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Akin to their mammalian counterparts, teleost fish possess a complex assortment of
highly specialized immune cells that are capable of unleashing potent innate immune
responses to eradicate or mitigate incoming pathogens, and also differentiate into
memory lymphocytes to provide long-term protection. Investigations into specific roles
and functions of fish immune cells depend on the precise separation of each cell type.
Commonly used techniques, for example, density gradient centrifugation, rely on immune
cells to have differing sizes or densities and thus fail to separate between similar cell types
(e.g. T and B lymphocytes). Furthermore, a continuously growing database of teleost
genomic information has revealed an inventory of cellular markers, indicating the possible
presence of immune cell subsets in teleost fish. This further complicates the interpretation
of results if subsets of immune cells are not properly separated. Consequently,
monoclonal antibodies (mAbs) against specific cellular markers are required to precisely
identify and separate novel subsets of immune cells in fish. In the field of fish immunology,
mAbs are largely generated using the hybridoma technology, resulting in the development
of mAbs against specific cellular markers in different fish species. Nevertheless, this
technology suffers from being labour-intensive, time-consuming andmost importantly, the
inevitable loss of diversities of antibodies during the fusion of antibody-expressing B
lymphocytes and myeloma cells. In light of this, the focus of this review is to discuss the
potential applications of fluorescence-activated cell sorting and droplet-based
microfluidics, two emerging technologies capable of screening and identifying antigen-
specific B lymphocytes in a high-throughput manner, in promoting the development of
valuable reagents for fish immunology studies. Our main goal is to encourage the
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incorporation of alternative technologies into the field of fish immunology to promote the
production of specific antibodies in a high-throughput and cost-effective way, which could
better allow for the precise separation of fish immune cells and also facilitate the
identification of novel immune cell subsets in teleost fish.
Keywords: teleost fish, immune cells, monoclonal antibodies, fluorescence-activated cell sorting, droplet-
based microfluidics
INTRODUCTION

Teleost fishes represent a large and diverse group of vertebrates
thriving in an extremely dynamic range of aquatic ecosystems
that are populated with numerous parasitic, bacterial, and viral
pathogens. Conceivably, a robust immune system has evolved to
deal with these continuous assaults. A critical component in
teleost immunity is specialized immune cells and it has been
reported that immune cells isolated from fish are capable of
preforming a range of effector responses that are
indistinguishable from their mammalian counterparts (1–4).
Investigations into functions and roles of teleost immune cells
have revealed interesting discoveries, including the identification
of a novel antibody isotype (i.e. IgT) that is unique to fish, and
also B cells exhibiting phagocytic capabilities that later on are
found to be evolutionarily conserved features (2, 5). These
observations highlight the importance of using teleost fish as
model organisms to study conserved and also divergent aspects
of immunity across evolution.

The key first step in investigating cellular immunity is the
precise separation of immune cells of interest. In the field of
teleost immunology, this is commonly achieved via density
gradient centrifugation. Generally, this technique involves
layering a mixture of cells on gradient density medium (e.g.
Ficoll®-Paque and Percoll) and after centrifugation, cells of
higher buoyant density (i.e. erythrocytes and granulocytes)
pellet to the bottom whereas mononuclear cells (i.e.
macrophages/monocytes and lymphocytes) settle in an
interphase layer (6–11). Afterwards, an added separation
process can be applied to further purify cells of interest. For
example, macrophages/monocytes can be further purified to
eliminate lymphocytes based on different adherent properties
(12–15). Of note, cell types of similar densities, such as T and
B lymphocytes, are unlikely to be separated due to the nature
of this technique. Furthermore, a growing number of reports
demonstrated that subsets of immune cells with differential
functions in immunity are also present in teleost fish (16–19).
For example, similar to their mammalian counterparts, CD4
and CD8 molecules have been identified in a range of teleost
species, indicating the presence of helper and cytotoxic T
lymphocytes (16, 17). However, it is important to not
assume that teleost immune cells will express the same
surface markers as mammals do. Teleost immune cell
subsets could also be determined by the expression of
membrane-bound molecules that are unique to fish (e.g.
novel immune type receptors) or evolutionally conserved
(e.g. channel catfish leukocyte immune-type receptors) or
org 2
secretions of cytokines (20–23). This further illustrates the
complexity of cellular components in teleost immunity and a
detailed characterization of immune cell subsets is required to
further dissect specific roles of each cell type/subset, which can
only be achieved when they are properly separated. Overall,
density gradient centrifugation is a useful technique to
separate cells exhibiting varying densities, but it fails to
resolve cell types of similar physical characteristics.

