associated with
decreased hepcidin and increased ferroportin expression in lipopolysaccharide (LPS) stimulated THP-
1 cells. 1,25(0OH), D5 also resulted in a dose-dependent decrease in pro-hepcidin cytokines, IL-6 and IL-18,
release in vitro. Further, we show that high-dose vitamin D therapy impacts systemic hepcidin levels in
subjects with early stage CKD. These data suggest that improvement in vitamin D status is associated
with lower systemic concentrations of hepcidin in subjects with CKD. In conclusion, vitamin D regulates
the hepcidin-ferroportin axis in macrophages which may facilitate iron egress. Improvement in vitamin
D status in patients with CKD may reduce systemic hepcidin levels and may ameliorate anemia of CKD.

© 2014 Elsevier Inc. Open access under CC BY-NC-ND license

Introduction

Vitamin D insufficiency is common in patients with chronic kidney
disease (CKD) [1], with a prevalence rate of up to 80% of all patients
with CKD stage 3 or worse [2]. Optimal vitamin D status is important
in patients with CKD to regulate parathyroid hormone (PTH) con-
centrations [3—5] for optimal bone health and prevention of osteo-
malacia and for potential cardioprotective effects [3,6,7]. Recent
reports have established an association between vitamin D insuffi-
ciency and anemia in patients with CKD [8—10]; however, the role for
vitamin D in the regulation of anemia has not been fully explained.

Iron is one of the key nutrients involved in the pathophysiology
of anemia of CKD. The absorption and recycling of iron is under
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control of the hepcidin-ferroportin axis in humans [11,12].
Elevated hepcidin level inhibits iron uptake from the gut and se-
questers iron in the reticuloendothelial system [13]. Macrophages
engulf senescent red blood cells and, therefore, play a central role
in iron recycling. Hepcidin retains iron in macrophages by binding
to its receptor ferroportin, the only iron exporter, causing its
internalization and degradation, consequently preventing iron
egress from macrophages to circulation [14]. In inflammatory
states such as CKD, hepcidin antimicrobial peptide (referred to as
hepcidin) is elevated [15,16]. Two cytokines (IL-18 and IL-6) are
commonly elevated in CKD and stimulate hepcidin production
from the liver and macrophages [17—20]. Hepcidin prevents iron
egress from macrophages and thus prevents normal recycling of
the iron needed to support erythropoiesis [21—23]. Additionally,
reduced kidney function likely prevents efficient hepcidin clear-
ance from the plasma [8,24]. Recent investigations show that
vitamin D concentrations [assessed by serum 25-hydroxyvitamin
D (25(0H)D)] are inversely associated with hepcidin concentra-
tions and positively associated with hemoglobin and iron con-
centrations [8—10,24,25].
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Given the high prevalence of vitamin D insufficiency in patients
with CKD and the potential link between vitamin D and anemia,
iron and hepcidin concentrations, we hypothesized that vitamin D
therapy could improve expression of iron regulating proteins in
macrophages in vitro which would translate into improved circu-
lating hepcidin concentrations in humans. We examined the three
key iron regulating proteins, hepcidin, NRAMP1 (the endosomal
iron transporter that transfers recycled iron from the late endosome
to the cytosol) [26,27], and ferroportin, the only known cellular iron
exporter [28,29], in addition to other pro-hepcidin cytokines in
monocytic cell cultures in vitro. In order to translate these findings
to humans, we conducted a pilot study to examine the impact of
high-dose vitamin D on circulating hepcidin concentrations.

Materials and methods
Macrophage cell culture and stimulation

THP-1 macrophage-like monocytic cells obtained from ATCC
(Manassas, VA) were grown in RPMI 1640 medium supplemented
with 10% fetal bovine serum (FBS), 50 ug/ml penicillin and 50 IU/ml
of streptomycin. Freshly grown cells were harvested and adjusted to
1 million cells/ml and transferred into 12-well tissue culture plates
at 2 ml/well. THP-1 cells were cultured with 1,25(0OH),D3 (Sigma
Aldrich, St. Louis, MO) doses ranging from 5 nM to 40 nM and
incubated overnight. THP-1 monocytic cells differentiate into
macrophage phenotype upon vitamin D exposure [30]. To induce
inflammation, cells were exposed to lipopolysaccharide (LPS)
(20 ng/ml) and further incubated for 6 h at 37 °C. LPS from Neisseria
meningitidis serogroup B was purified and quantified as previous
described [31]. Cell suspensions were centrifuged and supernatants
were removed and saved at —20 °C for cytokine measurements.
Harvested THP-1 cells were washed with phosphate buffered saline
(PBS) then placed in RLT buffer (Qiagen; Hilden, Germany) con-
taining 1% B-mercaptoethanol, passed over QiaShredder columns,
and the resulting lysates were saved at —80 °C for mRNA extraction.

