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Abstract

Background: Magnetic resonance imaging (MRI) is the modality of choice for diagnosing and monitoring muscular
tissue pathologies and bone marrow alterations in the context of lower back pain, neuromuscular diseases and
osteoporosis. Chemical shift encoding-based water-fat MRI allows for reliable determination of proton density fat
fraction (PDFF) of the muscle and bone marrow. Prior to quantitative data extraction, segmentation of the examined
structures is needed. Performed manually, the segmentation process is time consuming and therefore limiting the
clinical applicability. Thus, the development of automated segmentation algorithms is an ongoing research focus.

Construction and content: This database provides ground truth data which may help to develop and test automatic
lumbar muscle and vertebra segmentation algorithms. Lumbar muscle groups and vertebral bodies (L1 to L5)
were manually segmented in chemical shift encoding-based water-fat MRI and made publically available in
the database MyoSegmenTUM. The database consists of water, fat and PDFF images with corresponding
segmentation masks for lumbar muscle groups (right/left erector spinae and psoas muscles, respectively) and
lumbar vertebral bodies 1–5 of 54 healthy Caucasian subjects. The database is freely accessible online at
https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56.

Conclusion: A development and testing of segmentation algorithms based on this database may allow the
use of quantitative MRI in clinical routine.
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Background
Morphology-based magnetic resonance imaging (MRI) is
clinically used to identify and monitor pathological changes
of the spine in many diseases (e.g. osteoporosis or lower
back pain) [1–3]. Quantitative MR including magnetic res-
onance spectroscopy and chemical shift encoding-based
water-fat MRI allows for reliable determination of muscle
and bone marrow fat composition [4, 5]. It can be used for
the quantitative assessment of muscular tissue composition
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in neuromuscular disorders and their longitudinal monitor-
ing [6, 7]. It was reported that intramuscular fat is increased
in patients with neuromuscular diseases and lower back
pain [3, 7–10]. Bone marrow malignancies, osteoporosis
and distinction of the fractures are also common fields of
application for quantitative MRI [11–13]. Compared to
quantitative MRI, morphology-based MRI with the subse-
quent qualitative analysis and generation of semiquantita-
tive parameters is limited in this context considering
interrater objectivity and experience-based follow up evalu-
ation [14].
Proton density fat fraction (PDFF) can be calculated

based on chemical shift encoding-based water-fat MRI
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[15, 16]. However, up to now a manually segmentation
process is needed to extract PDFF values from the lum-
bar muscles and the vertebral bone marrow. This is time
consuming and therefore limiting the clinical applicabil-
ity. Clinicians as well as scientists would strongly benefit
from automated segmentation methods. Despite some
recent developments in (semi-) automated segmentation
techniques in different imaging disciplines their transfer
into clinical routine is still challenging [17–19]. Previous
work reported possibilities for muscle and vertebrae
segmentation in MR images [20–23]. These algo-
rithms require large datasets to test their performance
and to further develop them. However, the public
availability of manually segmented datasets of lumbar
muscle groups and vertebrae as ground truth are
limited.
Therefore, the purpose of this work was to provide a

ground truth database with quantitative chemical shift
encoding-based water-fat MR images and segmentations
of the lumbar muscle groups (right/left erector spinae
and psoas muscles, respectively) and the lumbar verte-
bral bodies (L1 to L5).

Construction and content
Subjects
The database contains 54 MRI datasets of healthy, Cauca-
sian volunteers (15 males, 39 female, age: 51.6 ± 16.7 years).

MR imaging
Fifty-four healthy volunteers underwent MRI on a 3 T
system (Ingenia, Philips Healthcare, Best, Netherlands)
using a whole-body coil, the built-in 12-channel poster-
ior coil and a 16-channel anterior coil. Subjects were po-
sitioned head-first in a supine position. Two different
sequences were used for imaging the lumbar muscles
and vertebral bodies. The conducted scanning protocol
included dedicated scanning parameters, which are
shown in Table 1.
The acquired data were analyzed using the mDIXON fat

quantification method provided by the manufacturer. A
Table 1 Scan parameters of the axially- and sagittally-prescribed seq