To characterize teleost immune cells with better resolution,
alternative methods like antibody-based separation
techniques are developed to isolate cells of interest. These
techniques take advantage of monoclonal antibodies (mAbs)
that are capable of recognizing epitopes with high specificity
and thus, allowing to label cells of interest for precise
separation. Indeed, mAbs targeting known immune cell
markers in model organisms (e.g. mammals) have been
successfully developed through various technologies. In
teleost research, however, these valuable reagents are limited
to a few species and largely generated through traditional
hybridoma-based technology. A detailed summary of
available reagents targeting well-characterized surface
markers and immune cell types in teleost fish is presented in
Table 1. The scope of this article is to review currently
available technologies for the production of mAbs.
Specifically, the hybridoma technology, fluorescence-
ac t iva t ion ce l l sor t ing (FACS) and drop le t -based
microfluidics technologies with an emphasis on the latter
two. Other methods, like phage display technology is not
included in this review due to inherently different antibody-
producing mechanisms, and readers interested in this specific
technology are referred to excellent reviews elsewhere (99,
100). Our main goal is to provide alternative options for the
development of mAbs in this field, which will be the basis of
ident i fy ing and separat ing immune cel l types and
characterizing respective roles to further our understanding
of teleost cellular immunity.
HYBRIDOMA TECHNOLOGY

Ant ibod ies , a l so known as immunog lobu l ins , a re
glycoproteins exclusively produced by B cells and come in
two forms. Specifically, membrane-bound antibodies (e.g. B
cell receptors) that normally expressed on the surface of naïve
B cells to recognize foreign antigens, and soluble antibodies,
for example, immunoglobulin G (IgG) that secreted by mature
November 2021 | Volume 12 | Article 771231
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TABLE 1 | An overview of available reagents targeting surface markers/immune cells in teleost fish.

Specificity Fish species Available reagents Technologies REF

Asian seabass (Lates calcarifer) mAbs* Hybridomas (24)

Atlantic cod (Gadus morhua L.) mAbs Hybridomas (25)

Atlantic salmon (Salmo salar) mAbs Hybridomas (26)

Bighead catfish (Clarias macrocephalus) mAbs Hybridomas (27)

Black rockfish (Sebastes schlegeli Higendorf) mAbs Hybridomas (28)

Brown trout (Salmo trutta) mAbs* Hybridomas (29)

Channel catfish (Ictalurus punctatus) mAbs Hybridomas (30)

Common carp (Cyprinus carpio L.) mAbs Hybridomas (31)

European eel (Anguilla anguilla L.) mAbs Hybridomas (32)

European sea bass (Dicentrarchus labrax L.) mAbs Hybridomas (33)

Flounder (Paralichthys olivaceus) mAbs Hybridomas (34, 35)

Gibel carp (Carassius auratus gibelio) mAbs Hybridomas (36)

Gilthead seabream (Sparus aurata) mAbs Hybridomas (37)

Half-smooth tongue sole (Cynoglossus semilaevis) mAbs Hybridomas (38)

Large yellow croaker (Larimichthys crocea) mAbs Hybridomas (39, 40)

Immunoglobulins Mrigal carp (Cirrhinus mrigala) mAbs Hybridomas (41)

Muskellunge (Esox masquinongy) mAbs Hybridomas (42)

Nile tilapia (Oreochromis niloticus) mAbs Hybridomas (24, 43, 44)

Pacific herring (Clupea pallasii) mAbs Hybridomas (45)

Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (46, 47)

Red drum (Sciaenops ocellatus) mAbs Hybridomas (48)

Rohu (Labeo rohita) mAbs Hybridomas (49)

Sea bass (Lateolabrax japonicus) mAbs Hybridomas (50)

Sevenband grouper (Epinephelus septemfasciatus) mAbs Hybridomas (51)

Smallmouth bass (Micropterus dolomieu) mAbs Hybridomas (52)

Snakehead (Channa striata) mAbs Hybridomas (53)

Snapper (Pagrus auratus) mAbs Hybridomas (54)

Torafugu (Takifugu rubripes) mAbs Hybridomas (55)

Turbot (Scophthalmus maximus) mAbs Hybridomas (56)

Walking catfish (Clarias batrachus) mAbs Hybridomas (57)

White sturgeon (Acipenser transmontanus) mAbs Hybridomas (58)

