
Citation: Xu, Z.; Pan, W.; Hou, Y.; He,

K.; Lv, J. A Decision Tree Model for

Analysis and Judgment of Lower

Limb Movement Comfort Level. Int.

J. Environ. Res. Public Health 2022, 19,

6437. https://doi.org/10.3390/

ijerph19116437

Academic Editors: Paul B. Tchounwou

and Alessandro Piras

Received: 13 April 2022

Accepted: 23 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

A Decision Tree Model for Analysis and Judgment of Lower
Limb Movement Comfort Level
Zhao Xu, Weijie Pan, Yukang Hou, Kailun He and Jian Lv *

Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University,
Guiyang 550025, China; zxu9990@gmail.com (Z.X.); 376190399h@gmail.com (W.P.);
gs.ykhou21@gzu.edu.cn (Y.H.); hkl0006000ox@yeah.net (K.H.)
* Correspondence: jlv@gzu.edu.cn

Abstract: To address the problem of ambiguity and one-sidedness in the evaluation of comprehensive
comfort perceptions during lower limb exercise, this paper deconstructs the comfort perception
into two dimensions: psychological comfort and physiological comfort. Firstly, we designed a
fixed-length weightless lower limb squat exercise test to collect original psychological comfort data
and physiological comfort data. The principal component analysis and physiological comfort index
algorithm were used to extract the comfort index from the original data. Secondly, comfort degrees
for each sample were obtained by performing K-means++ to cluster normalized comfort index.
Finally, we established a decision tree model for lower limb comfort level analysis and determination.
The results showed that the classification accuracy of the model reached 95.8%, among which the
classification accuracy of the four comfort levels reached 95.2%, 97.3%, 92.9%, and 97.8%, respectively.
In order to verify the advantages of this paper, the classification results of this paper were compared
with the classification results of four supervised classification algorithms: Gaussian Parsimonious
Bayes, linear SVM, cosine KNN and traditional CLS decision tree.

Keywords: comfort level; sEMG; biology; decision tree; motion capture

1. Introduction

The human lower limb is a multi-degree-of-freedom-mechanism composed of com-
plex bones, joints, soft tissues, and skeletal muscles [1], and the lower limb movement is a
directional movement which is produced by the skeletal muscles contracting and driving
the bones with the joints as fulcrums under the stimulation of the central nerve [1,2]. It
has the characteristics of high flexibility, wide range of motion, and strong coordination
of various parts in daily life [2]. Persistent poor postural lower limb movements can lead
to a certain degree of operational risk and affect operational efficiency [3]. An effective
quantitative evaluation method for lower limb motion comfort can reduce the probability
of risk during lower limb motion, and avoid occupational injuries caused by prolonged
uncomfortable posture [4], it can provide not only quantitative comfort reference and theo-
retical support for the design and optimization of human–machine performance assisted
wear equipment, but also new ideas for monitoring the comfort status in the process of
lower limb rehabilitation and medical treatment.

Currently, relevant research institutions in various countries have achieved certain
results in human comfort evaluation [5–17], they are mainly analyses and evaluations
of upper limb motion comfort from bioelectrical signal comfort feature extraction [5–9],
biomechanical simulation analysis [10–14], and subjective comfort measurement [15–17].

Among bioelectrical signal comfort features extraction methods, such as surface elec-
tromyography (sEMG) features [5], electroencephalogram (EEG) features [6], etc., sEMG
signal is widely used in fatigue detection and comfort monitoring due to its simplicity
of operation and non-invasiveness. EMG signal is a one-dimensional voltage time series
signal obtained by guiding, amplifying, displaying and recording the bioelectrical signal
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changes in the neuromuscular system activity by electrodes [7], while sEMG signal is a
comprehensive bioelectrical effect with non-linear characteristics formed by superficial
muscle EMG and electrical activity on the nerve trunk on the skin surface. sEMG signal is
acquired by electrodes on the skin surface for myoelectricity signal, which has non-invasive
characteristics [8]. The sEMG signal is collected by electrodes on the skin surface, which is a
non-invasive, real-time and multi-target measurement. Matsumoto et al. [9] first proposed
a method, electromyogram fatigue threshold (EMGFT), to quantify the skeletal muscle load
by applying the characteristic values of sEMG signal. The EMGFT algorithm is able to find
the threshold point where skeletal muscle enters the anaerobic state, thus evaluating the
fatigue state and comfort state of skeletal muscle quantitatively.

In terms of biomechanics and its simulation analysis, rapid upper limb assessment
(RULA) [10] and rapid entire body assessment (REBA) [11] are two internationally accepted
assessment methods for postural load exposure risk [12]. Studies have shown that both
methods have the advantage of short time required, simple methods, lower costs and
effectiveness in assessing biomechanical overload [13]. In biomechanical analysis, most
researches combine motion capture technology and biomechanics simulation software,
such as JACK (Siemens, Berlin, Germany) and Anybody (AnyBody Technology, Aalborg,
Denmark), to simulate joint angles, joint moments, limb muscles and loads during limb
movement; in this way, the risk, fatigue state and comfort state during limb movement are
quantitatively assessed [14].

In the current studies, subjective comfort perceptions are usually measured by subjec-
tive scales, such as Likert scales [15], Borg fatigue subjective self-perception scale [16], etc.
Subjects need to fill in the questionnaire during the test to reflect the subject’s subjective
comfort feelings at that moment, which is a common means of quantifying subjective
comfort feelings [17].

