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Objectives: Microvascular invasion (MVI) affects the postoperative prognosis in
hepatocellular carcinoma (HCC) patients; however, there remains a lack of reliable and
effective tools for preoperative prediction of MVI. Radiomics has shown great potential in
providing valuable information for tumor pathophysiology. We constructed and validated
radiomics models with and without clinico-radiological factors to predict MVI.

Methods: One hundred and fifteen patients with pathologically confirmed HCC (training
set: n = 80; validation set: n = 35) who underwent preoperative MRI were retrospectively
recruited. Radiomics models based on multi-sequence MRI across various regions
(including intratumoral and/or peritumoral areas) were built using four classification
algorithms. A clinico-radiological model was constructed individually and combined with
a radiomics model to generate a fusion model by multivariable logistic regression.

Results: Among the radiomics models, the model based on T2WI and arterial phase
(T2WI-AP model) in the volume of the liver–HCC interface (VOIinterface) exhibited the best
predictive power, with AUCs of 0.866 in the training group and 0.855 in the validation
group. The clinico-radiological model exhibited good efficacy (AUC: 0.819 and 0.717,
respectively). The fusion model showed excellent predictive ability (AUC: 0.915 and 0.868,
respectively), outperforming both the clinico-radiological and the T2WI-AP models in the
training and validation sets.

Conclusion: The fusion model of multi-region radiomics achieves an enhanced prediction
of the individualized risk estimation of MVI in HCC patients. This may be a beneficial tool for
clinicians to improve decision-making in personalized medicine.

Keywords: hepatocellular carcinoma, microvascular invasion, radiomics, machine learning, magnetic resonance
imaging, nomogram
April 2022 | Volume 12 | Article 8186811

https://www.frontiersin.org/articles/10.3389/fonc.2022.818681/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.818681/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.818681/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.818681/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:fjmulym@163.com
https://doi.org/10.3389/fonc.2022.818681
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.818681
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.818681&domain=pdf&date_stamp=2022-04-27


Gao et al. Multi-Region Radiomics Predict HCC
INTRODUCTION

Hepatocellular carcinoma (HCC) comprises 75–85% of primary
liver cancers, making it the sixth most prevalent cancer and the
third leading cause of global cancer mortality in 2020 (1). While
hepatectomy and liver transplantation are potentially curative
treatments for HCC (2), recurrence after surgery is common (3).
The five-year recurrence ratio of HCC after hepatic resection is
almost 70%, and around 10–15% after liver transplantation (4).
Previous studies have shown that microvascular invasion (MVI)
is an independent risk factor for postoperative recurrence and
poor prognosis (5, 6). In contrast to macrovascular invasion in
HCC patients, which can be detected through preoperative
imaging (7), MVI is mainly identified by postoperative
pathological examination. Thus, preoperative and noninvasive
prediction of MVI may significantly impact clinical
decision making, individual comprehensive therapy and
prognosis assessment.

Many studies have been conducted to identify factors related
to MVI, namely, clinical indicators and imaging characteristics.
To date, laboratory biomarkers of MVI include alpha-fetoprotein
(AFP), lectin-reactive AFP, prothrombin induced by vitamin K
absence-II and other serum markers (8, 9). However, the efficacy
of these biomarkers has varied among studies. For instance, the
prediction performance of serum AFP was found to be
unsatisfactory due to low specificity and sensitivity (8). Some
radiological features, like peritumoral enhancement on arterial
phase (AP), irregular rim-like arterial phase hyperenhancement,
peritumoral hypointensity on hepatobiliary phase (HBP), and
non-smooth tumor margin, have been hailed as radiologic
hallmarks for predicting MVI, but lack consensus among
studies (10–12). Furthermore, these qualitative features are
liable to suffer from the personal bias of radiologists, thus
introducing inter-observer variability. Therefore, preoperative
prediction of MVI requires a more reliable and repeatable tool.