Flounder (Paralichthys olivaceus) mAbs Hybridomas (59)

CD3/TCR Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (46, 60)

Grass carp (Ctenopharyngodon idella) mAbs Hybridomas (61)

Flounder (Paralichthys olivaceus) mAbs Hybridomas (62, 63)

Ginbuna crucian carp (Carassius auratus langsdorfii) mAbs Hybridomas (17)

CD4
Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (64)

Zebrafish (Danio rerio) Transgenic fish line Genome editing (65)

Atlantic salmon (Salmo salar) mAbs Hybridomas (66)

CD8 Ginbuna crucian carp (Carassius auratus langsdorfii) mAbs Hybridomas (67)

Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (68)

Cempedic fish (Osteochilus spilurus) mAbs Hybridomas (69)

Common carp (Cyprinus carpio L.) mAbs Hybridomas (70–73)

Macrohpages/monocytes Flounder (Paralichthys olivaceus) mAbs Hybridomas (74)

Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (75, 76)

Yellowtail (Seriola quinqueradiata) mAbs Hybridomas (77)

Zebrafish (Danio rerio) Transgenic fish line Genome editing (78–80)

(Continued)
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B cells after undergoing somatic hypermutations and class
switching. Each species of antibodies specifically recognize
epitopes of the same structure and this specificity of antibodies
makes them valuable tools in therapeutics, diagnosis and
research (101, 102). Currently, most of available antibodies
on the market is IgG isotype since it exhibits the highest
binding affinity to cognate antigens and thus, antibodies
mentioned below are all referring to IgG isotype unless
stated otherwise. It has been a daunting challenge to culture
mature B lymphocytes in vitro for the continuous production
of antibodies. Consequently, numerous resources and efforts
have been invested to establish and optimize platforms for
screening and culturing B lymphocytes secreting antibodies
with desired specificity and affinity. Hybridoma technology
represents the first platform for the continuous production of
mAbs with known specificity and affinity since the invention
in 1975 (103). This technology involves the fusion of splenic B
cells isolated from immunized animals with an immortal B cell
l ine (i .e. myeloma cells). These hybrid cells, called
hybridomas, are immortal as myeloma cells while still
Frontiers in Immunology | www.frontiersin.org 4
maintain the ability of immunized splenic B cells to produce
antibodies of interest. These hybridomas are further cloned
and secreted mAbs are characterized in binding assays (e.g.
ELISA) to select for hybridoma cell lines producing desired
mAbs. Since each hybridoma cell line normally secrets a single
species of antibodies, selected hybridoma cell lines could then
serve as a continuous source for the production of mAbs with
known specificity and affinity.

Currently, hybridoma technology remains the most popular
method for generating mAbs and in the field of teleost
immunology, majority of reported mAbs targeting surface
markers and immune cell lineages were generated using this
technology (Table 1). That being said, it is important to note
that there are several inherent limitations pertaining to this
technology. As mentioned above, generation of hybridomas
requires the fusion of antigen-specific B cells and myeloma
cells, which is commonly achieved using chemical reagents, like
polyethylene glycol. This chemical reagent dehydrates lipid
head groups on the cell membrane, resulting in an
asymmetry of the membrane bilayer that favours the fusion
TABLE 1 | Continued

Specificity Fish species Available reagents Technologies REF

Atlantic salmon (Salmo salar) mAbs Hybridomas (81)

Ayu (Plecoglossus altivelis) mAbs Hybridomas (82)

Channel catfish (Ictalurus punctatus) mAbs Hybridomas (83)

Common carp (Cyprinus carpio L.) mAbs Hybridomas (73, 84)

European sea bass (Dicentrarchus labrax L.) mAbs Hybridomas (85)

Lymphocytes Indian Carp (Catla catla) mAbs Hybridomas (86)

Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (87)

Snapper (Pagrus auratus) mAbs Hybridomas (88)

Yellowtail (Seriola quinqueradiata) mAbs Hybridomas (77)

Zebrafish (Danio rerio) mAbs* Hybridomas (89)

Zebrafish (Danio rerio) Transgenic fish line Genome editing (90)

Atlantic salmon (Salmo salar) mAbs Hybridomas (81)

Ayu (Plecoglossus altivelis) mAbs Hybridomas (82)

Common carp (Cyprinus carpio L.) mAbs Hybridomas (71)

Channel catfish (Ictalurus punctatus) mAbs Hybridomas (83)