Axially-prescribed six-echo 3
gradient- echo sequence

TR/ TE1/ ΔTE 6.4/1.1/0.8 ms

Flip angle 3°

Bandwith 2484 Hz/pixel

Acquisition matrix 68 × 150

Field of view (FOV) 220 × 401 × 252 mm3

Acquisition voxel size 3.2 × 2.0 × 4.0 mm3

Frequency direction L/R

Scan time 1min and 25 s
complex-based water-fat decomposition was performed
using a single T2* correction and a pre-calibrated fat
spectrum accounting for the presence of the multiple
peaks in the fat spectrum [24]. A seven-peak fat spectrum
model was employed. The imaging-based proton density
fat fraction (PDFF) map was computed as the ratio of the
fat signal over the sum of fat and water signals, described
previously by Schlaeger et al. [25, 26].
Axial and sagittal water, fat and PDFF images were

stored as separate datasets for each subject as a *.dcm file.
MR image segmentation
The subsequent segmentation of the computed PDFF
was performed manually using the open access image
viewer software MITK (Medical Imaging Interaction
Toolkit, Heidelberg, Germany). All segmentations were
performed by a board certified radiologist.
The vertebral bodies L1 to L5 were segmented in the sa-

gittal PDFF maps excluding the posterior elements (Fig. 1).
The axial PDFF maps were used to separately segment

the erector spinae and the psoas muscle on both sides
from the cranial part of L2 to caudal part of L5. Figure 2
exemplarily shows the depicted ROI in the correspond-
ing muscles.
PDFF of each vertebral body (L1 to L5) and muscle

group (right/left erector spinae and psoas muscle, re-
spectively) were extracted. The segmentations of each
vertebral body and muscle group is available as a binary
mask. Each mask was stored as a separate *.mha file.
Utility and discussion
Database availability
The database is available online at https://osf.io/3j54b/
?view_only=f5089274d4a449cda2fef1d2df0ecc56. Axial and
sagittal water, fat and PDFF images are deposited as separ-
ate datasets for each subject as a *.dcm file. The segmenta-
tion masks of each vertebra (L1 to L5) and muscle group
were deposited as *.mha files.
uence

D spoiled Sagittally-prescribed eight-echo 3D
spoiled gradient-echo sequence

11/1.4/1.1 ms

3°

1527 Hz/pixel

124 × 121

220 × 220 × 80mm3

1.8 × 1.8 × 4.0 mm3

A/P

1 min and 17 s

https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56
https://osf.io/3j54b/?view_only=f5089274d4a449cda2fef1d2df0ecc56


Fig. 1 (a) PDFF map of a 28-year-old male with representative segmentation of the vertebral bodies L1 to L5 (b)
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Subjects’ characteristics
Datasets of subjects and corresponding segmentation
masks are labeled with the same subject ID (1 to 54).
Masks were labeled as L1 to L5 or muscle group (right
erector spinae muscle, left erector spinae muscle, right
psoas muscle, and left psoas muscle, respectively).
Subject characteristics (sex, age [years], weight [kg],

height [m] and body mass index (BMI) [kg/m2]) and PDFF
values [%] of the vertebral bone marrow (L1 to L5) and the
lumbar muscle groups (right/left erector spinae and psoas
muscle, respectively) are listed in Table 2. Segmentation of
the paraspinal muscles and the lumbar vertebrae (L1 to L5)
amounted 50min and 1:40 h for each subject, respectively.

Discussion
Recent and future trends of imaging automatization are
and surely will be influencing many aspects of radiological
diagnostics now and in the future. Subspecialties as neuro-
radiology, breast imaging, musculoskeletal radiology and
oncological imaging are affected regarding (semi-) auto-
mated initial diagnostic finding, disease monitoring and
report classification [18, 27–29]. Our aim with offering a
database for manually segmented lumbar muscles and ver-
tebral bodies (L1 to L5) in MR images of 54 healthy
Fig. 2 (a) PDFF map of a 28-year-old male with representative segmentatio
psoas muscle, (3) right erector spinae muscle, and (4) left erector spinae m
volunteers is to provide ground truth data which supports
testing and refining newly developed computer vision or
machine learning algorithms for automatic lumbar muscle
and spine segmentation. The present database offers ac-
cess to water, fat and PDFF maps.
With the extractable volume and PDFF values for the

psoas and erector spinae muscles and the vertebral bod-
ies L1 to L5, we elucidate the use of quantitative MRI in
spine and muscle imaging and offer a ground truth data-
set for automatic algorithm testing purposes. Figure 1
exemplarily illustrates the PDFF map of the vertebral
bodies L1 to L5 and Fig. 2 shows a PDFF map for the re-
spective muscle groups. The presented data is in line
with the studies of Schlaeger et al. and Baum et al. and
could help to develop more efficient ways of segmenting
musculoskeletal structures [25, 30]. This is necessary to
enable scientists and clinicians to perform data process-
ing and analysis in an economic way. Additionally, the
described methodical aspects are of great importance in
order to being able to transfer automatized quantitative
MRI into clinical routine by promoting computational
segmenting and analyzing PDFF maps. In a further step
the engineering of a fully automatic diagnosis finding
due to pattern based deep learning could be possible
n of the following muscle groups (b): (1) right psoas muscle, (2) left
uscle



Table 2 Subject characteristics and PDFF values of the lumbar muscle groups (right/left erector spinae and psoas muscle,
respectively) and the vertebral bone marrow (L1 to L5)

