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Abstract

Background

Epidemiological studies have investigated the role of choline acetyltransferase (ChAT) in

Alzheimer’s disease (AD). ChAT gene polymorphisms (SNPs rs868750G/A, rs1880676G/

A, rs2177369G/A, and rs3810950G/A) may be associated with the risk of AD. In this meta-

analysis, we determined the relationship between the four polymorphisms and the risk of

AD.

Methods

We searched MEDLINE, EMBASE, and HuGEnet databases for studies linking the four

polymorphisms with AD risk. We included 16 articles in our meta-analysis to assess the

association between the four polymorphisms and susceptibility to AD by calculating the

pooled odds ratios (ORs) and 95% confidence intervals (CIs).

Results

The combined results showed no significant association with rs1880676G/A and

rs2177369G/A polymorphisms. The risk of AD (GG+GA versus AA: OR = 0.01, 95%CI =

0.01–0.02, P < 0.05; GG versus GA+AA: OR = 0.85, 95%CI = 0.72–1.00, P = 0.05; GA ver-

sus AA: OR = 0.60, 95% CI = 0.37–0.98, P = 0.04) with rs868750G/A polymorphism, or the

association of rs3810950G/A polymorphism with AD risk in the overall population (GA ver-

sus AA: OR = 0.64, 95% CI = 0.44–0.93, P = 0.02; GG+GA versus AA: OR = 0.62, 95%

CI = 0.39–0.97, P = 0.04) or Asian group (GA versus AA: OR = 0.50, 95% CI = 0.32–0.76,

P = 0.001, and GG+GA versus AA: OR = 0.46, 95% CI = 0.30–0.09, P = 0.0002) was

demonstrated.
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Conclusions

Our meta-analysis suggested that rs1880670G/A, and rs2177369 G/A polymorphisms were

not risk factors for AD. However, rs3810950G/A, or rs868750G/A genetic polymorphism

was a genetic risk factor for the development of AD. The rs3810950G/A polymorphism had

a negative effect on the risk of AD for GA or GG+GA genotypes compared with AA in the

overall population or Asians.

Introduction
Alzheimer’s disease (AD), characterized by progressive memory loss and cognitive dysfunc-
tion, is the most common neurodegenerative disorder of unknown etiology in the elderly. The
neuropathological hallmarks of the disease include deposition of plaques, neurofibrillary tan-
gles, and progressive loss of neurons. The complex interaction between genetic and environ-
mental factors contributes to the development of Alzheimer’s disease (AD). Choline
acetyltransferase (ChAT) was found to mediate the pathogenesis of AD [1]. Davies et al
reported that the loss of cholinergic neurons or ChAT activity was associated with the develop-
ment of AD [2]. The deficiency of frontal and hippocampal ChAT activity [3,4] mainly involv-
ing cholinergic neurons was associated with AD. Cholinergic activity was correlated with beta-
amyloid precursor (APP) metabolism in rats [5–8], which is the neurobiological hallmark of
AD [9]. Furthermore, the up-regulation of ChAT activity played an important role in cognitive
improvement [10] in hippocampus and frontal cortex of AD.

The ChAT gene, containing 15 exons and the entire sequence of the vesicular ACh trans-
porter, is located on chromosome 10q11.23 [11]. A few SNPs associated with AD risk have
been identified [12–14]. A large number of ChAT SNPs were evaluated in AD but the results
were equivocal. Mubumbila et al [15] associated SNP 2384G>A polymorphism in the first
exon of the ChAT gene with AD risk. A survey of several ChAT SNPs reported the relationship
between ChAT and AD risk. However, results from published studies involving Caucasians are
contradictory [12,16–18]. Most of these studies were inconclusive and included a relatively
small number of cases and controls. Based on the potential role of ChAT in AD pathogenesis,
we performed a meta-analysis to investigate the contribution of SNPs including rs868750G/A,
rs1880676G/A, rs2177369G/A, and rs3810950G/A to AD risk.

Materials and Methods

Search strategy
The electronic databases MEDLINE, EMBASE, and HuGEnet were searched to identify eligible
studies without language restriction. The search was only focused on “human” studies. The fol-
lowing Medical Subject Heading (MESH) terms or key words were used: (‘‘choline acetyltrans-
ferase” or ‘‘ChAT”) and (‘‘genetic” or ‘‘polymorphism” or ‘‘mutation” or ‘‘genes”) and (‘‘AD”
or ‘‘Alzheimer’s disease”). The related reference lists were reviewed to ascertain additional
studies.