Neutrophils Flounder (Paralichthys olivaceus) mAbs Hybridomas (74)

Gilthead seabream (Sparus aurata L.) mAbs Hybridomas (91)

Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (76)

Yellowtail (Seriola quinqueradiata) mAbs Hybridomas (77)

Zebrafish (Danio rerio) Transgenic fish line Genome editing (92)

Ayu (Plecoglossus altivelis) mAbs Hybridomas (82)

Blue catfish (Ictalurus furcatus) mAbs Hybridomas (93)

Common carp (Cyprinus carpio L.) mAbs Hybridomas (94)

Thrombocytes Channel catfish (Ictalurus punctatus) mAbs Hybridomas (93)

Flounder (Paralichthys olivaceus) mAbs Hybridomas (74)

Rainbow trout (Oncorhynchus mykiss) mAbs Hybridomas (95, 96)

zebrafish (Danio rerio) Transgenic fish line Genome editing (97, 98)
Nov
ember 2021 | Volume 12
 | Article 77123
A literature search of available reagents, specifically mAbs and transgenic fish lines, that target specific surface markers and immune cell types in teleost fish was performed. Reagents like
polyclonal antibodies are not included in this table.
*mAbs that were not originally developed against listed species but were later shown cross-reactivity were asterisked.
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of two adjacent cells. However, this fusion process is non-
selective that often leads to the fusion of the same kind of cells
and thus, result in the loss of antigen-specific B cells. Although
variants of hybridoma technology have been developed to
improve fusion efficiency, for example the B cell targeting
method, repertoire of mAbs obtained using this technology is
still biased since only B cells survive the fusion process could be
selected (104). This largely reduces antibody diversity and
consequently, selected mAbs are less likely the one with the
optimal specificity and affinity. Furthermore, mAbs secreted by
hybridomas are not always monospecific as assumed and gene
expression of additional heavy and/or light chains was found
within individual hybridomas (105). Collectively, these
inherent limitations prevent the application of hybridoma
technology in certain settings and with the advent of novel
technologies, new platforms have emerged as alternative
options for the production of mAbs, which are discussed below.
FACS AND DROPLET-BASED
MICROFLUIDICS AS ALTERNATIVE
TECHNOLOGIES FOR THE RAPID
PRODUCTION OF MABS

A common theme in any mAbs discovery campaigns is to
identify and isolate single B cells expressing and secreting
mAbs with desired specificity and affinity. This posts a
daunting task as the pool of antigen-specific B cells is highly
heterogenous that each B cells normally secretes a single
species of antibodies with unique properties (106). Although
it is practically difficult, if not impossible, to screen all available
B cells, various high-throughput technologies have been
developed that allow a greater number of B cells to be
screened, thus increasing the chance of finding optimal
mAbs. FACS and droplet-based microfluidics, represent two
high-throughput technologies for the in vitro screen of B cells
of interest (Figure 1). Unlike traditional hybridoma
technology that requires the immortalization of antibody-
expressing B cells before any type of analysis, these two
technologies offer unique opportunities to screen a repertoire
of primary B cells that can be individually sorted in a high-
throughput fashion. Sorted B cells are further analyzed,
normally to obtain sequences of immunoglobulins heavy and
light chain variable regions (VH and VL) since the binding
specificity and affinity of immunoglobulins are largely
determined by these two regions (106). These obtained
sequences could then be subcloned and expressed for the
production of recombinant mAbs. Using these two
technologies coupled with single cell expression cloning,
numerous success in the rapid identification and generation
of rare mAbs species against a range of infectious agents has
been reported in mammalian research (107–109). To date, very
few teleost studies exploit these technologies for the generation
of mAbs and therefore in this section, we will review these two
technologies and also their potential applications in generating
specific mAbs for teleost immunology studies.
Frontiers in Immunology | www.frontiersin.org 5
FACS

Modern cell sorter (a type of flow cytometer capable of analyzing
and also sorting cells of interest) is a multi-parameter instrument
that allows the simultaneous measurement of optical and
fluorescence characteristics of each single cell. Parameters, such
as size, granularity and fluorescence features derived from
fluorescent dyes bound to cells, are commonly used to
differentiate and sort cells of interest. To date, a sophisticated
cell sorter is capable of sorting up to thousands of cells per
second while maintain reasonable viability. This makes it a
valuable tool to efficiently discriminate B cells of interest from
a large pool of highly heterogenous cells for further analysis at a
single cell level.