RNA isolation, quantitative real-time PCR and gene expression
analysis

RNA was isolated using RNeasy Mini kits (Qiagen) following the
manufacturer’s instructions, as previously described [32]. Briefly,
cell lysates saved in RLT buffer were mixed in 70% ethanol then
passed over RNeasy columns. Columns were washed and treated
with 10 pl of RNase-free DNase (Qiagen) for 15 min at room
temperature prior to RNA extraction, followed by additional
washing and centrifugation. RNA was eluted in 35 ul of RNase-free
water, then was reverse transcribed to cDNA using QuantiTect®
Reverse Transcription kit (Qiagen) following the manufacturer’s
instructions. Relative gene expression was determined by quan-
titative RT-PCR performed on resulting cDNA using SYBR Green
(Promega; Madison, WI) following the manufacturer’s in-
structions. The mRNA level was calculated in reference to B-actin,
and fold change gene expression was calculated in reference to
vehicle treated controls using the AACT method. Results were
normalized to vehicle-treated cells which were used as controls
for basal gene expression level. The following primers were
used for qRT-PCR reactions: human hepcidin 5'-GACCAGTGGCT
CTGTTTTCC-3' and 5'-CACATCCCACACTTTGATCG-3’; human
NRAMP1 5'-GCGAGGTCTGCCATCTCTAC-3’ and 5'-GTGTCCAC-
GATGGTGATGAG-3’; human LL-37 5'-CACAGCAGTCACCAGAGG
ATTG-3’ and 5-GGCCTGGTTGAGGGTCACT-3’; human B-actin 5’-
TCTTCCAGCCTTCCTTCCT-3' and 5’-AGCACTGTGTTGGCGTACAG-3'.
Ferroportin QuantiTect primers (Hs_SLC40A1_1_SG) were pur-
chased from Qiagen.

Cytokine release quantification

Cytokines IL-6 and IL-1P released from THP-1 cells were quan-
tified by DuoSet ELISA (R&D Systems, Minneapolis, MN) as previ-
ously described [31,33].

Hepcidin-25 measurements

Antibody labeling: Anti-hepcidin monoclonal antibodies were
adjusted to an approximate concentration of 2 mg/ml and were
Biotin- and MSD-SulfoTag (Meso Scale Discovery (MSD), Gaithers-
burg, MD, USA) labeled according to manufacturer’s protocols.
Capture antibody was biotin-labeled with Thermo no-weigh EZ
Link Sulfo-NHS-LC Biotin with a 20-fold molar excess of biotin.
Conjugate antibody was labeled with MSD Sulfotag NHS Ester with
a 12-fold molar excess of ruthenium. Following the labeling re-
actions, antibodies were extensively dialyzed to remove unbound
label.

Hepcidin electrochemiluminescence [34] immunoassay: The
hepcidin sandwich assay [29] was performed on MSD Streptavidin
96-well plates that were washed three times with TBST (Tris buff-
ered saline containing 10 mmol/l Tris pH 7.40, 150 mmol/l NaCl with
1 ml Tween 20/1) and blocked with 1% Bovine serum albumin
(Sigma, St. Louis, MO, USA) in TBS for 1 h at room temperature.
Following washing of the plate, 25 ul of biotin-labeled capture
antibody (4 pg/ml) was added and allowed to bind to the plate for
one hour with gentle shaking. Afterward, the wells were washed
three times with TBST, and 100 pl of hepcidin standards consisting
of varying concentrations of hepcidin protein in assay buffer con-
sisting of 50 mmol/l HEPES, pH 7.40, 150 mmol/l NaCl, 1 ml/l Triton
X-100, 5 mmol/l EDTA, and 5 mmol/l EGTA and 0.1% BSA, which was
supplemented with 100 pg/ml Heterophilic Blocking Reagent
(Scantibodies, Santee, CA, USA) were added to the wells to generate
a calibration curve. Plasma samples were diluted 1:50 in the same
assay buffer, added to their respective wells, and incubated for 1 h
at room temperature with gentle rocking. Following aspiration,
wells were washed 3 times with TBST, and 25 pl of 0.1 pg/ml
ruthenium-labeled conjugate hepcidin-specific detection antibody
were added to the wells, which were incubated for 1 h at room
temperature. The plate was again washed three times with TBST,
and 150 pl of 2X-MSD Read Buffer T was added to the wells. The
plate was then read on an MSD SECTOR Imager 6000 reader, which
recorded ruthenium electrochemiluminescence. Concentrations of
hepcidin in samples were interpolated against a standard curve
made up of reference standard hepcidin (Eli Lilly and Company,
Indianapolis, IN, USA) using a 4 PL fit (Meso Scale Discovery
Workbench).