Inclusion criteria
Eligible studies met the following criteria: (a) evaluation of 4 SNPs of ChAT gene polymor-
phisms (SNPs rs868750G/A, rs1880676G/A, rs2177369G/A and rs3810950G/A) and AD risk,
(b) clinical diagnosis of AD [19–21], (c) case–control studies, and (d) available data for calcu-
lating odds ratios (OR) with 95% confidence interval (CI). The exclusion criteria were: (1)
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cases with a family history of AD, (2) case reports, editorials, and review articles, and (3) dupli-
cate studies. If a study contained more than one sample, each sample was used for this meta-
analysis.

Data extraction
Two investigators independently reviewed abstracts or full text to identify eligible studies, and
extracted data independently. The discrepancies were resolved following discussions. The fol-
lowing information was extracted: the first author, genotyping method, nation and ethnicity of
the study population, year of publication, and genotype frequencies in cases and controls.

Statistical analysis
The strength of the association between AD susceptibility and ChAT gene polymorphism
(rs868750 G/A) was evaluated by the odds ratio (OR) and the corresponding 95% confidence
interval (CI). Five different ORs were assessed in our analysis: dominant model (GG+GA ver-
sus AA), recessive model (GG versus (GA+AA), homozygote comparison (GG versus AA),
and heterozygote comparison (GG versus GA, GA versus AA). The same method was used for
the other three polymorphisms (rs1880676G/A, rs2177369G/A, and rs3810950G/A).

The test for heterogeneity between studies was performed with Cochran’s Q test. A fixed
effects model was used to calculate the pooled OR and 95% CI if the P-value was greater than
0.1, which indicated homogeneity [22]. Otherwise, a random effects model [23] was adopted to
combine eligible data with the Review Manager, version 5.3. Significance of the pooled OR was
determined by the Z-statistic.

A subgroup analysis was conducted on the basis of ethnicity or APOEε4 carrier status or
ethnicity. The sensitivity analysis was performed by the sequential removal of individual stud-
ies to explore the stability of the results. The visual Begg’s funnel plot was used to explore publi-
cation bias, and Egger’s linear regression test was utilized to quantitatively assess the
publication bias with STATA 12.0 software [24]. All genotype distributions of the control pop-
ulation for eligible studies were tested for deviation from Hardy-Weinberg equilibrium using
Chi-square test. If the controls were not in accordance with Hardy-Weinberg Equilibrium, the
study was excluded for the sensitivity analysis.

Results

Study selection
A total of 114 studies were retrieved in the initial search, of which 37 related to ChAT genes
and AD were identified. Based on their titles and abstracts, 21 studies were excluded because 8
were reviews, 3 studies had no controls and 10 involved cell lines. Finally, 16 studies or 26 com-
parisons pertaining to ChAT polymorphisms and AD risk were included. Fig 1 showed the
results of the study screen, and the characteristic features of the eligible studies were exhibited
in Table 1.

Study characteristics
Overall, the meta-analysis of included studies comprised 1452/1175 (rs868750G/A), 3341/3013
(rs1880676G/A), 1100/828 (rs2177369G/A) and 3275/3878 (rs3810950G/A) cases/controls(S1
Table). In most studies, the non-demented age- and sex-matched controls were found, diagno-
ses of definite or probable AD were established according to DSM [19], NINCDS-ADRDA
[20] or CERAD [21], genomic DNA was extracted from peripheral tissues according to stan-
dard procedure (blood or brain), and genotyping was performed on genomic DNA using a
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polymerase chain reaction. The 16 studies included 12 European [13–15, 17, 18, 25–31] and 4
Asian [12, 16, 32, 33] populations (Table 1).