Radiomics is defined as the automated quantification of the
radiological phenotype using data-characterization algorithms
(13, 14). It is a vital imaging technology useful for differential
diagnoses, assessment of therapeutic responses, prognosis
prediction, etc., thereby providing valuable information for
personalized medicine (13, 15, 16). Radiomic strategies have
shown great predictive potential by incorporating radiological
features related to various diseases and clinical and/or
pathological factors into a single fusion model (17, 18). Recent
studies have shown the clinical utility of radiomics based on
computed tomography (CT) or magnetic resonance imaging
(MRI), specifically for predicting MVI in HCC patients before
Abbreviations: AFP, Alpha-fetoprotein; AP, Arterial phase; AUC, Area under the
curve; CT, Computed tomography; DP, Delayed phase; DWI, Diffusion-weighted
imaging; GD-BOPTA, Dadobenate dimeglumine; HBP, Hepatobiliary phase;
HCC, Hepatocellular carcinoma; ICC, intraclass correlation coefficient; IDI,
Integrated discrimination improvement; INR, International normalized ratio;
LR, Logistic Regression; MRI, Magnetic resonance imaging; MVI, Microvascular
invasion; OR, Odds ratio; PVP, Portal venous phase; RFE, Recursive feature
elimination; ROC, Receiver operating characteristic; SVC, Support Vector
Classifier; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging; VOIs,
Volumes of interest.
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surgery (19, 20). In addition to the intratumoral area, the
peritumoral region, which contains complementary data
outside the HCC volume, where MVI may still occur, has been
studied (20–22). To the best of our knowledge, to-date there have
been only two studies, which evaluated CT radiomics at the
tumor–liver interface for predicting MVI and HCC recurrence
(23, 24).

In this study, we not only focused on intratumoral and
peritumoral areas but also the HCC–liver interface using
multi-sequence MRI radiomics. Various radiomics models
were constructed and validated based on diverse machine
learning algorithms. Additionally, we constructed a fusion
model based on a radiomics model and the clinico-radiological
preoperative predictors of MVI.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the ethics committee of
our hospital and the requirement for patient informed consent
was waived. Between January 2017 and December 2020, 479
HCC patients who underwent preoperative MRI and with
pathologically confirmed MVI-positive (MVI+) or MVI-
negative (MVI−) were identified. The final cohort consisted of
115 consecutive patients (99 men and 16 women; 57.2 ± 10.9
years) who met the inclusion/exclusion criteria (Figure 1). The
inclusion standards included (1) preoperative gadobenate
dimeglumine (GD-BOPTA) enhanced MRI within 1 month in
a 3.0 T machine (2); complete pathological, imaging, and clinical
data record; and (3) satisfactory image quality. The exclusion
criteria included (1) evidence of gross vascular invasion, bile duct
tumor thrombosis or extrahepatic metastasis at MRI, or (2)
history of prior partial hepatectomy or intervention therapy.
The largest tumor was studied when the patients had more than
one HCC lesion. Patients were randomly allocated into training
cohort (n = 80) and validation cohort (n = 35) at a ratio of 7:3.

Laboratory Tests and Histology
Clinical data collected before surgery included age, gender, hepatitis
B and C immunology, AFP level, alanine aminotransferase,
aspartate aminotransferase, r-glutamyltransferase, serum albumin,
platelet count, prothrombin time, international normalized ratio,
and total bilirubin. Hepatic virus infection, cirrhosis, and number of
histologic tumors were also included in this study. The MVI status
was assessed by two experienced abdominal pathologists
postoperatively. MVI was defined as the presence of a tumor
within a vascular space lined by the endothelium (observed by
microscopy), mostly in the portal vein, hepatic vein, or a large
capsular vessel of the surrounding hepatic tissue (21, 25).
Evaluations were discussed and classified by consensus.

MRI Protocol
All MRI were examined in a 3.0 T MRI machine (Magnetom
Verio; Siemens Healthcare). The standard protocol consisted of
the following sequences: transverse T2-weighted imaging (T2WI)
with fat suppression, diffusion-weighted imaging (DWI), in-phase
April 2022 | Volume 12 | Article 818681
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and opposed-phase T1-weighted imaging (T1WI), pre-contrast
three-dimensional volumetric-interpolated breath-hold T1WI,
and T1WI after contrast medium injection (AP, 20–30 s; portal
venous phase: PVP, 60–70 s; delayed phase: DP, 2–3 min; HBP, 90
min). The detailed parameters are provided in Table S1.

Radiological Evaluation
All MR images were independently reviewed by two radiologists
with 15 and 3 years of MR experience, respectively, who were
blinded to the clinical and pathological data. A final consensus
was achieved after discussion if any disagreement existed. The
following radiological characteristics of HCC were evaluated: i)
maximum tumor length; ii) tumor margin (26); iii) tumor
capsule (27); iv) non-peripheral washout (28); v) peritumoral
arterial enhancement (26); vi) mosaic architecture (28); vii)
tumor hypointensity on HBP (10); and viii) peritumoral
hypointensity on HBP (29).
Frontiers in Oncology | www.frontiersin.org 3
Clinico-Radiological Model
The clinico-radiological model was developed based on MVI risk
predictors by univariate and multivariate logistic regression
analyses. In the training dataset, the single factor was evaluated
by the univariate analysis and multivariate analysis included the
variables with p-value inferior to 0.10 at univariate analysis.
Those significant factors identified by multivariate analysis were
entered into the clinico-radiological model as the risk predictors
of the discrimination of MVI existence. The diagnostic capacity
of the clinico-radiological model was further assessed in the
validation dataset.