Generally speaking, there are two strategies identifying B
cells of interest using FACS for subsequent recombinant mAb
production. One is antigen baiting that involves the use of
fluorescently labelled antigens as a bait to sort antigen-specific
B cells. This strategy is amenable to subsets of B cells expressing
surface-bound antibodies (e.g. memory B cells) and often
obtained recombinant mAbs exhibit desired specificity (110,
111). An alternative strategy relies on the fluorescent staining of
defined surface markers, allowing to identify and isolate a
broader spectrum of B cell subsets. This is particularly useful
for identifying short lived plasmablasts that represent a
transient population of antigen-specific B cells, normally
observed 5~8 days after immunization (112–114). Of note,
plasmablasts are unlikely to be identified using antigen
baiting due to the low expression levels of surface-bound
antibodies. Overall, these two FACS-based strategies allow an
efficient and selective isolation of individual antigen-specific B
cells for further analysis.

After FACS of antigen-specific B cells of interest, the next
step is to obtain sequence information of paired VH and VL
genes of each cell. This is often achieved through variants of
polymerase chain reactions (PCR) coupled with different
sequencing platforms. Single cell reverse transcription PCR
(scRT-PCR) represents a major advance in single cell
technology and allows to amplify genes of interest from a
single cell (110). Sorted antigen-specific B cells are lysed in
microtiter plates and after reverse transcription, cDNA
templates of single cells are collected for amplification of
VH and VL genes followed by Sanger sequencing. This
combination of technologies was first employed to study
autoantibody production during B cell development (115).
Since then it has been adapted to antibody discovery
campaigns and has led to the successful identification of
neutralizing mAbs against a range of viral pathogens,
including HIV and influenza virus (107, 108). However, this
system is inherently low throughput since each sorted cell has
to be processed and sequenced individually and practically, a
few hundred VH and VL pairs at most could be identified
using this system (116–118). This number is dwarfed by the
enormous size of antibody repertoire that potentially, >1015

possible antibodies recognizing unique binding sites could be
generated in mouse and human (119). More recently, a smart
design of two-dimensional primer matrix largely improves the
November 2021 | Volume 12 | Article 771231
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throughput of scRT-PCR; amplicons (e.g. paired VH and VL
genes) from the same cell are bar-coded and thus, all
amplicons could be pooled and analyzed using next
generation sequencing (NGS) technology. This increased the
number of analyzed B cells up to ~50,000 per experiment
(120). Alternatively, the idea of linking VH and VL segments
from single antigen-specific B cells was revisited and has been
achieved via emulsion over-extension linkage RT-PCR. In this
method, antigen-specific B cells are deposited by gravity into
microwell arrays, in which individual cells are lysed and
mRNAs are captured by poly(dT) beads in microwells.
mRNAs-poly(dT) beads complexes are further washed and
emulsified with primers, reverse transcriptase and polymerase
to perform reverse transcription followed by linkage RT-PCR
and Illumina sequencing (121). This method allows to screen
Frontiers in Immunology | www.frontiersin.org 6
>50,000 antigen-specific B cells per experiment with the
potential to further scale up.

After obtaining sequencing information, paired VH and VL
sequences originating from single antigen-specific B cells are
then could be subcloned and expressed to produce recombinant
mAbs. Numerous expression systems using eukaryotic and
prokaryotic hosts have been developed (122). Each system is
balanced by advantages and drawbacks and the choice of
particular systems largely relies on applications of recombinant
mAbs, which is detailed reviewed elsewhere (106). Overall, This
FACS-based platform coupled with single cell sequencing and
expression cloning has facilitated an efficient identification of
antigen-specific B cells that leads to a rapid generation of
recombinant mAbs. That being said, selecting paired VH and
VL candidates for subsequent expression and validation of
FIGURE 1 | A schematic overview of recombinant mAbs production using FACS and droplet-based microfluidics. B lymphocytes (e.g. splenocytes and
plasmablasts) are collected from immunized mice and then individually sorted via FACS or droplet-based microfluidics for antigen-specific lymphocytes. Paired VH and
VL sequences are then amplified using scRT-PCR for subsequent sequencing (e.g. traditional Sanger sequencing and next-generation sequencing if bar-coded
primers used during the scRT-PCR step) and subcloning. Expression vectors containing VH and VL sequences can be co-transfected into a range of expression
systems for the production of recombinant mAbs.
November 2021 | Volume 12 | Article 771231
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recombinant mAbs still presents a tedious task; furthermore, this
platform primarily screens for antigen-specific B cells based on
antibody binding specificity while other information regarding to
antibodies, such as binding affinity and functional characteristics
(e.g. neutralizing capacity), is not available until recombinant
mAbs are generated. More recently, droplet-based microfluidics
system has emerged as a cutting-edge platform and gradually
established as a valuable tool for a range of applications,
including single cell analysis with improved resolution, and
will be discussed below.
DROPLET-BASED MICROFLUIDICS