ID sex age
[y]

height
[m]

weight
[kg]

BMI
[kg/m2]

PDFF erector
spinae muscle
left [%]

PDFF erector
spinae muscle
right [%]

PDFF psoas
muscle left
[%]

PDFF psoas
muscle right
[%]

PDFF
L1 [%]

PDFF
L2 [%]

PDFF
L3 [%]

PDFF
L4 [%]

PDFF
L5 [%]

1 female 39 1.64 69 25.7 8.0 10.3 2.9 2.7 22.7 22.3 22.4 23.6 23.8

2 female 25 1.69 75 26.3 11.2 9.1 2.8 1.5 21.6 22.1 24.0 24.4 25.6

3 male 31 1.88 87 24.6 5.8 7.9 4.8 2.3 18.6 18.2 17.7 20.8 19.9

4 male 41 1.75 79 25.8 7.8 8.9 5.4 3.6 23.9 26.5 26.7 27.8 27.5

5 male 28 1.71 73 25.0 10.6 9.2 4.1 2.1 25.5 26.1 26.5 27.7 30.4

6 female 28 1.81 93 28.4 7.7 9.5 5.2 3.8 41.1 42.7 42.4 42.3 45.1

7 female 22 1.71 77 26.3 14.4 14.2 5.7 5.5 23.0 24.6 24.1 25.6 27.1

8 female 26 1.66 72 26.1 12.2 13.7 4.7 4.5 22.9 25.7 27.6 28.4 28.4

9 female 41 1.64 76 28.3 15.7 15.6 8.8 5.9 33.7 38.3 39.8 39.7 42.3

10 female 38 1.72 70 23.7 11.9 12.3 2.2 2.3 17.2 19.2 20.3 20.7 23.3

11 female 33 1.64 70 26.0 6.4 4.1 7.2 9.0 27.0 26.8 28.4 32.5 32.4

12 male 32 1.79 104 32.5 8.3 8.5 4.1 3.9 34.4 34.1 35.4 37.9 41.3

13 female 21 1.63 64 24.1 9.3 8.8 3.5 4.5 30.4 33.5 35.6 36.7 38.7

14 male 27 1.90 108 29.9 7.7 7.5 5.2 4.5 36.5 34.6 37.2 37.6 43.8

15 male 24 2.00 105 26.3 11.3 8.7 6.2 4.3 27.8 28.8 29.0 30.6 33.3

16 female 27 1.79 79 24.7 8.9 9.3 6.6 4.8 16.7 17.8 19.7 19.9 19.2

17 male 30 1.78 96 30.3 14.4 14.9 5.5 4.8 34.5 36.3 38.6 41.0 45.5

18 male 37 1.86 95 27.5 12.1 12.4 5.7 5.6 42.3 40.9 40.8 43.6 47.2

19 male 34 1.90 112 31.0 8.5 8.1 4.5 3.8 29.9 25.3 30.1 39.5 46.1

20 female 24 1.74 73 24.1 11.8 12.8 6.0 4.1 42.8 40.3 47.4 49.0 49.8

21 female 42 1.58 68 27.2 13.8 13.6 7.0 5.6 28.9 30.0 29.6 31.9 35.2

22 male 32 1.74 94 31.0 9.3 8.4 5.9 4.2 32.9 34.5 35.0 36.0 38.2

23 male 27 1.83 92 27.5 14.1 15.2 5.8 6.1 27.6 29.8 32.0 33.6 34.8

24 female 32 1.59 69 27.3 13.2 14.7 6.4 5.6 20.5 23.7 24.6 25.9 26.2

25 male 33 1.75 79 25.8 9.0 8.5 6.4 5.2 37.1 39.7 43.3 47.8 45.3

26 male 33 1.78 77 24.3 9.2 7.2 1.9 1.6 31.7 29.3 30.7 31.8 34.0

27 female 26 1.71 81 27.7 14.6 14.3 5.8 5.9 23.1 24.5 23.9 25.8 26.5

28 male 26 1.76 76 24.4 7.2 7.5 5.8 5.5 31.4 31.5 35.0 34.5 35.8

29 female 25 1.63 65 24.5 14.5 13.4 6.5 4.9 22.0 21.7 21.9 25.3 25.9

30 male 23 1.87 86 24.6 10.0 9.6 1.6 0.2 18.6 19.0 20.8 22.4 21.7

31 female 61 1.68 72 25.5 17.3 18.3 0.2 3.8 59.2 54.1 55.3 62.1 64.9

32 female 61 1.59 52 20.6 18.0 15.5 2.6 4.2 28.6 29.9 28.0 35.3 31.7

33 female 78 1.59 77 30.5 36.9 36.5 2.9 9.9 32.65 42.17 50.45 55.94 58.86

34 female 64 1.59 57 22.5 20.6 23.0 −0.5 1.3 46.7 44.6 45.5 56.9 62.2

35 female 54 1.65 82 30.1 17.7 18.5 −0.4 1.7 33.7 34.5 35.5 37.2 38.7

36 female 60 1.65 75 27.5 22.2 24.2 6.5 5.8 50.9 53.5 55.5 45.3 62.9

37 female 67 1.65 70 25.7 16.6 19.8 10.6 8.9 39.8 39.8 42.3 44.6 55.7

38 female 59 1.74 79 26.1 16.9 19.6 0.5 2.1 49.0 49.5 51.8 56.1 62.0

39 female 63 1.64 95 35.3 32.0 26.2 8.7 7.8 48.7 49.9 51.9 59.7 62.7

40 female 71 1.63 60 22.6 25.5 21.6 1.5 1.3 45.7 53.5 50.5 50.7 50.4

41 female 58 1.65 65 23.9 20.7 20.4 3.5 −0.3 41.1 40.3 43.7 45.6 45.9

42 female 59 1.67 84 30.1 18.6 20.5 1.8 2.8 35.7 36.0 36.2 49.1 54.0