Radiomics Analysis
Radiomics analysis workflow included image segmentation,
feature extraction and selection, and model development and
validation (Figure 2). First, a bias field correction in each
sequence was performed using the N4ITK algorithm to remove
FIGURE 2 | Workflow of radiomics analysis.
FIGURE 1 | Flowchart of patients enrolled in the study.
April 2022 | Volume 12 | Article 818681
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field heterogeneity from the image. The volumes of interest
(VOIs) were then manually delineated on T2WI, pre-contrast
T1WI, AP, PVP, DP, and HBP, covering the whole tumor (i.e.,
VOIwhole) by an abdominal radiologist (4 years of experience)
using 3D Slicer software (https://www.slicer.org/). The
peritumoral 5-mm-thickness zone (namely, VOIperiphery) was
then outlined to further explore the tumor periphery
automatically. Meanwhile, VOIwhole + periphery was generated
from the combination of VOIwhole and VOIperiphery, and
VOIinterface (a 5mm wide band at the liver–tumor interface)
was made by SimpleITK (https://simpleitk.org/). Specific
segmentation procedures and representative images are shown
in Figure 3. Additionally, the MR images of 30 patients were
randomly selected for re-segmentation one month later by a
second abdominal radiologist (3 years of experience). The dice
coefficients were used to compare segmented VOIs. The value of
a dice coefficient ranges from 0, indicating no spatial overlap
between two sets of binary segmentation results, to 1, indicating
complete overlap.

Image normalization and spatial resampling were performed
before the feature extraction to enable the normalization of
image intensity values and allow acquisition of isotropic voxels,
respectively (30, 31). In total, a set of 107 radiomic features were
extracted using the open-source package PyRadiomics (version
3.0.1, https://www.radiomics.io/pyradiomics.html). Radiomic
features were categorized into three types: shape-based
characteristics, first-order statistics, and textural features. The
detailed definitions of each feature can be found in the online
PyRadiomics documentation (https://pyradiomics.readthedocs.
io/en/latest/index.html). Next, the extracted radiomic features
Frontiers in Oncology | www.frontiersin.org 4
were transformed using Z-score normalization. Recursive feature
elimination (RFE) with the leave-one-out cross-validation
method was used for feature selection. By recursively removing
the weakest attributes, dependencies and collinearity
were eliminated.

In this research, four classification algorithms were used,
namely, Logistic Regression (LR), Support Vector Classifier
(SVC), Random Forest Classifier, and AdaBoost, implemented
in the scikit-learn packages (version 0.24.1, https://scikit-learn.
org/stable/index.html). Different algorithms wrapped by RFE
were used to construct the radiomics model. All radiomic
models were established on the basis of diverse sequences and
various VOIs. Subsequently, the best sequences and VOI
combinations were determined according to the AUC values.
The multi-sequence models were based on single-sequence
models that showed discriminative power AUCs greater than
0.75 in both the training and validation sets. The predictive
ability of the evaluated models was then measured by the area
under the receiver operating characteristic (ROC) curve (AUC).
Accuracy, sensitivity and specificity were also assessed in both
training and validation sets. The output values of the model were
used as the radiomics signature.

Fusion Model
The significant clinico-radiological factors identified by
univariate analysis and the best signatures obtained from
radiomic analysis (highest AUC or accuracy) were entered into
multivariate logistic regression analysis. Those significant factors
identified at multivariate analysis (p <0.05) were retained in the
fusion model, and a nomogram was used as a graphical
A B

D E F

C

FIGURE 3 | Visualized segmentation images. (A) HCC lesion in T2WI. (B) ROIwhole (green) was manually delineated slice by slice. (C) VOIwhole (green) was automatically
constructed, covering the whole tumor. (D) On the bases of VOIwhole, VOIperiphery was made hollow by replacing VOIwhole with a peritumoral 5-mm-thickness zone, and the
covering part was erased when encountering liver margin, gall bladder, or large vessels (like the inferior vena cava). (E) VOIwhole + periphery was generated from the combination
of VOIwhole and VOIperiphery. (F) VOIinterface (yellow) was made by volume of 2-pixel automated dilation based on VOIwhole subtracting volume of 2-pixel shrinkage based on
VOIwhole, termed the liver–tumor interface. Please note that one pixel is around 1.2 mm, and then 4-pixel-wide band is approximately 5 mm. (D–F) 2-dimensional view of the
VOIperiphery, VOIwhole + periphery and VOIinterface, respectively. ROI, region of interest. VOI, volume of interest.
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representation using the “rms” package. The discrimination
efficacy was evaluated by AUC and the AUC values of different
models were compared using the DeLong test. Additionally, the
integrated discrimination improvement (IDI) was used to
evaluate the improvement in average sensitivity of the fusion
model without sacrificing average specificity relative to other
models. Moreover, calibration plots and the Hosmer–Lemeshow
test were used to describe the agreement between nomogram
prediction and actual MVI. Additionally, decision curve analysis
was performed to assess the clinical usefulness of the
fusion model.