Microfluidics is a technology that manipulates the flow of fluids
through microchannels. At microscales, fluids behave very
differently and give rise to unique features that are useful for a
range of applications (123, 124). One branch of microfluidics is
droplet-based microfluidics, which involves precise controls of
two immiscible liquids (e.g. water and oil) through
microchannels and leads to the formation of highly
monodisperse aqueous droplets flowing in the carrier oil
(Figure 2). These droplets, normally ranging from pico- to
nanoliters, are functionally equivalent to individual wells in
microtiter plates but with significantly reduced size, and
biological entities (e.g. cells) encapsulated in each droplet are
chemically and physically separated. Once formed, droplets
could be further manipulated in a variety of ways (Figure 2).
For example, addition of new reagents through droplets merge
(125); static on/off-chip incubation of droplets (126, 127);
detection of fluorescent signals in droplets and selective
sorting of droplets of interest using electric field (128). The
small volume of droplets combined with various ways of
manipulation offers unique opportunities to study single cell
biology in an unprecedent way. For example, secreted proteins
are co-encapsulated with single cells inside droplets and quickly
reach detectable concentrations due to the small droplet
volume, resulting in a rapid detection of molecules/cells of
interest. This is particularly useful in isolating plasmablasts (a
subset of antibody-secreting B cells with low expression level of
surface-bound antibodies) and overcomes limitations of
aforementioned antigen baiting strategy. In addition,
encapsulated cells could be lysed and intracellular molecules
assayed within droplets; one example is the reverse transcription
and amplification of genetic materials. This enables a more
comprehensive analysis of single cells at biochemical and
genetical levels. In antibody discovery campaigns, these
features offer a unique opportunity to link genotype (e.g.
sequencing information of VH and VL regions) with
phenotype (e.g. properties of antibodies, such as specificity
and affinity) in a one-stop manner. Indeed, various droplet-
based microfluidics platforms have been developed and allows
to characterize B cells of interest with improved resolution.

A prototype of droplet-based microfluidics platform that enables
a rapid detection of secreted antibodies was developed in 2013 and
demonstrated as a powerful tool to sort antibody-secreting cells in a
Frontiers in Immunology | www.frontiersin.org 7
high-throughput way (129). Briefly, single cells are encapsulated
with a capture bead (i.e. beads are opsonized with anti-IgG
antibodies) and fluorescent probes (i.e. detection antibodies
specifically targeting antigen-binding fragment (Fab) regions of
IgGs). This is essentially a sandwich enzyme linked
immunosorbent assay (ELISA) detecting secreted proteins from
single cells and after 15min incubation, secreted antibodies are
captured on the bead, together with localized fluorescent probes,
and result in a clearly distinguishable increase in fluorescent
intensity on beads and thus, droplets containing antibody-
secreting cells can be sorted (Figure 3A). This represents a major
advance in identifying antibody-secreting cells within a short time
frame and could be potentially incorporated with other technologies
to retrieve the genotype. However, this prototype fails to obtain
useful information regarding to secreted antibodies, such as binding
specificity and affinity, and therefore limit its applications in
screening antigen-specific B cells.

An updated version of aforementioned prototype, termed
DropMap, was further developed with features of determining
antibody affinity to specific antigens (130). A major improvement
of this updated platform is the co-encapsulation of single cells,
antigens and detection antibodies that are differentially labeled,
together with multiple magnetic capture beads (Figure 3B).
Similar to the previous prototype, secreted antibodies are
captured on beads, together with detection antibodies and
potentially, antigens. Then a magnetic field is applied to induce
the formation of an elongated and easily observable bead
aggregates line, termed beadline, within each droplet.
Consequently, binding specificity and affinity of secreted
antibodies are determined by analysis of co-localization of
fluorescent signals on the beadline and also the measurement of
fluorescent intensity of antigens localized to the beadline,
respectively. This DropMap platform allows a simultaneous
measurement of antibody secretion rate, specificity and affinity,
and this likely potentiates antibody screening process. Most
recently, a novel platform, termed CelliGO, that integrates
DropMap with NGS technology was established (131). In this
platform, droplets containing single cells of interest (i.e. cells
secreting antibodies with desired specificity and affinity) are
sorted and merged with droplets containing PCR reagents.
Paired VH and VL regions derived from single cells are
amplified using bar-coded primers within droplets before NGS
analysis. This platform seamlessly integrates multiple steps,
ranging from sorting single cells, characterizing properties of
secreted antibodies and obtaining sequencing information that
are normally performed separately, into one device. Combined
with NGS, this CelliGO platform represents a great advance in
coupling phenotype with genotype of antigen-secreting cells and
exhibits great potentials in discovering rare antigen-specific
antibodies against difficult targets.