Pilot clinical study design

We obtained serum from subjects with early stage CKD (stages
2/3) who completed an IRB-approved, double-blind, randomized,
placebo-controlled trial of oral vitamin D3 (cholecalciferol,
50,000 IU weekly for 12 weeks, followed by 50,000 IU every other
week for 40 weeks) or matching placebo for one year. CKD staging
was defined by an estimated glomerular filtration rate (eGFR) of
60—89 ml/min/1.73 m? and 30—59 ml/min/1.73 m? for stages 2 and
3, respectively, calculated using the Modification of Diet in Renal
Disease Study equation [35]. The primary endpoint of this study
was serum 25(0OH)D and PTH, the results of which have been
published [3,36]. All subjects provided informed consent for eval-
uation of their blood samples for future sub-studies to explore the
impact of high-dose vitamin D on a variety of health outcomes. The
clinicaltrials.gov registration number was NCT00781417. This sub-
study includes only subjects with available paired serum



S.M. Zughaier et al. / Journal of Clinical & Translational Endocrinology 1 (2014) e19—e25 e21

30 1

>

Hepcidin

25 A

20 4

15 4

10 -

) ‘

) t

LPS +10 nM LPS + 20 nM LPS +40 nM
1,26D 1,25D 1,25D

Hepcidin mRNA relative fold change

Ferroportin

2.5 1
2

1.5 1
1 4

) -/I -
0

LPS +10 nM LPS + 20 nM LPS + 40 nM
1,25D 1,25D 1,25D

FPN1 mRNA relative fold change

Figure 1. Vitamin D regulates hepcidin-ferroportin axis in LPS-stimulated macro-
phages. THP-1 cells were treated with increasing doses of 1,25(0OH),D5 overnight prior
to LPS (20 ng/ml) exposure for 6 h. In vitro 1,25(0H),D3; down-regulates hepcidin (A)
and up-regulates ferroportin (B) expression in LPS-stimulated human THP-1 macro-
phages. Gene expression was assessed by quantitative RT-PCR. *P < 0.05. 1,25D:
1,25(0H),D5.

specimens for hepcidin measurements at baseline and a three
month follow-up visit (N = 38). Serum 25(OH)D was measured with
a chemiluminescent assay (Immunodiagnostic Systems iSYS auto-
mated machine; Fountain Hills, AZ).

Statistical analysis

The mean values + SD and P values (Student t test) of at least
three independent determinations were calculated with Micro-
soft Excel software for the in vitro data. For the clinical data,
descriptive statistics were performed. Differences between
groups (vitamin D vs placebo) were determined with two-group
t-tests, Mann—Whitney U tests (for variables that were not nor-
mally distributed), or chi-square tests. Spearman’s rank correla-
tion was used to determine the relationship between the percent
change in serum 25(0OH)D3 and the percent change in serum
hepcidin. Clinical data were analyzed with JMP® Pro 10.0.0 (SAS
Institute Inc., Cary, NC, USA) using two-sided tests and assuming a
5% significance level.
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Figure 2. Vitamin D induces NRAMP1, the endosomal iron transporter, and LL-37 host
defense peptide in macrophages. THP-1 cells were treated with increasing doses of
1,25(0H),D3 overnight prior to LPS (20 ng/ml) exposure for 6 h. In vitro 1,25(0H),D3
up-regulates NRAMP1 (A) and potently induces LL-37 (B) gene expression in LPS-
stimulated human THP-1 macrophages. Gene expression was assessed by quantita-
tive RT-PCR. *P < 0.05. 1,25D: 1,25(0H),Ds.