Statistical Analyses
Continuous variables were analyzed using the Student t-test, and
categorical variables were compared using a chi-square test or
Fisher exact test for significant differences in the training and
validation cohorts, as appropriate. The intraclass correlation
coefficient (ICC) was calculated to verify the stability of the
radiomic features. The correlations between selected features in
the radiomics model in VOIinterface and tumor margin was
assessed by the Spearman test. Statistical analysis was performed
using the R software (version 4.0.2, http://www.r-project.org).
Two-sided p <0.05 was considered statistically significant.
RESULTS

Clinico-Radiological Characteristics and
Predictive Performance
There were no statistically significant discriminative clinical or
radiological factors identified between the training and validation
cohorts (p = 0.242–1.000), as shown in Tables 1, 2. However,
univariate analysis identified that four radiologic factors (tumor
margin, tumor capsule, peritumoral arterial enhancement, and
peritumoral hypointensity on HBP) and one clinical variable
(AFP) were significantly related to MVI in the training cohort
(p <0.05). At the multivariate analysis, non-smooth margin
(adjusted OR = 10.689, 95%CI = 3.397–40.052) and
peritumoral hypointensity on HBP (adjusted OR = 6.007, 95%
CI = 1.713–26.272) were identified as independent risk factors.
Therefore, the clinico-radiological model for MVI prediction
included these factors. The AUC (95% CI), accuracy, sensitivity,
and specificity were 0.819 (0.732–0.905), 0.763, 0.886, and 0.611,
respectively, in the training dataset with a cut-off of 0.552, and
0.717 (0.551–0.883), 0.714, 0.789, and 0.625 in the validation
dataset, respectively.

Construction and Validation of
Radiomics Models
In spite of four classification algorithms applied, the highest
AUCs were produced by LR or SVC. In contrast, the random
forest or adaboost model demonstrated over-fitting of the AUC,
approaching 1.00 in the training group and much higher than
that in the validation group, suggesting that the classifiers were
too volatile and unsuitable for classification in this study. The
performance of the 24 single-sequence models using the LR or
SVC classifier is shown in Table 3. Noticeably, single-sequence
Frontiers in Oncology | www.frontiersin.org 5
models based on T2WI, AP, and HBP showed satisfactory
performance, with AUCs >0.75 in the training and validation
datasets. Of these, the T2WI radiomics model in VOIinterface
displayed optimal efficacy, with an AUC of 0.891 in the training
group and 0.813 in the validation group, respectively. The HBP
radiomics model in VOIwhole had an AUC of 0.862 in the
training set and 0.806 in the validation set, showing
comparable power with the T2WI radiomics model
in VOIinterface.

The multi-sequence radiomics models (Table 4, Figures 4A, B)
were achieved with AUCs nearly or more than 0.8. T2WI-AP
radiomics model in VOIinterface achieved AUCs of 0.866 (0.783–
0.947) and 0.855 (0.731–0.963) for the training and validation
cohorts, with highest accuracy of 0.863 and 0.800. The T2WI-AP
radiomics signature in the VOIinterface was built using the logistic
function to squeeze the output of a linear combination based on
each selected feature and the corresponding coefficient between 0
and 1. Table 5 shows the selected features and corresponding
coefficients. In Table S2, three T2WI features were related to
‘nonsmooth margin’ (p <0.05). We found overfitting (AUC in
training cohort higher than that in validation cohort) in the
model using the classification algorithms except SVC (Table S3).
Compared with the AUC of LR, that of SVC was higher in the
validation cohort (Table S4). The detailed results of the four
classifiers are shown in Table S5, Figures S1, S2.

Besides, mean dice coefficients of all VOIs were nearly or
higher than 0.75 (Table S6). The median values of interobserver
ICC of radiomic features were ≥0.80 in different sequences or
regions. The ICC was ≥0.8 for more than 85% of the features in
VOIwhole, VOIwhole + periphery and VOIinterface, and was ≥0.7 for
more than 80% of those in VOI periphery.