However, the matter of comfort feelings of human during lower limb exercise is
a complex situation which is influenced by many factors [18]. However, most of the
above studies and methods to quantify the comfort feelings during lower limb exercise
were only from a single comfort index. To be specific, lower limb exercise involves a
large number of collaborative relationships among skeletal muscles, joints and bones.
What is more crucial is the degree of physiological comfort largely affects the degree of
psychological comfort, and vice versa [19]. Thus, this paper proposed a decision tree
model for analysis and judgment of lower limb movement comfort level, which solves the
fuzzy and one-sidedness problem of the comprehensive comfort evaluation in the current.
Firstly, this paper deconstructs the comfort perception into two dimensions: psychological
comfort and physiological comfort. Then, a fixed-length weightless lower limb squat
exercise test was designed to collect the subjective scale scores of psychological comfort
feelings, original sEMG signals of rectus femoris (RF) and tibialis anterior (TA) muscles and
motion capture position information of hip, knee and ankle joints. Secondly, the comfort
index was obtained by principal component analysis, the improved EMGFT fatigue level
determination algorithm and the lower limb joint angular acceleration variance comfort
index algorithm. Then, the comfort degrees for each sample were obtained by performing
K-means++ to cluster normalized comfort index. Finally, based on the data set consisting
of the comfort index after screening and the comfort degrees, the decision tree model for
analysis and judgment of lower limb movement comfort level was established by training.
In order to prove the effectiveness and advantages of the model proposed in this paper,
the comfort level classification results of this method are compared with four supervised
classification algorithms, namely, Gaussian Bayesian [20], linear support vector machine
(SVM) [21], cosine k-Nearest Neighbor (KNN) [22] and Concept Learning System (CLS)
decision tree [23]. The research method of this paper is shown in Figure 1.
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weight (65.3 ± 7.2) kg, and body mass index (BMI) of 22.7 ± 1.8, were selected for this trial. 
All volunteers were students of Guizhou University, and the data were collected at the 
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2. Materials and Methods
2.1. Materials

In order to collect the psychological and physiological data related to the upper limb
comfort characteristics, this paper designed a fixed-length weightless lower limb squat
exercise test.

In the squatting action, the rectus femoris muscle of the human lower limb starts from
the lateral thigh root, below the iliac bone in front of the lower iliac spine and the upper
edge of the acetabulum, and wraps around the front of the knee after the patella, ending at
the tibial ramus in front of the upper tibia by the patellar ligament, which has the role of
extending the knee joint and flexing the thigh. The anterior tibialis is one of the anterior
calf muscles, which allows the foot to dorsiflex and turn inwards on the center of the foot,
and when the foot bone is fixed, it contracts with the other muscles to bring the lower
leg forward. The hip, knee and ankle joints cooperate with each other to complete the
contraction during the squatting movement of the lower limb, and therefore the RF and TA
are chosen as the skeletal muscles and the hip, knee and ankle joints as the joints.

So, we simultaneously collected the subjective psychological comfort scale scores,
sEMG signals of the right side RF and TA [24] muscles of the right lower limb, as well as
the motion capture position information of the hip, knee and ankle joints during the lower
limb squat exercise.

2.1.1. Test Equipment

In order to collect the sEMG signal, lower extremity joint position information and
subjective perception of comfort during the test, the TrignoTM Wireless EMG acquisition
system from Delsys, MA, USA, was used to collect the sEMG signal at 1925 Hz and the
motion capture signal at 75 Hz. The subjective comfort level was measured on a 7-point
Likert scale. The subjective comfort Likert scale consisted of four questions, Q1: subjective
rating of lower limb comfort, Q2: subjective rating of lumbar comfort, Q3: subjective
rating of respiratory rhythm level, and Q4: subjective rating of skeletal muscle fatigue. The
subjective perception of comfort Likert 7 scale was filled out by the tester by asking the
subject during the test, and the tester performed the questioning every 10 s during the test.
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2.1.2. Subjects

Twenty-five healthy male volunteers, aged (22.4 ± 1.5) years, height (173.2 ± 5.8) cm,
weight (65.3 ± 7.2) kg, and body mass index (BMI) of 22.7 ± 1.8, were selected for this trial.
All volunteers were students of Guizhou University, and the data were collected at the Key
Laboratory of Modern Manufacturing Technology of the Ministry of Education, and the
volunteers were familiar with the protocol and procedure of the trial and obtained informed
consent before the trial. The whole experiment was reviewed by the Sub-committee of
Human Medical Experimentation Ethics of Guizhou University and ethical review notice
was obtained. Volunteers exercised no more than 2 times per week in the 3 months before
the test and did not perform strenuous exercise within 48 h before the test. The volunteers
shaved the body hair around the RF and TA muscles of the lower limbs before the test, and
wiped the skin at the sensor with 75% alcohol to reduce the low frequency noise caused
by the movement of the sEMG collection electrodes due to sweat. The test volunteers and
sampling equipment information are shown in Tables 1 and 2.

Table 1. Relevant subject information.

Volunteers
information

Quantity Gender Age Height
(cm)

Weight
(kg) BMI

25 Male 22.4 ± 1.5 173.2 ± 5.8 65.3 ± 7.2 22.7 ± 1.8

Table 2. Test equipment information.