Results

Vitamin D (1,25(OH),D3) is associated with decreased hepcidin and
increased ferroportin mRNA expression in THP-1 cells exposed to LPS

Lipopolysaccharide is a known inducer of hepcidin expression
in macrophages and hepatocytes [18,19]. The effect of the hor-
monally active vitamin D (1,25(0OH);D3) on regulating hepcidin
and ferroportin gene expression in LPS-stimulated THP-1 cells
was investigated. We found that 1,25(0OH),D3 suppressed hepcidin
mRNA expression in LPS-stimulated THP-1 cells in a dose-
dependent manner (Fig. 1A). In contrast, 1,25(0H);D3 signifi-
cantly increased ferroportin mRNA expression at 40 nM dose but
not at lower doses (Fig. 1B). These data suggest that vitamin D
regulates the hepcidin-ferroportin axis in macrophages expo-
sed to LPS, thereby facilitating iron transport during states of
inflammation.
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Figure 3. Vitamin D reduces pro-hepcidin cytokine release from LPS-stimulated
macrophages. THP-1 cells were treated with increasing doses of 1,25(0H),D3 over-
night prior to LPS (20 ng/ml) exposure for 6 h. In vitro 1,25(0H),Ds3 (1,25D) reduces IL-6
(A) and IL-1p (B) release from THP-1 cells exposed to 20 ng/ml of LPS. Cytokines release
was measured by ELISA. *P < 0.05. 1,25D: 1,25(0OH),Ds.

Vitamin D (1,25(0H),D3) is associated with increased expression of
NRAMP1, the endosomal iron transporter

NRAMP1, the endosomal iron transporter that plays a significant
role in cellular iron homeostasis, is a direct target gene for vitamin D. As
a positive control to our results that vitamin D regulates the hepcidin-
ferroportin axis in THP-1 cells exposed to LPS, we examined the
expression of NRAMP1 and LL-37, genes known to be induced by
vitamin D [26,30]. As expected, our data confirm that 1,25(0OH);D3
significantly induced NRAMP1 mRNA expression (Fig. 2A) and potently
induced LL-37 mRNA expression in LPS-stimulated THP-1 cells (Fig. 2B).

Vitamin D lowers inflammatory cytokines release from
LPS-stimulated macrophages in vitro

LPS is a major inducer of inflammatory cytokine release from
macrophages including pro-hepcidin cytokines, IL-6 and IL-1f [33].

Table 1
Baseline demographic characteristics of subjects with early stage CKD

Variable Vitamin D (n = 19) Placebo (n = 19) P

Age (y) 62.5 +11.0 62.0 + 8.7 0.89
BMI (kg/m?) 332+54 32.1 +£80 0.63
Male [n (%)] 19 (100.0) 17 (89.5) 0.15
African American (%) 9(47.4) 9(474) 1.00
eGFR (ml/min/1.73 m?) 594 + 14.4 62.3 £ 16.0 0.57
CKD Stage 2/3 (N) 9/10 8/11 0.74
Hypertension (%) 17 (89.5) 17 (89.5) 1.00
Diabetes (%) 17 (89.5) 13 (68.4) 0.11
25(0OH)D (ng/ml) 275+ 6.3 329+ 85 0.03
Hepcidin (ng/ml)? 8.5(5.5,17.7) 11.9 (6.8, 13.8) 0.90

Values are reported as mean =+ SD or n (%). P for difference calculated with two-
group t-test or chi-square test.

2 Reported as median (IQR) and P for difference calculated with Mann—Whitney U
test.

We examined whether vitamin D may also decrease the release of
these inflammatory cytokines from macrophages. We measured
cytokine concentrations in the cultured media from THP-1 cells in
the presence of increasing concentrations of 1,25(0OH),D3 prior to
LPS exposure and found a dose-dependent decrease in IL-6 (Fig. 3A)
and IL-1B release in vitro (Fig. 3B). Therefore, vitamin D may be
associated with suppression of hepcidin expression by directly
reducing pro-hepcidin cytokines release.