Performance of the Fusion Model
The fusion model was presented as a nomogram (Figure 5A)
based on the combination of the T2WI-AP radiomics signature
in VOIinterface and one radiological variable (tumor margin) by
multivariate logistic regression (p <0.001), showing excellent
prediction efficacy (AUC (95% CI) = 0.915 (0.853–0.976) and
0.868 (0.749–0.988) for training and validation cohorts,
respectively). Box plot of MVI risk probabilities in the training
cohort and validation cohort (Figures 5B, C) showed the
statistical difference between MVI− and MVI+ groups. The
accuracy, sensitivity, and specificity in the training and
validation cohorts were 0.850, 0.841, 0.861, and 0.771, 0.684,
0.875, respectively, with a threshold of 0.576. AUCs were not
statistically different compared to the T2WI-AP radiomics model
in the VOIinterface (p = 0.097 in training set, p = 0.759 in
validation set) but statistically different compared with the
clinico-radiological model (p = 0.014 and 0.025, respectively).

IDI indicated a significant improvement in the predictive
value of the fusion model compared to the T2WI-AP radiomics
model (IDI (95% CI) = 0.333 (0.252–0.413) and 0.2544 (0.111–
0.398) for the training and validation cohorts, respectively,
p <0.05) and the clinico-radiological model (IDI (95% CI) =
0.191 (0.093–0.288) and 0.220 (0.066–0.374), respectively,
p <0.05).The calibration curves (Figure 5D) of the nomogram
showed that the model-predicted probability was well matched
April 2022 | Volume 12 | Article 818681
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with the practical MVI status. Moreover, the decision curves
(Figure 5E) demonstrated the clinical usefulness of the fusion
model based on the net benefit of using the nomogram to predict
MVI being greater than the assumption of all/none patients
experiencing MVI.
DISCUSSION

This study aimed to investigate the predictive value of radiomics
models for preoperative prediction of MVI status in HCC
patients. Multi-region (VOIwhole, VOIperiphery, VOIwhole +

periphery, and VOIinterface) radiomic models based on multi-
sequence MRI were built and validated, as well as a clinico-
Frontiers in Oncology | www.frontiersin.org 6
radiological model constructed from clinical information and
imaging data. The fusion model consisting of T2WI-AP
radiomics signatures in the VOIinterface and the radiological
predictor (non-smooth tumor margin) achieved a better
discriminative efficacy than clinico-radiological model or the
T2WI-AP radiomics model alone (IDIs >0).

Due to the peritumoral nature of MVI (25, 32), peritumoral
areas in addition to the whole tumor were studied here.
Radiomics models based on VOIperiphery and VOIwhole +

periphery were predictive although not better than the models
based on VOIwhole in discriminatory ability. Indeed, some studies
have discussed the role of the tumor–liver interface as a plausible
indicator of underlying distortion of tissue induced by MVI (23,
24, 33). Zheng et al. previously focused on the tumor–liver
TABLE 1 | Clinical characteristics in the training and validation cohorts.

Clinical Variables Training cohort (n = 80) Validation cohort (n = 35) pinter
§

MVI− (n = 36) MVI+ (n = 44) OR (95% CI)† pintra
‡ MVI− (n = 16) MVI+ (n = 19) pintra

‡

Age, years* 59.2 (11.8) 58.3 (13.1) 0.995 (0.96–1.031) 0.770 57.9 (7.5) 59.2 (11.4) 0.705 0.972
Gender 0.499 0.187 0.562
Female 3 (8.3) 7 (15.9) 1.000 1 (6.2) 5 (26.3)
Male 33 (91.7) 37 (84.1) 0.481 (0.115–2.011) 15 (93.8) 14 (73.7)

AFP 0.044 0.167 1.000
≤400 ng/ml 29 (80.6) 25 (56.8) 1.000 13 (81.2) 11 (57.9)
>400 ng/ml 7 (19.4) 19 (43.2) 3.149 (1.137–8.718) 3 (18.8) 8 (42.1)

PLT 0.195 1.000 0.494
≤125 × 109/L 6 (16.7) 14 (31.8) 1.000 3 (18.8) 3 (15.8)
>125 × 109/L 30 (83.3) 30 (68.2) 0.429 (0.145–1.265) 13 (81.2) 16 (84.2)

PT 0.358 0.094 0.331
≤13 s 28 (77.8) 29 (65.9) 1.000 7 (43.8) 14 (73.7)
>13 s 8 (22.2) 15 (34.1) 1.81 (0.664–4.936) 9 (56.2) 5 (26.3)