Meta-analysis
A significant association was found between the rs3810950G/A polymorphism and AD risk in
the heterozygote model (GA versus AA: OR = 0.64, 95% CI = 0.44–0.93, P = 0.02, Pheterogeneity =
0.04, random effects model. Fig 2), the homozygote model (GG versus AA: OR = 0.62, 95%
CI = 0.38–1.00, P = 0.05, Pheterogeneity = 0.0003, random effects model) and the dominant model
(GG+GA versus AA: OR = 0.62, 95% CI = 0.39–0.97, P = 0.04, Pheterogeneity = 0.001, random
effects model; Fig 3) (Table 2). However, subgroup analysis by APOEε4 carrier status did not
reveal significant associations for both APOEε4 carriers (GG+GA versus AA: OR = 0.71, 95%
CI = 0.37–1.37, P = 0.31; GG versus GA+AA: OR = 0.84, 95% CI = 0.62–1.14, P = 0.27; GG ver-
sus AA: OR = 0.70, 95% CI = 0.36–1.36, P = 0.29; GG versus GA: OR = 0.90, 95% CI = 0.65–1.23,
P = 0.49; GA versus AA: OR = 0.75, 95% CI = 0.38–1.50, P = 0.41) and non-APOEε4 carrier pop-
ulations (GG+GA versus AA: OR = 1.06, 95% CI = 0.65–1.74, P = 0.82; GG versus GA+AA:

Fig 1. Flow chart of literature search and study selection.

doi:10.1371/journal.pone.0159022.g001
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OR = 0.88, 95% CI = 0.55–1.42, P = 0.60; GG versus AA: OR = 0.78, 95% CI = 0.22–2.73,
P = 0.70; GG versus GA: OR = 0.90, 95% CI = 0.59–1.38, P = 0.64; GA versus AA: OR = 1.06,

Table 1. Characteristics of included studies in this meta-analysis.

Author Year Country(Ethnicity) Genotyping
Method

SNP Diagnosis Criteria Matching
Characteristics

Specimen

Harold 2003 UK (Caucasian) NP rs868750 rs1880676
rs3810950

NINCDS-ADRDA Gender, Age Blood

Ozturk 2006 USA (Caucasian) NP rs868750 rs3810950
rs1880676

NINCDS-ADRDA Gender, Age Blood

Ahn Jo 2006 Korea (Asian) SNaPshot rs1880676 rs3810950 NINCDS-ADRDA Age Blood

Reiman 2007 USA (Caucasian) NP rs1880676 NINCDS-ADRDA Age Blood

Li 2008 Canada /UK
(Caucasian)

PCR rs1880676 NINCDS-ADRDA Age Blood

Giedraitis 2009 Sweden (Caucasian) PCR rs1880676 NINCDS-ADRDA NP Blood

Scacchi 2008 Italy (Caucasian) PCR rs2177369 NINCDS-ADRDA DSM-IV Gender, Age Blood

Cook 2004 UK (Caucasian) NP rs2177369 rs3810950 NINCDS-ADRDA Gender, Age Blood

Piccardi 2007 Italy (Caucasian) PCR-RFLP rs2177369 NINCDS-ADRDA DSM-IV Gender, Age Blood

Schwarz 2003 Germany (Caucasian) PCR rs3810950 NINCDS-ADRDA CERAD Gender, Age Blood

Kim 2004 Korea (Asian) PCR rs3810950 NINCDS-ADRDA DSM-IV
CERAD

Gender, Age Blood

Tang 2008 China (Asian) PCR-RFLP rs3810950 NINCDS-ADRDA DSM-IV Gender, Age Blood

Grunblatt 2009 Austria (Caucasian) PCR rs3810950 NINCDS-ADRDA DSM-IV
CERAD

NP Blood

Lee 2012 Korea (Asian) PCR rs3810950 NINCDS-ADRDA NP Blood

Mengel-
From

2011 Denmark (Caucasian) PCR rs3810950 NINCDS-ADRDA NP NP

Mubumbila 2002 France/Germany
(Caucasian)

SSCP rs3810950 NP Gender, Age NP

NINCDS-ADRDA, the criteria of the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and

Related Disorders Association (ADRDA). CERAD, The Consortium to Establish a Registry for Alzheimer’s disease. Part I. Clinical and neuropsychological

assessment of Alzheimer’s disease. NP: Not Provided.

doi:10.1371/journal.pone.0159022.t001

Fig 2. Meta-analysis of the association between the rs3810950G/A gene polymorphism and AD risk (GA versus
AA).

doi:10.1371/journal.pone.0159022.g002
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95% CI = 0.65–1.74, P = 0.82) in three comparisons. In subgroup analysis stratified by ethnicity,
the rs3810950G/A polymorphism was associated with AD risk among Asians in the heterozygote
and dominant models (GA versus AA: OR = 0.50, 95% CI = 0.32–0.76, P = 0.001; GG+GA versus
AA: OR = 0.46, 95% CI = 0.30–0.09, P = 0.0002, respectively), but not in the other models (GG
versus GA+AA: OR = 0.80, 95% CI = 0.54–1.19, P = 0.27; GG versus AA: OR = 0.52, 95%

Fig 3. Meta-analysis of the association between the rs3810950G/A gene polymorphism and AD risk (GG+GA
versus AA).

doi:10.1371/journal.pone.0159022.g003

Table 2. Meta-analyses of ChAT gene polymorphisms and risk of AD.