Vitamin D effects on hepcidin concentrations in patients with stages
2 and 3 CKD

Baseline demographic and biochemical characteristics for the
subjects evaluated in the pilot study are listed in Table 1. Coinci-
dently, baseline serum 25(OH)D concentrations were lower in the
vitamin D supplemented group. Baseline systemic hepcidin levels
were similar for the vitamin D supplemented and placebo groups.
The percent change from baseline to 3 months in serum 25(OH)D
concentrations was inversely associated with the percent change in
serum hepcidin concentrations (Spearman rho = —0.38, P = 0.02)
(Fig. 4, open circles represent patients receiving placebo. Filled
circles represent patients receiving vitamin D).
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Figure 4. Relationship between percent change in serum hepcidin and percent change
in 25(0OH)D from baseline to 3 months. Open circles represent patients receiving pla-
cebo. Filled circles represent patients receiving vitamin D. Spearman’s rho = —0.38,
P =0.02.
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Discussion

Macrophages play a central role in iron metabolism and in host
defense [14,37]. Macrophages are also major producers of inflam-
matory cytokines. Here we report that vitamin D treatment is
associated with reduced hepcidin expression in vitro and in vivo.
Our in vitro studies show that vitamin D is associated with
decreased hepcidin while increasing ferroportin and NRAMP1
mRNA expression in a dose-dependent manner in human mono-
cytic THP-1 cells in the presence of an inflammatory stimulus (i.e.
exposure to LPS). This study also shows that vitamin D is associated
with reduced concentration of hepcidin stimulatory cytokines, IL-6
and IL-1B, from cultured THP-1 cells exposed to LPS. Taken together,
these data suggest that vitamin D may have an important role in
regulating cellular iron homeostasis via the hepcidin-ferroportin-
NRAMP1 axis in macrophages to facilitate iron egress during
inflammation. Our in vivo pilot study shows that an increase in
serum 25(OH)D concentration is associated with a decrease in
serum hepcidin in subjects with early stage CKD. Our data suggest
that vitamin D therapy may improve altered iron homeostasis
associated with anemia of CKD in vitamin D deficient patients.

Our study is in agreement with recent studies showing that
vitamin D suppresses hepcidin expression in macrophages [38,39].
Bacchetta and co-workers show that vitamin D significantly sup-
pressed hepcidin expression in monocytes by 0.5-fold and provides
evidence that vitamin D directly downregulates hepcidin expres-
sion as they identified a VDRE binding site on human hepcidin
promoter [39]. Adding to the findings of this previous study, we
examined the effect of vitamin D on hepcidin expression in
monocytes during inflammation (i.e. in LPS-stimulated THP-1 cells).
LPS is a well-known inducer of hepcidin and can mimic in vivo in-
flammatory conditions since microbial translocation is commonly
associated with chronic diseases including CKD [40—43]. Our data
clearly demonstrate that vitamin D significantly reduced IL-6 and
IL-1P release (major inflammatory cytokines that are elevated in
CKD) [44—46] from LPS-induced THP-1 cells. Elevated IL-6 levels
are associated with poor clinical outcomes and with anemia of
chronic disease since IL-6 is a direct inducer of hepcidin [47].
Therefore, we postulate that reducing circulating IL-6 levels would
lead to a reduction in hepcidin expression in liver hepatocytes, the
major source of hepcidin, as well as in macrophages [48]. Elevation
in circulating IL-6 levels have been reported in patients with late
stage CKD where anemia of CKD is highly prevalent [47]. Further,
LPS is a major component of microbial translocation seen during
chronic inflammation [40—43]. LPS induces both hepcidin and IL-6
expression whereas LL-37 binds and neutralizes LPS activity [49].
Therefore, we postulate that high-dose vitamin D therapy sup-
presses hepcidin expression directly, as shown by Bacchetta et al.
[39], and indirectly by reducing pro-hepcidin inflammatory cyto-
kines IL-6 and IL-1p.

Further, we recently reported that vitamin D status assessed as
serum 25(0OH)D is inversely correlated with the inflammatory
chemokine, MCP-1, in vivo and in vitro [3,36]. MCP-1 is found to be
associated with serum hepcidin and macrophage iron in patients
with metabolic syndrome alterations [50]. Other studies reported
that vitamin D suppressed the release of inflammatory cytokines
from monocytes and macrophages [51]. The mechanism by which
vitamin D exerts anti-inflammatory effects is recently proposed to
be mediated by microRNA called miR-155 [52]. MicroRNAs are
noncoding RNAs that control genes expression by repressing mRNA
translation. Specifically, miR-155 encoded by bic gene is a critical
regulator of TLR signaling in macrophages. miR-155 targets SOCS1
(cytokine signaling protein 1), the negative feedback regulator of
cytokine release, therefore high miR-155 expression is associated
with a heightened cytokine release from macrophages. Increased