Although successful development of desired mAbs has been seen
using droplet-based microfluidics, its applications have been largely
limited to translational research so far using mammalian models
due to the cost of this platform (e.g. expensive droplet-based
microfluidics systems combined with the cost on regular
maintenance and costly consumables). One example is to identify
November 2021 | Volume 12 | Article 771231
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neutralizing mAbs against infectious agents, which have great
therapeutic potentials (132, 133). Currently, it is economically
impractical to apply this technology to generate mAbs reagents
that are sorely for basic immunology research in non-model species.
However, this still represents an alternative option and can be taken
into account if specific mAbs reagents against difficulty targets are
urgently required to address interesting hypotheses.
Frontiers in Immunology | www.frontiersin.org 8
POTENTIAL APPLICATIONS OF FACS
AND DROPLET-BASED MICROFLUIDICS
TECHNOLOGIES FOR TELEOST
IMMUNOLOGY RESEARCH

Comparative immunology studies using non-model organisms
like teleost fish have been expanding our understanding of
FIGURE 2 | The generation and manipulations of droplets. One of popular methods to generate droplets in microfluidics is flow-focusing, in which the injected
aqueous stream (water phase) is sheared by perpendicular oil streams pumped from two side channels. Once fluids meet, water in oil droplets are formed and those
droplets can be further manipulated: merge of two droplets with different contents, on/off-chip incubation of droplets to allow reactions to occur, detection of
fluorescent signals and sorting of droplets of interest via electric field.
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immune systems and uncover interesting discoveries that are
unique to fish or mechanistically conserved across evolution (2,
5). Most of these findings in teleost immunology studies are
partially attributing to the availability of specific mAbs that allow
the identification and isolation of different immune cell types.
One example is the discovery of phagocytic B cells in rainbow
trout, which would be impossible if no mAbs against rainbow
trout IgM was available (2). In mammalian research, panels of
mAbs targeting most of known immune-related molecules (e.g.
surface markers) are commercially available. This enables precise
isolations of different immune cell types, which is the key first
step in further understanding specific roles of each cell type
under different contexts and also how immune system operates
in general. In comparison, these valuable reagents are mostly
Frontiers in Immunology | www.frontiersin.org 9
produced in-house and only limited to a few teleost species.
Although teleost fish possess a variety of immune cells that are
actively involved in innate and adaptive immunity, detailed
functional characterizations of different immune cell types in
ongoing immune responses is largely unavailable due to the lack
of mAbs of high quality. To date, most of available mAbs in
teleost immunology studies were generated using the hybridoma
technology that requires lengthy immunization processes and
labour-intensive cell fusion, cloning and screening procedures,
which to some extent, discouraging investigators from
generating these reagents. Currently, the advent in FACS and
microfluidics technologies provide alternative options for a rapid
identification of antigen-specific cells and thus, lead to the
generation of mAbs in a more efficient way.
A