Sampling
equipment

information

Name Sampling Data Sampling
Frequency (Hz) Quantity

Delsys
TrignoTM

Wireless EMG

VR’s sEMGTA’s
sEMG 1925

4
Hip angleKnee

AngleAnkle angle 75

Subjective scale
of comfort Subjective rating 0.1 4

2.1.3. Experimental Design

In this paper, we designed a fixed-length unweighted squat exercise test with the test
paradigm shown in Figure 2. Stance A is a standing stance with hands held forward, and
Stance B is a squatting stance with the direction of the arrow as the direction of movement.
Each subject performed a weightless squat test according to the test paradigm, defining
a complete weightless squat from Posture A to Posture B and back to Posture A. Each
subject performed two sets of tests, the first set lasting 30 s. After the first set of tests, the
subject remained standing and adjusted breathing for 30 s, and then performed the second
set of tests, the second set lasting 60 s. The speed of the squatting movement and the
number of completed squatting movements were not fixed. The relevant signal acquisition
sensors were placed as shown in Figure 2, where A, B, D and F are lower limb motion
capture inertial sensors, and C and E are sEMG signal sensors. During the test, the hip joint
angle information was acquired by sensors A and B, the knee joint angle information was
acquired by sensors B and D, the ankle joint angle information was acquired by sensors D
and F, the rectus femoris sEMG signal was acquired by sensor C, and the tibialis anterior
sEMG signal was acquired by sensor F. The orange two-way arrow means the direction of
the movement.



Int. J. Environ. Res. Public Health 2022, 19, 6437 5 of 21Int. J. Environ. Res. Public Health 2022, 19, 6437 5 of 23 
 

 

 
Figure 2. Fixed-length weightless lower-body squat exercise test. 

2.2. Methods 
2.2.1. Comfort Feature Index Extraction and Calculation 
1. Psychological comfort index extraction 

In this paper, we set up a 7-point Likert scale of subjective comfort to measure the 
subjective comfort of subjects, and obtain the ratings of the nth subject on the four ques-
tions in the scale at time t, according to the four questions set in the scale 1tnQ , 2tnQ , 3tnQ

, 4tnQ , defined { 1 , 2 , 3 , 4 }t t t t tLi Q Q Q Qn n n n n=  as the nth subjective perception Likert 7 scale 
score of the subject’s comfort at moment t. Principal component analysis [25] was per-
formed on t

nLi  using the factor analysis module of SPSS numerical analysis software 
(IBM Inc., Armonk, NY, USA), and the results are shown in Table 3. 

Table 3. Results of principal component analysis of psychological comfort index. 

Subjective Feeling of 
Comfort 

t
nLi  

1tnQ  2tnQ  3tnQ  4tnQ  
Eigenvalue variance 

percentage 7.13% 0.75% 1.59% 90.53% 

As can be seen from Table 3, the percentage of variance of Q4 eigenvalues is the larg-
est among the four questions set in the subjective comfort level Likert 7 scale, reaching 
90.53%, Q1 is the second largest, reaching 7.13%, and the percentage of variance of Q2 
eigenvalues is the smallest, at 0.75%. The results of the principal component analysis of 
the psychological comfort index were used to obtain the calculation of the subjective score 
of comprehensive psychological comfort, as shown in Equation (1). 

90.53%* 4 7.13%* 1 1.59%* 3 0.75%* 2t t t t t
n n n n nM Q Q Q Q= + + +  (1)

According to Equation (1), the subjective score t
nM  of the combined psychological 

comfort of the nth subject at moment t was calculated, and Table 4 shows the t
nM  and 

t
nLi  of some subjects. 

  

Figure 2. Fixed-length weightless lower-body squat exercise test.

2.2. Methods
2.2.1. Comfort Feature Index Extraction and Calculation

1. Psychological comfort index extraction

In this paper, we set up a 7-point Likert scale of subjective comfort to measure the
subjective comfort of subjects, and obtain the ratings of the nth subject on the four questions
in the scale at time t, according to the four questions set in the scale Q1t

n, Q2t
n, Q3t

n, Q4t
n,

defined Lit
n =

{
Q1t

n, Q2t
n, Q3t

n, Q4t
n
}

as the nth subjective perception Likert 7 scale score of
the subject’s comfort at moment t. Principal component analysis [25] was performed on Lit

n
using the factor analysis module of SPSS numerical analysis software (IBM Inc., Armonk,
NY, USA), and the results are shown in Table 3.

Table 3. Results of principal component analysis of psychological comfort index.

Subjective Feeling of Comfort
Lit

n

Q1t
n Q2t

n Q3t
n Q4t

n

Eigenvalue variance
percentage 7.13% 0.75% 1.59% 90.53%

As can be seen from Table 3, the percentage of variance of Q4 eigenvalues is the largest
among the four questions set in the subjective comfort level Likert 7 scale, reaching 90.53%,
Q1 is the second largest, reaching 7.13%, and the percentage of variance of Q2 eigenvalues is
the smallest, at 0.75%. The results of the principal component analysis of the psychological
comfort index were used to obtain the calculation of the subjective score of comprehensive
psychological comfort, as shown in Equation (1).

Mt
n = 90.53% ∗Q4t

n + 7.13% ∗Q1t
n + 1.59% ∗Q3t

n + 0.75% ∗Q2t
n (1)

According to Equation (1), the subjective score Mt
n of the combined psychological

comfort of the nth subject at moment t was calculated, and Table 4 shows the Mt
n and Lit

n
of some subjects.
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Table 4. The Mt
n and Lit

n of some subjects.