INR 0.795 0.723 0.865
≤1.0 8 (22.2) 12 (27.3) 1.000 4 (25.0) 6 (31.6)
>1.0 28 (77.8) 32 (72.7) 0.762 (0.272–2.131) 12 (75.0) 13 (68.4)

TBIL 0.279 0.245 1.000
≤20.5 mmol/L 30 (83.3) 31 (70.5) 1.000 10 (62.5) 16 (84.2)
>20.5 mmol/L 6 (16.7) 13 (29.5) 2.097 (0.705–6.235) 6 (37.5) 3 (15.8)

ALB 0.428 0.315 0.784
≤40 g/L 18 (50.0) 17 (38.6) 1.000 6 (37.5) 11 (57.9)
>40 g/L 18 (50.0) 27 (61.4) 1.588 (0.651–3.874) 10 (62.5) 8 (42.1)

GGT 0.472 1.000 0.267
≤60 U/L 21 (58.3) 21 (47.7) 1.000 11 (68.8) 12 (63.2)
>60 U/L 15 (41.7) 23 (52.3) 1.533 (0.631–3.727) 5 (31.2) 7 (36.8)

ALT 1.000 1.000 0.242
≤50 U/L 27 (75.0) 32 (72.7) 1.000 14 (87.5) 16 (84.2)
>50 U/L 9 (25.0) 12 (27.3) 1.125 (0.412–3.072) 2 (12.5) 3 (15.8)

AST 1.000 0.047 0.343
≤40 U/L 24 (66.7) 29 (65.9) 1.000 15 (93.8) 12 (63.2)
>40 U/L 12 (33.3) 15 (34.1) 1.034 (0.407–2.627) 1 (6.2) 7 (36.8)

Hepatic virus infection 0.694 0.608 0.396
Absent 6 (16.7) 10 (22.7) 1.000 1 (6.2) 3 (15.8)

Present (HBV/HCV) 30 (83.3) 34 (77.3) 0.68 (0.221–2.094) 15 (93.8) 16 (84.2)
Cirrhosis 1.000 0.071 0.842
Absent 12 (33.3) 14 (31.8) 1.000 2 (12.5) 8 (42.1)
Present 24 (66.7) 30 (68.2) 1.071 (0.419–2.741) 14 (87.5) 11 (57.9)

Number of tumors 1.000 1.000 1.000
Solitary 32 (88.9) 38 (86.4) 1.000 14 (87.5) 17 (89.5)
Multiple 4 (11.1) 6 (13.6) 1.263 (0.328–4.871) 2 (12.5) 2 (10.5)
April 2022 | Volume 12 | Article 8
AFP, serum alpha-fetoprotein; PLT, platelet count; PT, prothrombin time; INR, international normalized ratio; TBIL, total bilirubin; ALB, serum albumin; GGT, r-glutamyltransferase; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; HBV, hepatitis B virus; HCV, hepatitis C virus. Except otherwise noted, data are numbers of patients, with the percentage in
parentheses. P-value with Chi-square test or Fisher exact test for categorical variables and Student t-test for numeric variables. *Data are means, with standard deviations in parentheses.
†Odds ratio (OR) with univariate test. ‡pIntra: p-value between the MVI+ and MVI− groups. §pInter: p-value between the training and validation cohorts.
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interface using CT quantitative image analysis; however, this
study omitted the internal region of the tumor (23). Our study
found that T2WI-AP radiomics models in the VOIinterface
achieved an AUC over 0.75, in either the training or validation
cohorts. Additionally, the selected features in the T2WI-AP
model in VOIinterface (the optimal radiomics model) included
two glcm features, three gldm features and two glszm features,
textural features correlated with tumor heterogeneities, similar to
the findings of Wilson et al. (34).

In this study, we also established single-sequence and multi-
sequence radiomics models based on various lesion regions.
Frontiers in Oncology | www.frontiersin.org 7
The preponderance of VOIwhole + periphery over VOIwhole was
not the same as the findings of Chong et al. (22), however both of
our studies agree that the multi-sequence models outperformed
the single-sequence models. HBP displayed the highest AUCs
among the single-sequence models in VOIwhole, in agreement
with that of Yang et al. (19), but in contrast with the findings of
Chong et al. (which found that PVP outperformed HBP) (22).
Such disagreement may be related to disparities in MRI
parameters or population characteristics.

In addition to radiomic analysis, conventional MRI features
were assessed to predict MVI. Non-smooth tumor margin and
TABLE 2 | Radiological features in the training and validation cohorts.