SNP Genotype No. of comparisons Test of association Model Test of heterogeneity

OR 95%CI P Q P I2(%)

rs868750 G/A GA vs. AA 4 0.60 0.37,0.98 0.04 F 3.20 0.36 6%

GG vs. AA 4 0.53 0.33,0.85 0.008 F 5.10 0.16 41%

GG vs. GA 4 0.89 0.75,1.05 0.16 F 2.52 0.47 0%

GG vs. GA+AA 4 0.85 0.72,1.00 0.05 F 4.14 0.25 28%

GG+GA vs. AA 4 0.01 0.01,0.02 <0.05 F 3.31 0.35 9%

rs1880676 G/A GA vs. AA 8 0.85 0.57,1.25 0.41 R 13.42 0.06 49%

GG vs. AA 8 0.88 0.57,1.34 0.55 R 16.29 0.02 57%

GG vs. GA 8 1.06 0.95,1.18 0.30 F 7.04 0.42 1%

GG vs. GA+AA 8 1.05 0.95,1.16 0.37 F 10.06 0.19 30%

GG+GA vs. AA 8 0.97 0.78,1.20 0.75 R 15.59 0.03 55%

rs2177369 G/A GA vs. AA 4 0.82 0.65,1.04 0.09 R 0.47 0.92 0%

GG vs. AA 4 0.83 0.48,1.44 0.51 R 13.18 0.004 77%

GG vs. GA 4 1.02 0.63,1.66 0.93 R 11.24 0.01 73%

GG vs. GA+AA 4 0.93 0.56,1.54 0.78 R 15.77 0.001 81%

GG+GA vs. AA 4 0.84 0.68,1.03 0.10 F 4.81 0.19 38%

rs3810950 G/A GA vs. AA 10 0.63 0.45,0.89 0.008 R 16.61 0.06 46%

GG vs. AA 10 0.60 0.39,0.93 0.02 R 30.45 0.0004 70%

GG vs. GA 10 0.98 0.88,1.08 0.64 F 11.73 0.23 23%

GG vs. GA+AA 10 0.89 0.75,1.05 0.17 R 22.68 0.007 60%

GG+GA vs. AA 10 0.60 0.40,0.91 0.01 R 26.65 0.002 66%

R, random effects model; F, fixed-effects model.

doi:10.1371/journal.pone.0159022.t002
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CI = 0.21–1.27, P = 0.15; GG versus GA: OR = 0.95, 95% CI = 0.73–1.24, P = 0.69). No associa-
tion was found in Caucasians (GG+GA versus AA: OR = 0.69, 95% CI = 0.41–1.15, P = 0.16; GG
versus GA+AA: OR = 0.89, 95% CI = 0.78–1.01, P = 0.06; GG versus AA: OR = 0.64, 95%
CI = 0.39–1.06, P = 0.08; GG versus GA: OR = 0.93, 95% CI = 0.82–1.07, P = 0.32; GA versus
AA: OR = 0.71, 95% CI = 0.46–1.09, P = 0.11). The results of subgroup analyses were inconsistent
with overall comparisons. Therefore, our meta-analysis demonstrated the association of
rs3810950G/A polymorphism and AD risk in the overall analysis or Asian group.

The relationship between rs868750 G/A polymorphism and the risk of AD was found
(GG+GA versus AA: OR = 0.01, 95% CI = 0.01–0.02, P< 0.05, Pheterogeneity = 0.35, fixed effects
model; GG versus GA+AA: OR = 0.85, 95% CI = 0.72–1.00, P = 0.05, Pheterogeneity = 0.25, fixed
effects model; GG versus AA: OR = 0.53, 95% CI = 0.33–0.85, P = 0.16, Pheterogeneity = 0.16,
fixed effects model; GG versus GA: OR = 0.89, 95% CI = 0.75–1.05, P = 0.16, Pheterogeneity =
0.47, fixed effects model; GA versus AA: OR = 0.60, 95% CI = 0.37–0.98, P = 0.04, Pheterogeneity =
0.36, fixed effects model). However, the association with rs1880676G/A, and rs2177369G/A was
not investigated. The details were exhibited in Table 2.