Q1t
n Q2t

n Q3t
n Q4t

n Mt
n

01 3.2 4.6 4.7 4.2 4.14
02 6.2 5.8 5.7 6.3 6.28
03 2.1 2.6 3.0 2.8 2.75
04 5.1 5.1 5.6 5.4 5.38
05 4.7 3.9 4.7 5.0 4.97

2. Skeletal muscle comfort index extraction

There is a high correlation between skeletal muscle fatigue and comfort perception [26],
and muscle tone is the basis for maintaining different body postures and normal move-
ments: the higher the muscle tone, the higher the fatigue and the lower the comfort level of
the subject [27]. The theory of the EMGFT algorithm, first proposed by Matsumoto et al. [9],
refers to the use of sEMG and its analysis techniques to determine the motor muscle fa-
tigue threshold. The results obtained by performing calculations on EMGFT can be used
to determine the anaerobic threshold (AT) [28] and the corresponding skeletal muscle
loading intensity.

However, the traditional EMGFT algorithm can only calculate the fatigue threshold
time points of the corresponding skeletal muscles, and cannot quantitatively evaluate and
analyze the fatigue degree at any time point in the whole process of limb movement. To
address the above problems, this paper improves the traditional EMGFT algorithm by
equidistant sampling analysis in the time dimension, and quantitatively evaluates the
fatigue degree at any time point in the whole process of limb movement by calculating the
difference between the fitted straight lines.

Firstly, in this study, in order to reduce the influence of the original sEMG signal
noise on the experimental results, the original sEMG signal is successively filtered out
from high frequency noise as well as industrial frequency and harmonic interference by
designing 0~500 HZ low-pass filter [29] and 49.5~50 Hz adaptive notch filter [30], and
finally wavelet threshold denoising is performed, and the number of wavelet threshold
denoising decomposition is chosen as the 4th layer [31]. The original sEMG signal collected
in the experiment is pre-processed by the above method to establish the sEMG data set.
Then, the time window, tim, and moving window, mov, are set, and the RMS value of sEMG
is calculated by adding windows according to Equation (2). Then, the first-order least
squares fitting method was used to fit the RMS data set for multiple groups, and two fitted
straight lines were obtained for each group, and the group with the largest slope product of
the two fitted straight lines in each group was screened, and the time node corresponding
to its intersection point was the EMGFT. Finally, the difference between the two straight
lines was calculated using the equidistant sampling analysis in the time dimension, which
was the skeletal muscle fatigue score value at that time point.

RMS =

√√√√ 1
Nt

Nt

∑
i=1

X2
i (2)

In the improved EMGFT fatigue level determination algorithm in this paper, let the
original sEMG signal be X = {x1, x2,..., xn}, set the time window tim as 2 s, the moving
window mov as 0.5 times tim, be the skeletal muscle fatigue score of the nth subject at time
t, and ELt

n(R) be the right lower limb rectus femoris fatigue score, and ELt
n(A) be the right

lower limb tibialis anterior fatigue score. ELt
n(A) is the fatigue score of the right lower limb

anterior tibialis muscle, and the improved EMGFT fatigue level determination algorithm is
implemented as follows (Algorithm 1):
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Algorithm 1: Improved EMGFT fatigue level determination algorithm

Input: X, tim, mov, sampling frequency f
Output: EMGFT, ELt

n
1. //Step1:sEMG Pre-processing
XLPF ← Low-pass filter (X), fLPF ∈ [0, 500 HZ].
XANF ← Adaptive wave trap (XLPF), fANF ∈ [49.5, 50 HZ].
XWT ←Wavelet Threshold Denoising (XANF), Times of decomposition = 4.
2. //Step2: Build RMS dataset

RMS← sqrt(
tim∗ f

∑
1

X2
WT/tim*f ).

3. //Step3: Group Fitting RMS and Calculation EMGFT
Get the length of RMS m.
for i ∈ (1, m − 5).

Xi← RMS (1), . . . , RMS (i+4).
Yi← RMS (i+5), . . . , RMS (end).
were fitted by first order least squares Xi and Yi, respectively, get L1i, L2i.
K = kL1i × k L2i

The time node corresponding to the intersection of the line fitted to the set of data with the largest
slope product K is calculated as EMGFT.
The straight lines are L1max, L2max
end
4. //Step4: Calculation of skeletal muscle fatigue scores by isometric sampling analysis

s is the number of samples
l← m/s.

for t ∈ (1, 60)
ELt

n ← L1max (t × l) − L2max (t × l)
end

Figure 3 shows the time domain diagram of the sEMG signal preprocessing process,
and Figure 4 shows the results of the improved EMGFT fatigue rating algorithm for the
same group of subjects in the fixed-length unweighted lower extremity squat test with
setting s = 10.
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As can be seen from Figure 4, the RMS values of the subjects during exercise showed
an increasing trend with the onset of fatigue, the EMGFT of RF appeared before the EMGFT
of TA, the fatigue time of TA was 29.6 s, and the fatigue time of RF was 15.3 s. The ELt

n of
each time point is shown in the bar graph in the figure.

3. Joint comfort index extraction

The stability of the hip, knee, and ankle joints during fixed-length unweighted lower-
body squats was correlated with the fatigue and comfort level of the subjects. The longer the
exercise time, the lower the joint stability, the higher the fatigue, and the lower the comfort
level [32]. In order to evaluate the comfort level of lower limb joints, this paper calculates
joint stability by establishing a ball-and-stick model of weightless lower limb squatting
exercise and defining the relevant joint angles based on the joint angle information. Using
the joint angle information collected in the above experiments, the angular acceleration and
its variance during the motion of each joint were calculated to evaluate the joint stability of
each joint at any time point in the motion process.