expression of miR-155 is reported in primary monocytes and
macrophages from SLE and in atherosclerotic plaque [53—57].
Vitamin D is reported to promote the negative feedback regulation
of LPS-mediated signaling by targeting miR-155-suppressor of
cytokine signaling protein 1 (SOCS1) in macrophages since miRNA-
155 is highly upregulated by toll-like receptors (TLR) ligands, i.e. LPS
and microbial translocation and downregulated by vitamin D
[52,58].

In addition to miRNA-155, vitamin D may regulate the immune
system by inducing autophagy and regulating endoplasmic stress.
Autophagy is a conserved process by which cells recycle macro-
molecules, thus playing an essential role in cellular homeostasis
and in host defense [59—62]. Campbell et al. demonstrated that
vitamin D enhanced autophagy, which inhibited HIV and Myco-
bacterium tuberculosis infection in macrophages [61]. Autophagy
induction reduces cytokines and other inflammatory mediators
release from LPS-stimulated macrophages [63]. Further, endo-
plasmic reticulum (ER) stress is shown to dysregulate cellular iron
homeostasis by inducing hepcidin expression [64]. Recent report
shows that vitamin D relieves ER stress, which would be another
possible mechanism by which vitamin D reduces hepcidin
expression [65,66]. Elucidation of these mechanisms is worthy of
further investigation.

In this pilot study we show that an increase in serum 25(0OH)D
concentrations is associated with a decrease in hepcidin levels in
subjects with early stage CKD enrolled in a high-dose vitamin D trial.
Our clinical finding supports our in vitro data that suggest vitamin D
lowers hepcidin expression directly and/or indirectly by decreasing
pro-hepcidin cytokines. Bacchetta and co-workers also demon-
strated that high-dose vitamin D therapy reduced blood hepcidin-25
levels in healthy donors [39]. The relationship between vitamin D
and hepcidin may explain the link between low vitamin D status and
anemia in children [67]. These findings are clinically significant as a
large majority of patients with CKD have vitamin D insufficiency 2],
and approximately 40% of patients with CKD stage 4 have anemia
[68]. Correction of vitamin D as a potential adjunctive therapy in
treatment of anemia of CKD is attractive given the relatively inex-
pensive cost, favorable safety profile, and the potential to reduce the
dependence on other more expensive therapies such as erythro-
poietin stimulating agents. Very few studies have been conducted to
evaluate vitamin D as a therapy for anemia of CKD. Goicoechea et al.
demonstrated in 28 patients on hemodialysis and severe hyper-
parathyroidism that intravenous calcitriol, the hormonally active
form of vitamin D, reduced the need for erythropoietin therapy [69].
Similarly, Albitar et al. demonstrated in a prospective study of 12
patients, treatment with alfacalcidol, an analog compound of
1,25(0OH),D, improved anemia in patients on hemodialysis [70].

The strength and novelty of this study was the evaluation of the
effect of vitamin D on suppressing hepcidin expression in LPS-
stimulated monocytes indicating the efficacy of vitamin D on
regulating hepcidin during inflammation, a common hallmark of
CKD. In addition to hepcidin and ferroportin, this study investigated
the impact of vitamin D on NRAMP1, the endosomal iron trans-
porter. A limitation was the use of immortalized human monocytic
THP-1 cells rather than primary peripheral monocytes from sub-
jects with CKD. A limitation of our clinical pilot study was that this
was a secondary analysis in CKD patients with available serum for
measurement of hepcidin; therefore, we may have been limited in
statistical power. Regardless, our clinical data support our in vitro
findings of a hepcidin-lowering effect of vitamin D.

In summary, this study reports that high-dose vitamin D impacts
hepcidin expression in vitro and in vivo. Vitamin D is associated with
alterations of the hepcidin-ferroportin axis in monocytes exposed to
LPS and leads to a reduction of pro-hepcidin cytokine, IL-6 and IL-18,
therefore facilitating iron egress during inflammation. This in vitro
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observation appears to be supported by our early translational pilot
study in subjects with early CKD where changes in vitamin D status
induced by high-dose oral vitamin D therapy impacted changes in
systemic hepcidin levels.
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