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Table 2 Subject characteristics and PDFF values of the lumbar muscle groups (right/left erector spinae and psoas muscle,
respectively) and the vertebral bone marrow (L1 to L5) (Continued)

ID sex age
[y]

height
[m]

weight
[kg]

BMI
[kg/m2]

PDFF erector
spinae muscle
left [%]

PDFF erector
spinae muscle
right [%]

PDFF psoas
muscle left
[%]

PDFF psoas
muscle right
[%]

PDFF
L1 [%]

PDFF
L2 [%]

PDFF
L3 [%]

PDFF
L4 [%]

PDFF
L5 [%]

43 female 60 1.68 76 26.9 21.6 23.4 9.3 9.4 43.0 40.8 47.6 47.9 54.1

44 female 63 1.77 98 31.3 20.9 24.4 8.5 6.7 49.0 50.5 54.0 60.6 62.5

45 female 58 1.68 61 21.6 22.0 27.7 4.9 3.5 49.7 41.0 41.4 49.9 51.4

46 female 74 1.71 56 19.2 25.9 25.2 4.4 4.5 40.1 41.3 41.9 42.2 49.1

47 female 61 1.65 65 23.9 32.0 33.2 5.4 5.0 52.6 54.5 51.0 51.8 51.5

48 female 68 1.71 84 28.7 45.8 41.5 9.3 9.9 58.2 58.0 60.4 58.3 62.9

49 female 71 1.60 53 20.7 27.3 26.3 7.2 2.4 37.5 32.6 39.4 41.2 38.5

50 female 68 1.67 65 23.3 32.3 34.2 5.0 8.5 43.7 44.0 49.0 50.6 59.9

51 female 59 1.58 47 18.8 28.6 32.7 5.8 6.1 58.3 58.5 60.3 64.3 67.8

52 female 69 1.64 73 27.1 32.3 28.1 7.4 8.3 39.3 37.0 40.0 41.3 43.9

53 female 55 1.68 69 24.4 17.5 18.5 2.6 5.9 37.5 41.1 43.0 46.0 44.9

54 female 55 1.60 77 30.1 16.3 16.7 1.3 3.1 30.8 29.3 31.4 26.7 35.7
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and highly beneficial to diagnostic accuracy, interreader
reliability and longitudinal comparability (Fig. 3) [31]. As
recently shown in skin cancer diagnostics huge amounts
of datasets are needed to constitute an algorithm quality
that can outperform a specialist’s evaluation [28]. The
amount of data generated with each qualitative respect-
ively quantitative MRI scan delineates information which
needs to be assessed carefully and precisely. This sets
the high standards to every algorithm competing with
specialists’ knowledge and skills. Complex disease en-
tities like neuromuscular disorders, osteoporosis or
lower back pain can be represented in different anatom-
ical structures from very subtle bony or muscular alter-
ations to striking pathologic imaging findings in cases of
fractures or muscle atrophy [2, 5, 32, 33].
Fig. 3 Flowchart with purpose and workflow of the study
This database should be considered as one contribution
to an ongoing process of rationalization and
automatization. The limitation of the present database is
the inclusion of healthy subjects only. Thus, this database
has to be extended by diseased subjects in the future.

Conclusion
We present the database MyoSegmenTUM Spine with
manually segmented lumbar muscle groups and verte-
bral bodies in MR images of 54 healthy volunteers to-
gether with corresponding manual segmentation masks.
The data can be used as a training and test datasets for
the development of automatic lumbar muscle and spine
segmentation algorithms. These algorithms are highly
needed to promote and accelerate the wide spread
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clinical implementation of quantitative muscle MRI for
diagnosis of muscle and vertebral pathologies.
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