Radiological variables Training cohort (n = 80) Validation cohort (n = 35) pinter
‡

MVI− (n = 36) MVI+ (n = 44) OR (95% CI)* pintra
† MVI− (n = 16) MVI+ (n = 19) pintra

†

Maximum tumor diameter 0.223 0.002 0.386
≤5 cm 23 (63.9) 21 (47.7) 1.000 15 (93.8) 8 (42.1)
>5 cm 13 (36.1) 23 (52.3) 1.938 (0.787–4.773) 1 (6.2) 11 (57.9)

Tumor margin <0.001 0.018 0.666
Smooth 22 (61.1) 5 (11.4) 1.000 10 (62.5) 4 (21.1)
Non-smooth 14 (38.9) 39 (88.6) 12.257 (3.892–38.598) 6 (37.5) 15 (78.9)

Nonperipheral washout 0.333 0.415 0.449
Absent 6 (16.7) 4 (9.1) 1.000 2 (12.5) 5 (26.3)
Present 30 (83.3) 40 (90.9) 2 (0.518–7.721) 14 (87.5) 14 (73.7)

Peritumoral arterial enhancement 0.021 0.071 0.947
Absent 30 (83.3) 25 (56.8) 1.000 14 (87.5) 11 (57.9)
Present 6 (16.7) 19 (43.2) 3.8 (1.316–10.971) 2 (12.5) 8 (42.1)

Tumor capsule 0.001 0.448 0.663
Complete 18 (50.0) 5 (11.4) 1.000 2 (12.5) 6 (31.6)
Incomplete 11 (30.6) 23 (52.3) 7.527 (2.214–25.597) 9 (56.2) 9 (47.4)
Absent 7 (19.4) 16 (36.4) 8.229 (2.175–31.133) 5 (31.2) 4 (21.1)

Tumor hypointensity on HBP 0.401 1.000 0.674
Absent 4 (11.1) 2 (4.5) 1.000 0 (0.0) 1 (5.3)
Present 32 (88.9) 42 (95.5) 2.625 (0.452–15.236) 16 (100.0) 18 (94.7)

Peritumoral hypointensity on HBP 0.001 0.244 0.489
Absent 32 (88.9) 23 (52.3) 1.000 14 (87.5) 13 (68.4)
Present 4 (11.1) 21 (47.7) 7.304 (2.209–24.154) 2 (12.5) 6 (31.6)

Mosaic architecture 0.286 0.273 0.946
Absent 13 (36.1) 10 (22.7) 1.000 7 (43.8) 4 (21.1)
Present 23 (63.9) 34 (77.3) 1.922 (0.722–5.119) 9 (56.2) 15 (78.9)
April 2022 | Volume 12 | Article 8
HBP, hepatobiliary phase. Data are numbers of patients, with the percentage in parentheses. P-value with Chi-square test or Fisher exact test for categorical variables and Student t-test
for numeric variables. *Odds ratio (OR) with univariate test. †pIntra: p-value between the MVI+ and MVI− groups. ‡pInter: p-value between the training and validation cohorts.
TABLE 3 | The performance of single-sequence radiomics models based on different VOIs.

AUC (Training cohort/Validation cohort/Best classifier) T2WI T1WI AP PVP DP HBP

VOIwhole 0.785 0.893 0.821 0.791 0.700 0.862
0.618 0.714 0.776 0.622 0.691 0.806
SVC LR LR LR SVC LR

VOIperiphery 0.857 0.897 0.757 0.850 0.819 0.736
0.796 0.648 0.763 0.717 0.688 0.707
LR SVC SVC LR SVC SVC

VOIwhole + periphery 0.824 0.763 0.846 0.776 0.900 0.799
0.780 0.641 0.668 0.664 0.681 0.770
LR LR SVC LR LR LR

VOIinterface 0.891 0.876 0.775 0.849 0.823 0.720
0.813 0.618 0.776 0.628 0.704 0.701
SVC LR SVC LR SVC LR
AUC, area under the curve; VOI, the volume of interest; LR, logistic regression; SVC, support vector classifier; T2WI, T2-weighted imaging; T1WI, T1-weighted imaging; AP, arterial phase;
PVP, portal venous phase; DP, delayed phase; HBP, hepatobiliary phase.
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peritumoral hypointensity on HBP were significant factors in the
clinico-radiological model, with non-smooth tumor margin
recognized as a predictor in the fusion model as well. Renzulli
et al. proposed that MVI was more likely to occur when tumor
margins were invaded (26), which resulted in non-smooth tumor
margins. Peritumoral hypointensity on HBP associated with MVI
may be rooted in peritumoral perfusion change influenced by
decreased organic anion-transporting polypeptide expression
caused by impaired hepatocytes (10, 35). Lee et al. additionally
reported that non-smooth tumor margin, arterial peritumoral
enhancement, and peritumoral hypointensity on HBP were
Frontiers in Oncology | www.frontiersin.org 8
independent predictors of MVI, but with specificity values of the
combination of any two or all three radiologic indicators >90%
and sensitivity values <55% (10). Feng et al. obtained similar
results (36), concluding that radiomics models based on HBP are
effective predictors of MVI compared to the radiological method.
This finding was partly in line with our observation that the
radiomics model had a higher AUC value than the clinico-
radiological model, albeit without statistical significance.