B

FIGURE 3 | Droplet-based microfluidics platforms for single cell antibodies secretion measurements. (A) Sorting of antibody-secreting cells. Secreted antibodies
were captured on the bead together with fluorescently-labeled detection antibodies. This leads to a localization of fluorescent signals on the bead and fluorescent
droplets can then be sorted. (B) Dropmap platform for studying antibody secretion and affinity to cognate antigens. Compared to the previous platform, a major
improvement of Dropmap is the encapsulation of magnetic beads and fluorescently-labeled antigens within each droplets. After antibody secretion, a magnetic field
is applied to induce the formation of elongated and easily observable bead aggregates line, termed beadline. This helps amplify fluorescent signals and therefore,
increase the sensitivity. Normally there are three scenarios after incubation, the first one is no fluorescent signal is observed and this indicates the cell is not able to
secret antibodies; the second scenario is that only fluorescent signals from detection antibodies is localized on magnetic beads and this indicates the cell is able to
secret antibodies but with poor specificity and affinity to cognate antigens; lastly, co-localization of two fluorescent signals is observed and this indicates cell is able
to secret antibodies with desired specificity and affinity to cognate antigens.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fei et al. mAbs, FACS, Microfluidics, Teleost Fish
One of challenges associated with teleost fish for immunology
studies is the presence of multiple copies of immune-related
genes due to a teleost-specific whole genome duplication (WGD)
events followed by a lineage-specific WGDs in several fish groups
(e.g. salmonids and cyprinids) (134). This leads to an extensive
expansion of genes encoding for immune receptors, cytokines
and other components involved in immunity in teleost fish (135–
144). For example, several isoforms of CD4 molecules differing
slightly in extracellular domain structure have been identified in
a range of fish species as opposed to only one copy of CD4 gene
in human (145–148). This adds an additional layer of complexity
in terms of reagents development, which requires mAbs with
extreme specificity to differentiate isoforms that could potentially
be identifiers of novel immune cell subsets. In this regard, FACS
combined with scRT-PCR can potentially serve as a high-
throughput platform to sort antigen-specific B cells via
antigen-baiting for subsequent mAbs production. In addition
to antigens of interest, antigens derived from other duplicated
genes can also be differentially labeled with fluorochromes and
serve as controls to exclude B cells exhibiting cross-reactivity
during the sorting process, which will largely increase the chance
of obtaining individual B cells with high specificity for
subsequent scRT-PCR and expression cloning. In comparison
to traditional hybridoma technology, this platform is more
selective and avoids unnecessary waste (e.g. reagents and time)
on non-producer/specific hybridomas and thus, improve the
efficiency of developing mAb targeting closely-related isoforms
in teleost fish. Furthermore, cytokine genes are also expanded in
teleost fish and in the context of immunology, multiple copies of
pro-/anti-inflammatory cytokine genes are present and
responsible for shaping ongoing immune responses (149, 150).
To date, teleost fish cytokines are mostly examined at transcript
level and data regarding expression of cytokine molecules under
resting state/upon stimulations is scarce due to the lack of mAb
reagents (151). Besides, expression levels of cytokine molecules
are relatively low under physiological conditions (151). These
scenarios combined make it fairly difficult to generate mAbs
reagents that are satisfying the requirement (mAbs exhibiting
extremely high specificity and affinity) to allow sensitive and
accurate detections of teleost cytokines. In this regard, droplet-
based microfluidics combined with NGS is a better alternative for
identifying antigen-specific B cells for subsequent sequencing
and expression cloning. Properties of secreted antibodies derived
from individual B cells can be parallelly analysed within droplets
to retrieve optimal antigen-specific B cells. This platform
provides better resolutions to allow a stringent selection of B
cells based on both specificity and affinity of secreted antibodies
and will largely reduce efforts and time spent in screening and
validating generated mAbs afterwards and thus, increase the
Frontiers in Immunology | www.frontiersin.org 10
l ikelihood of obtaining desired mAbs against these
difficulty targets.

Overall, the choice of particular technologies for mAb
development is dependent on multiple factors, such as the
applications/requirements of mAbs and availability of
specialized equipment. There is no doubt that integration of
novel technologies into our field will aid in the development
of mAbs in a more efficient way, which is the basis of interesting
discoveries in teleost immunology studies.
CONCLUSIONS

Teleost fishes represent the first species with an adaptive immunity
and have been valuable model species in comparative immunology
for understanding the evolution of immune systems. Knowledge
obtained from teleost immunology studies have led to discoveries
that were previously not aware of through studies of mammalian
models (e.g. human and mouse). Despite their critical places in the
evolutionary tree, teleost immunology studies are still at an early
stage and in-depth characterizations of teleost immune cell types
and their cytokine secretion profiles remain to be established
primarily due to the lack of mAbs reagents of high quality,
which largely prevents a further understanding of how immune
systems operate in fish. Since the development of mAbs in this
field largely relies on hybridoma technology, incorporation of
available technologies, such as FACS and droplet-based
microfluidics, into this process should be taken into account as
this would largely increase the efficiency of mAbs production and
eventually, lead to investigations on a broader spectrum of teleost
species which may reveal novel immune cell types/subsets with
distinct functions.
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