Sensitivity analysis and Publication bias
For rs3810950 G/A, after one study [15] was excluded based on the deviation from Hardy–
Weinberg equilibrium (χ2 = 0.545, P = 0.011), the two models were unchanged [heterozygote
model (GA versus AA: OR = 0.73, 95% CI = 0.58–0.93, P = 0.01 and the dominant model
(GG+GA versus AA: OR = 0.67, 95% CI = 0.49–0.99, P = 0.05] indicating that the two overall
ORs were stable. Sensitivity analysis was performed by sequential removal of individual studies
to reflect the effect of individual data on the pooled ORs. We did not find the effect of any
study on the pooled results in the above two models (Figs 4 and 5). We used Begg’s funnel plot
and Egger’s linear regression test to determine publication bias. The funnel plot was nearly

Fig 4. Sensitivity analysis of the relation between the ChAT rs3810950 G/A polymorphism and AD risk
(GA versus GG).

doi:10.1371/journal.pone.0159022.g004
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symmetrical (Figs 6 and 7). The Egger’s linear regression test showed no publication bias (GA
versus AA: t = -1.01, P = 0.344, GG+GA versus AA: t = -1.01, P = 0.340).

Fig 5. Sensitivity analysis of the correlation between ChAT rs3810950 G/A polymorphism and AD risk
(GG+GA versus AA).

doi:10.1371/journal.pone.0159022.g005

Fig 6. Begg’s funnel plot for rs3810950 G/A gene polymorphism (GG+GA versus AA) and AD risk.

doi:10.1371/journal.pone.0159022.g006
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Discussion
Harold et al identified rs868750 (11604 G/A) using primer extension assay. It was localized to
intron 9 or 140 bp downstream of exon 9(Fig 8) [25]. None of the results obtained with the
SNP rs868750 G/A polymorphism was significantly associated with AD risk in the three studies
from the UK [25]. However, Ozturk et al reported the association of rs868750 G/A polymor-
phism with AD risk in the USA [13], and also observed that the genetic interaction with
APOEε4 carriers played a role. Our results also showed a genetic association with AD suscepti-
bility.A ChAT intron 10 SNP (rs2177369 G/A) was found to be associated with AD risk in a
pilot sample of 202 cases and 295 controls (Fig 8) [18]. However, Piccardi et al found no signif-
icant difference in the association between rs2177309G/A, and AD risk [29] and was further
corroborated by Harold et al [25]. Our meta-analysis also showed no association between
rs2177309G/A polymorphism and AD risk. However, in Italy, Scacchi et al showed a signifi-
cant difference in genotype distribution (χ2 = 6.38, P = 0.01), and the ChAT G/G genotype was
associated with a higher risk for AD compared with the G/A+A/A genotypes in APOEε4 or
non-APOEε4 carriers [14]. Though the biological effect of SNP rs868750 G/A or rs2177369
G/A on AD risk is not explicit, we found a possible association between rs868750G/A but not
rs2177309G/A with AD risk. Genetic interaction with APOEε4 carriers might play a role in
these associations based on above studies, or the smaller sample size may contribute to incon-
sistent results. However, the inadequate sample size prevented subgroup analysis in our meta-
analysis. Therefore, further investigations with larger and more powerful sample cohorts are
needed to reinforce the conclusions.

Rs1880676 (1882G/A, Asp7Asn) was identified by restriction fragment length polymor-
phism assay and located in exon S (D7N)(Fig 8). If the sequence numbering of CHAT started
from the first translational start site in exon S, the amino acids were numbered from the first
amino acid of the large 74-kDa isoform of ChAT [25]. However, no rs1880676 G/A was linked

Fig 7. Begg’s funnel plot for rs3810950 G/A gene polymorphism (GA versus AA) and AD risk.

doi:10.1371/journal.pone.0159022.g007
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to AD pathogenesis. In the UK, no association of genotype (rs1880676 G/A) or allele with the
AD compared with controls was reported [25]. In the USA, the lack of association was repli-
cated by Ozturk et al [13]. Ahn Jo et al found that the ChAT genotype distribution between the
patients and the controls had no significant difference in Korea [12]. Our results were consis-
tent with most previous studies, and the risk of AD was not associated with rs1880676 G/A
polymorphism. However, heterogeneity was found by Cochran’s Q test between the results of
individual studies. Subgroup analyses should be conducted to evaluate the effect of heterogene-
ity on the results of the meta-analysis based on age at onset, ethnicity or geographic distribu-
tion of population. However, the original database should be supported by authors. Further
investigations with larger sample are needed to confirm or refute these results.