In this paper, a ball-and-stick model with multiple rigid segments and hinge joints
is used to establish a weightless lower limb squatting ball-and-stick model [33], and the
angles of the joints of the lower limb are defined in the ball-and-stick model. The sagittal
lower limb squatting bat model is shown in Figure 5.
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As shown in the figure, at
n is the lumbar joint point of the nth subject at time t, bt

n is the
right lower limb hip joint point of the nth subject at time t, ct

n is the right lower limb knee
joint point of the nth subject at time t, and dt

n is the right lower limb ankle joint point of
the nth subject at time t. The hip joint angle, knee joint angle and ankle joint angle during
the unweighted squatting exercise were defined according to the frontal plane unweighted
squatting exercise ball and stick model and the spatial position of each joint point. Define

the angle θt
n between vector

→
bt

nat
n and

→
bt

nct
n as the hip angle of the nth subject at the point

of time t. Define the angle βt
n between vector

→
ct

nbt
n and

→
ct

ndt
n as the knee angle of the nth

subject at the point of time t. Define the angle αt
n between vector

→
dt

nct
n and the line where

the ground plane is located as the ankle angle of the nth subject at the point of time t.
In order to evaluate the comfort level of hip, knee and ankle joints during weightless

squatting, the angular acceleration and variance of each joint were calculated to reflect the
stability of each joint during the weightless squatting exercise. Therefore, in this paper,
the first-order least squares method [34] was used to fit the angular acceleration variance,
and the joint comfort during weightless lower limb squatting was quantified at any time
point by equidistant sampling analysis in the time dimension of the fitted line, with s
being the number of sampling times, and the calculated hip joint comfort D(Ht

n), knee joint
comfort D(Kt

n) and ankle joint comfort D(At
n) were used as the lower limb joint angular

acceleration variance comfort index. Taking D(Ht
n) as an example, the specific algorithm is

implemented as follows (Algorithm 2).

Algorithm 2: Lower extremity joint angular velocity variance comfort index algorithm

Input θt
n, βt

n, αt
n, tim, mov, Sample frequency f, s

Output: D(Ht
n)

1. //Step1: Angular velocity calculation
V(Ht

n)← ∆θt
n/tim

2. //Step2: Calculation of angular acceleration
a(Ht

n)← ∆(V(Ht
n))/tim

3. //Step3: Calculation of angular acceleration variance
Get the length of a(Ht

n) m
k = f*tim
l← m/k
for i ∈ (1,k)

variance (Ht
n)←

∑i∗k
i=1 (a(Ht

n)i−mean(a(Ht
n)i :a(Ht

n)i∗k)
l

end
4. //Step4: Joint comfort calculation
Fitting by first-order least squares variance (Ht

n), get LH
t = m/s
for i ∈ (1,s)

V(Ht
n)← F(LHi: LHi*s)

end

Figure 6 shows the output of the lower extremity joint angular acceleration variance
comfort index algorithm for a fixed duration unweighted lower extremity squat test with
s = 10 for one of the randomized subjects.

As can be seen from Figure 6, the variance of each joint shows a general upward trend
during movement. The straight line obtained by fitting the variance of each joint represents
the trend of the variance of that joint, and the comfort score of each joint can be obtained by
equidistant sampling on the time dimension of the resulting fitted straight line.
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4. Lower extremity comfort level determination dataset construction

Firstly, the psychological comfort as well as physical comfort feature indicators Mt
n,

ELt
n(R), ELt

n(A), D(Ht
n), D(Kt

n), D(At
n), extracted and calculated in 1 to 3 in Section 2.2.1,

were sorted according to the time dimension. In addition, due to the lack of comparability
and uniformity of the numerical intervals in which the original various types of comfort
feature indicators were located, this paper applies Equation (3) to mean normalization [35]
for each type of data, so that the different dimensions between the features are mapped to
values between −1 and 1, and the comfort features data set are retained to construct the
lower limb comfort features data set. By collating the obtained data, a group of comfort
feature indexes and part of the lower limb comfort feature data set is shown in Table 5.

X′ =
X−mean(X)

Max(X)−Min(X)
(3)

Table 5. Partial lower extremity comfort feature dataset.

Mt
n ELt

n(R) ELt
n(A) D(Ht

n) D(Kt
n) D(At

n)

01 0.20 0.49 0.20 0.53 0.45 0.49
02 −0.23 0.49 0.20 0.55 0.45 0.50
03 0.16 0.50 0.22 0.56 0.46 0.50
04 0.05 0.52 0.22 0.57 0.47 0.50
05 0.25 0.55 0.24 0.58 0.47 0.51
06 0.20 0.55 0.25 0.58 0.50 0.52
07 0.33 0.59 0.26 0.59 0.50 0.53
08 0.32 0.61 0.26 0.60 0.51 0.54
09 −0.07 0.62 0.27 0.60 0.51 0.54
10 0.19 0.64 0.28 0.60 0.51 0.54
11 −0.16 0.66 0.29 0.61 0.51 0.55
12 −0.28 0.66 0.29 0.61 0.53 0.55
13 0.22 0.67 0.33 0.63 0.54 0.55
14 0.05 0.67 0.33 0.63 0.55 0.56
15 0.04 0.67 0.33 0.64 0.56 0.56

In Equation (3), X is the comfort characteristic index, X′ is the result of min-max
normalization of the comfort characteristic index, mean(X) is the average value of the class
of comfort characteristic index, Max(X) is the maximum value of the class of comfort charac-
teristic index, and Min(X) is the minimum value of the class of comfort characteristic index.