Moreover, clinical factors were not significantly different
between the MVI+ and MVI− groups in the training cohort
according to univariate analysis in our study, except for AFP,
despite statistical non-significance observed in AFP at
multivariate analysis. This finding was not in accord with
previous studies (20, 22) describing univariate and multivariate
analyses in support of AFP as an effective factor, in contrast to
findings from Zhang et al. (37).This may be due to differences in
patient characteristics in some cases.

Some limitations should be noted in this study. First, the
inherent selection biases in a single-center retrospective study
with a limited sample size. To address this, we conducted cross-
validation to optimize hyperparameters to avoid overfitting.
Additionally, six MRI sequences were investigated using
diverse classifiers for a more sufficient analysis. External
validation by larger datasets from other centers is still needed.
TABLE 4 | Predictive efficacy of multi-sequence radiomics models based on different VOIs.

VOIs Best-sequence combination Best classifier Cohort AUC (95% CI) ACC Sen Spe Thre*

VOIwhole AP + HBP LR TC 0.883 (0.801–0.948) 0.838 0.886 0.778 >0.510
VC 0.845 (0.693–0.954) 0.743 0.842 0.625

VOIperiphery T2WI + AP SVC TC 0.841 (0.753–0.922) 0.775 0.795 0.750 >0.271
VC 0.803 (0.645–0.951) 0.800 0.737 0.875

VOIwhole + periphery T2WI + HBP LR TC 0.799 (0.699–0.885) 0.750 0.750 0.750 >0.523
VC 0.799 (0.643–0.941) 0.800 0.737 0.875

VOIinterface T2WI + AP SVC TC 0.866 (0.783–0.947) 0.863 0.955 0.750 >0.537
VC 0.855 (0.731–0.963) 0.800 0.842 0.750
April 202
2 | Volume
 12 | Article
*Receiver operating characteristic analysis by maximizing the Youden index. VOI, the volume of interest; TC, training cohort; VC, validation cohort; AUC, area under the curve; CI,
confidence interval; LR, logistic regression; SVC, support vector classifier. ACC, accuracy; Sen, sensitivity; Spe, specificity; Thre, threshold; T2WI, T2-weighted imaging; AP, arterial phase;
HBP, hepatobiliary phase.
A B

FIGURE 4 | Receiver operating characteristic (ROC) curves of different models for predicting MVI. (A) training dataset; (B) validation dataset.
TABLE 5 | Selected features in T2WI-AP radiomics model in VOIinterface and
corresponding coefficients.

Radiomics features Coefficients

AP original_glcm_InverseVariance −1.26
AP original_glszm_SizeZoneNonUniformityNormalized −0.84
AP original_glszm_ZoneVariance 1.09
T2 original_glcm_MaximumProbability −2.07
T2 original_gldm_DependenceVariance 1.62
T2 original_gldm_LargeDependenceLowGrayLevelEmphasis −1.40
T2 original_gldm_SmallDependenceLowGrayLevelEmphasis 1.66
Intercept = 0.13. T2WI, T2-weighted imaging; AP, arterial phase.
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Additionally, VOIs were delineated manually or were merged or
dilated automatically based on artificially drawn regions, which
might lead to some VOI differences in various sequences. While
some image processing was used to decrease the effect of
heterogeneity in our study, in future studies, more automated
Frontiers in Oncology | www.frontiersin.org 9
and precise segmentation methods are required to improve the
consistency and repeatability of the findings.

In conclusion, radiomics models are effective and noninvasive
tools for preoperatively identifying MVI status. Here we present
a fusion model incorporating a T2WI-AP radiomics signature in
A

B

D E

C

FIGURE 5 | The fusion model of MVI was visualized as nomogram. (A) MVI nomogram; (B) and (C) box plot of MVI risk probabilities in the training cohort and
validation cohort, ****p < 0.0001 by Mann–Whitney U test; (D) calibration curves; (E) decision curves.
April 2022 | Volume 12 | Article 818681
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VOIinterface and non-smooth tumor margin as a potential
biomarker for preoperative prediction of MVI, achieving
desirable prediction of the individualized risk estimation of
MVI in HCC patients.
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