Mubumbila et al [15] found SNP rs3810950 G/A in the first common coding exon 5 of the
ChAT gene, among the combined French and German populations(Fig 8). This G/A transition
may contribute to ATG usage resulting in attenuation of translational efficacy of ChAT mes-
senger RNA following substitution of an alanine residue for a threonine (Ala120Thr). How-
ever, the biological implication of the association of this SNP with AD is not clear. Kim et al in
Korea found that ChAT AA was associated with AD risk in APOEε4 carriers (OR = 43.25, 95%
CI = 1.17–9.03) [16]. Tang et al also found the risk for AD associated with ChAT rs3810950 G/
A polymorphism in China [32]. Our combined results of overall analysis showed a significant
negative association between AD risk and rs3810950 G/A polymorphism, and the lower risk of
AD with genotype GA or genotypes GG+GA was found compared with genotype AA. How-
ever, Schwarz et al reported that this polymorphism was not associated with AD risk in Ger-
many [17]. Harold et al also failed to replicate the previous associations with AD risk in UK
[25]. Several confounding factors might contribute to heterogeneity of meta-analysis or con-
flicting results. The stratification based on APOEε4 polymorphism or ethnicity might be one
such factor. The effect of the rs3810950 A allele on AD risk was consistent with the ApoEε4
allele in a Korean AD population [16]. One study reported that the frequency of the rs3810950
A allele was significantly lower in non-ApoEε4 AD carriers in the USA [13]. A Korean study
found an association with GA genotype or GA/AA genotypes in non-ApoEε4 allele carriers

Fig 8. The genomic structure ofthe ChAT. The SNP rs1880676 G/A, rs3810950G/A, rs868750 G/A and rs2177369 G/A is located in
exon S, exon 5, intron 9,and intron 10 respectively. The 5 variantencodes the 69-kDa ChATprotein but the S variant encodes a
74-kDaprotein [35–37]. The figure was drawn based on relevant studies [13,15,18,25].

doi:10.1371/journal.pone.0159022.g008
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with AD [12]. However, stratification ORs of studies showed a significant relationship based
on ethnicity. No statistical correlation based on APOEε4 carrier status was found in our meta-
analysis and was inconsistent with the overall comparisons. Therefore, the genetic interaction
with ethnicity might affect these relationships. A larger sample size is needed to confirm the
genetic interaction with APOEε4 polymorphism. When heterogeneity is found between the
studies, the results should be interpreted in accordance with cumulative meta-analysis [34]. In
our study, the results of cumulative meta-analysis for recessive model GA versus AA or GG
+GA versus AA showed stability after the year 2003 (Schwarz) [17] in the overall analysis,
respectively (Figs 9 and 10). The recalculated ORs were found stable in two models by exclud-
ing single studies from the overall pooled analysis, indicating the validity of our results (Figs 4
and 5). Finally, the funnel plots and Egger’s tests revealed no potential publication bias. The
results suggested that the conclusions of the meta-analysis were reliable.

Several limitations should be considered. First, the sample size of included studies was
small, which might contribute to the probability of false positive or false negative results. Sec-
ond, subgroup analysis based on age of onset, samples (blood or brain) or genotyping methods,
which might result in selection bias and clinical heterogeneity, was not carried out due to lack
of sufficient sample size. Finally, publication bias associated with the exclusion of unpublished
studies with negative results was not explored.

Notwithstanding the study limitations, the meta-analysis suggests that the ChAT rs1880670
G/A or rs2177369 G/A polymorphism might not be a risk factor for AD. The rs3810950 G/A

Fig 9. Cumulative meta-analysis of the association between ChAT rs3810950 G/A polymorphism and AD risk
of the overalls using a random effects model (GG+GA versus AA).

doi:10.1371/journal.pone.0159022.g009
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or rs 868750G/A genetic polymorphism plays an important role in the development of AD,
and the rs3810950 G/A polymorphism showed a negative effect on the risk of AD for GA or
GG+GA compared with AA in overall comparisons or Asian populations. Further investiga-
tions into the interaction of APOEε4 carrier status or ethnicity with these polymorphisms
should be carried out.
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