Then, in order to determine the comfort level of lower limb movement from
two dimensions, psychological comfort and physiological comfort, a lower limb movement
comfort classification model needs to be established through supervised learning, and
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before establishing the comfort level determination model, label values need to be con-
structed. The higher the score of psychological comfort, the lower the comfort level, and
the higher the score of joint stability, the lower the comfort level, and each feature value
is at (−1,1) after normalization, so the lower limb comfort feature values are clustered by
clustering method to construct labels. In order to better classify the comfort status, the
results are clustered into 4 classes in this paper. The relationship of the comfort degree and
comfort level is shown in Table 6.

Table 6. Partial lower extremity comfort feature dataset.

Comfort
Degree Comfortable Mildly

Uncomfortable
More

Uncomfortable
Entire

Uncomfortable

Comfort
level 1 2 3 4

K-means clustering algorithm is a common traditional clustering algorithm, but due to
the excessive computational complexity of too many iterations [36], it will lead to slow con-
vergence, in order to improve the convergence effect and reliability of the clustering model,
this paper uses the K-means++ algorithm [37] to produce the initial clustering centers
generated by the algorithm away from each other, optimize the initial clustering centers,
resulting in a more reliable algorithm than the traditional K-means clustering algorithm
The clustering results are more reliable than the traditional K-means clustering algorithm.

Since the lower limb comfort features dataset is a 6-dimensional dataset with high
dimensionality, it will have an impact on the effective training efficiency of the lower limb
motion comfort classification model, so this paper deconstructs the lower limb comfort
features dataset into psychological comfort features and physiological comfort features
through hierarchical analysis, the psychological comfort features include the comprehensive
psychological comfort subjective scores, the physiological comfort features include The
mental comfort features include the comprehensive psychological comfort subjective score,
the physical comfort features include the skeletal muscle comfort features and the joint
comfort features, and the principal component analysis was performed on these three types
of features, and the results of the comfort features classification and principal component
analysis are shown in Table 7, and then one feature was selected in each type of features
according to the results of the principal component analysis to form a 3-dimensional lower
limb comfort features dataset, and the extracted comfort features were Mt

n, ELt
n(R), D(Kt

n)
according to the percentage of variance of the feature values shown in Table 7. Finally,
the reduced-dimensional lower limb comfort features dataset was subjected to K-means++
clustering, and k = 4 was set in the K-means++ clustering algorithm.

Table 7. Classification of comfort features and results of principal component analysis.

Category Classification
Psychological Comfort

Characteristics

Physiological Comfort Characteristics

Skeletal Muscle Comfort
Characteristics Joint Comfort Characteristics

Eigenvalue Mt
n ELt

n(R) ELt
n(A) D

(
Ht

n ) D
(
Kt

n ) D
(

At
n )

Eigenvalue variance
percentage 100 98.42 1.57 13.24 86.32 0.43

To demonstrate that dimensionality reduction in the eigenvalues using principal
component analysis does not degrade the performance of the K-means++ algorithm for
clustering, this study clustered the original six eigenvalues as well and compared the clus-
tering results with the clustering results of the eigenvalues after dimensionality reduction,
and the overlap rates of the clustering results are shown in Table 8. From Table 8, it can
be seen that the overlap rate of the clustering results before and after the dimensionality
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reduction is high, so the dimensionality reduction in the eigenvalues does not reduce the
performance of the clustering algorithm.

Table 8. Comparison of clustering results before and after dimensionality reduction.

Comfort Levels Overlap before and after Dimensionality Reduction

1 98.4%
2 99.5%
3 98.7%
4 99.2%

Define the K-means++ clustering results as KKt
n, and the clustering results are shown in

Figure 7. Levels 1, 2, 3 and 4 in the clustering results correspond to 4 comfort scores, and the
higher the score, the lower the comfort level. The lower limb comfort level determination
dataset is jointly constructed by merging with the reduced-dimensional lower limb comfort
feature dataset.
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Figure 7. K-means++ clustering result.

2.2.2. QUEST Algorithm and Its Principle

Decision tree is a supervised machine learning classification algorithm that repre-
sents the classification logic of things by forming a tree diagram through a recursive
algorithm [38]. QUEST (Quick, Unbiased, Efficient Statistical Tree) is a fast, unbiased and
efficient statistical decision tree, a binary tree algorithm. It uses ANOVA F [39] or Pearson’s
chi-square test [40] to select split variables [41].

In this part, Mt
n, ELt

n(R), D(Kt
n) in the comfort level determination dataset constructed

in Section 3.1 are used as independent variables and KKt
n as dependent variables to establish

a QUEST-based upper limb motion comfort level analysis and determination model, as
follows [42].

1. So that the significance level α ∈ (0, 1), M is the number of variables and M1 is the
number of continuous and ordered variables.

2. By performing ANOVA F-test on all continuous or ordered independent variables X,
it was tested whether the dependent variables of different categories had the same
mean value as X and the smallest p-value was screened according to the Pearson
chi-square statistic.

3. Pearson chi-square tests for independence of Y and X were performed for each
category of independent variables, and p-values were derived from the Pearson
chi-square statistic.
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4. The independent variable with the smallest p-value is filtered out, and this indepen-
dent variable is denoted by X*.

5. If this minimum p-value is less than, select the independent variable X* as the predictor
of the split node. If not, perform 3.

6. For each continuous independent variable X, Levene’s test [43] is performed to detect
whether the variance of X is the same for different types of Y based on the absolute
deviation of X from its class mean, and the p-value is found.

7. The independent variable with the smallest p-value is filtered out, and this indepen-
dent variable is denoted by X**.

8. If this minimum p-value is less than, then X** is selected as the splitting independent
variable of the node, otherwise, the node is not split.

The equation for the Pearson chi-square statistic is shown in Equation (4).

x2 = ∑
i,j

(Oi,j − Ei,j)
2

Ei,j
(4)

In Equation (4), Oi,j is the observed value, and Ei,j is the expected value of row i and
column j.

The equation for the ANOVA F-statistic is shown in Equation (5).

F =
∑ nj(Xj− X)

2/(k− 1)

∑ ∑ (X− Xj)2/(N − k)
(5)

In Equation (5), nj is the sample size of the jth group, X j is the sample mean, X is the over-
all mean, N is the total number of observations, and k is the number of independent groups.

3. Results
3.1. QUEST-Based Upper Limb Motion Comfort Level Analysis and Determination Model
and Results

In this part, in order to conduct a comprehensive level analysis and determination of
lower limb exercise comfort from two dimensions, psychological comfort and physiological
comfort, a QUEST-based upper limb exercise comfort level analysis and determination
model needs to be established based on the lower limb comfort level determination dataset
constructed in Section 2.2.1 of this paper. Information on the QUEST-related algorithm is
shown in Table 9.

Table 9. Information on QUEST-related algorithms.

Research Parameters Information

Data Analysis Model Logistic regression: decision tree and QUEST algorithm
Test platform IBM SPSS Statistics 26

Dependent variable KKt
n

Independent variable Mt
n; ELt

n(R); D(Kt
n)

Verification method Cross-validation
Splitting Rules ANOVA F-statistic

Through the QUEST decision tree module of IBM SPSS Statistics 26 numerical analysis
software (Armonk, NY, USA), the QUEST-based upper limb motion comfort level analysis
and determination model was established as shown in Figure 8, the model prediction
accuracy is shown in Table 10, and the risk values are shown in Table 11.
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Figure 8. QUEST-based lower limb motion comfort level analysis and determination model.

Table 10. Prediction accuracy of QUEST-based lower extremity motion comfort level analysis and
determination model.

Real Test
Projections

Percent Correct
1.00 2.00 3.00 4.00

1.00 80 4 0 0 95.2%
2.00 2 72 0 0 97.3%
3.00 0 3 79 3 92.9%
4.00 0 0 2 87 97.8%

Overall
percentage 24.7% 23.8% 24.4% 27.1% 95.8%
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Table 11. Prediction accuracy values of QUEST-based lower limb motion comfort level analysis and
determination model.

Method Estimate Standard Error

Re-substitute 0.042 0.011
Cross-validation 0.072 0.014

As shown in Figure 8, the QUEST-based upper limb motion comfort level analysis
and determination model ended with four endpoints, seven nodes, and a depth of two.
As shown in Table 7, the model achieved a comprehensive accuracy of 95.8% for the
classification of lower limb motion comfort level, where the classification accuracy for
comfort score 1.00 was 95.2%; the classification accuracy for comfort score 2.00 reached
97.3%; the classification accuracy for comfort score 3.00 was lower, reaching 92.9%; the
classification accuracy for comfort score 4.00 was the highest, reaching 97.8%. As shown in
Table 8, the prediction accuracy value (risk value) of the model was 0.042, which means
that a 4.2% misclassification occurred overall.

The following conclusions can be summarized by analyzing the nodes in Figure 8 as
well as the split.

Node 0: Node 0 is the dependent variable KKt
n. There are 332 lower extremity motor

comfort level scores in KKt
n, of which 84 are 1.00, accounting for 25.3% of the total; 74 are

2.00, accounting for 22.3% of the total; 85 are 3.00, accounting for 25.6% of the total; and
89 are 4.00, accounting for 26.8% of the total. The proportion of each type of score is
more balanced.

Node 1: Node 1 is obtained by splitting the independent variable Mt
n, which indicates

the part of Mt
n eigenvalues with values less than or equal to 0.276. In this node, there are:

84 scores of 1.00, accounting for 52.2% of the total in this node; 74 scores of 2.00, accounting
for 46.0% of the total in this node; 3 scores of 3.00, accounting for 1.9% of the total in this
node. Therefore, this node is considered as a node with a classification of 1.00 points as
well as 2.00 points.

Node 2: Node 2 is obtained by splitting the independent variable Mt
n and represents

the fraction of Mt
n eigenvalues with values greater than 0.276. In this node, there are

82 scores of 3.00, accounting for 48.0% of the total in this node, and 89 scores of 4.00,
accounting for 52.0% of the total in this node. Therefore, this node is used as a node with a
classification of 3.00 points as well as 4.00 points.

Node 3: Node 3 is obtained by splitting node 1 as well as the independent variable
ELt

n(R). It represents the portion of ELt
n(R) eigenvalues with values less than or equal

to −0.521. In this node, there are 80 scores of 1.00, accounting for 97.6% of the total in
this node, and 2 scores of 2.00, accounting for 2.40% of the total in this node, with an
overall percentage of 24.7%. Therefore, this node is used as the node with a classification of
1.00 points.

Node 4: Node 4 is obtained by splitting node 1 as well as the independent variable
ELt

n(R). It represents the fraction of ELt
n(R) eigenvalues with values greater than −0.521.

In this node, there are 4 scores of 1.00, accounting for 5.1% of the total in this node, and
72 scores of 2.00, accounting for 91.1% of the total in this node, with an overall percentage
of 23.8%. Therefore, this node was used as the node with a classification of 2.00 points.

Node 5: Node 5 is obtained by splitting node 2 as well as the independent variable
D(Kt

n). It represents the portion of D(Kt
n) eigenvalues with values less than or equal to

0.425. In this node, there are 79 scores of 3.00, accounting for 97.5% of the total in this node,
and 2 scores of 4.00, accounting for 2.5% of the total in this node, with an overall percentage
of 24.4%. Therefore, this node was used as the node with a classification of 3.00 points.

Node 6: Node 6 is obtained by splitting node 2 as well as the independent variable
D(Kt

n). It represents the fraction of D(Kt
n) eigenvalues with values greater than 0.425. In

this node, there are 3 scores of 3.00, accounting for 3.3% of the total in this node, and
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87 scores of 4.00, accounting for 96.7% of the total in this node, with an overall percentage
of 27.1%. Therefore, this node is used as the node with a classification score of 4.00.

By analyzing the model classification results, we can learn that the comfort subjective
score Mt

n is able to classify the comfort levels as 1 and 2 and 3 and 4, but it is not able to
carry out the four levels of classification basis, indicating that the comfort subjective score
does not provide a complete classification of the comfort levels. The skeletal muscle comfort
score ELt

n(R) was able to classify comfort levels 1 and 2, and the joint comfort score D(Kt
n)

was able to classify comfort levels 3 and 4, suggesting that skeletal muscle discomfort occurs
earlier than joint discomfort during unweighted squats and is more sensitive to comfort
scores 1 and 2. The results suggest that this paper is correct in considering the effects
of subjective comfort perceptions, skeletal muscle comfort perceptions and joint comfort
perceptions on comfort perceptions during lower limb exercise, and that a combination
of psychological and physical comfort indicators is more effective and accurate than a
single indicator.

3.2. Comparison with Other Classification Algorithms

To verify the advantages of the QUEST-based lower extremity motion comfort level
analysis and determination model proposed in this paper in lower extremity comfort
level analysis, four supervised classification algorithms, Gaussian plain Bayes [20], linear
SVM [21], cosine KNN [22] and traditional CLS decision tree [23], were trained on the
basis of the comfort level determination dataset constructed in Section 2.2.1, and the model
results were compared with the results of the QUEST-based lower extremity motion comfort
level analysis and determination model proposed in this paper. The results of QUEST-based
lower limb motion comfort level analysis and determination model were compared. The
relevant comparison algorithm information is shown in Table 12, the classification accuracy
of each comparison algorithm for the four comfort scores is shown in Table 13, and the
results of each comparison algorithm compared with the method in this paper are shown
in Figure 9.

Table 12. Information on relevant comparison algorithms.

Algorithm
Information

Comparison Algorithm

Gaussian
Parsimonious Bayes Linear SVM Cosine KNN Traditional CLS

Decision Tree

Tags KKt
n KKt

n KKt
n KKt

n
Predictive variables Mt

n; ELt
n(R); D(Kt

n) Mt
n; ELt

n(R); D(Kt
n) Mt

n; ELt
n(R); D(Kt

n) Mt
n; ELt

n(R); D(Kt
n)

Verification method Cross-checking Cross-checking Cross-checking Cross-checking
Classification basis posterior probability Linear kernel functions Distance Metric Information Gain

Table 13. Classification accuracy of each comparison algorithm.

Comfort Level

Comparison Algorithm

Gaussian
Parsimonious Bayes Linear SVM Cosine KNN Traditional CLS

Decision Tree

1.00 94.0% 95.2% 94.0% 94.0%
2.00 87.8% 90.5% 87.8% 93.2%
3.00 90.6% 95.3% 90.6% 92.9%
4.00 94.4% 96.6% 94.4% 94.4%

Average 91.7% 94.4% 91.7% 93.6%
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Based on the analysis of the training results of each comparative algorithm model, the
following conclusions can be drawn.

1. In the classification of 1.00 comfort level, linear SVM and the method in this paper
have the highest classification accuracy of 95.2%, and the classification accuracy of the
remaining comparison algorithms is 94.0%. The results show that the classification
effect of each comparison algorithm and the method in this paper is relatively average
for 1.00 comfort level, among which linear SVM and the method in this paper have
the best performance.

2. In the classification of 2.00 comfort level, the classification accuracy of this method is
the highest, reaching 97.3%. Among the rest of the compared algorithms, the recogni-
tion rate of traditional CLS decision tree is higher, reaching 93.2%, and the recognition
rate of Gaussian Parsimonious Bayes and cosine KNN is lower, only 87.85%.

3. In the classification of 3.00 comfort level, the linear SVM has the highest classification
accuracy of 95.3%, the method of this paper and the cosine KNN classification accuracy
of 92.9%, which is second only to the linear SVM, and the Gaussian plain Bayesian
classification accuracy is lower, only 90.6%. The results show that the linear SVM has
the best classification of 3.00 comfort level.

4. In the classification of 4.00 comfort level, the classification accuracy of the method
in this paper is the highest, reaching 97.8%, and among the remaining comparison
algorithms, the linear SVM classification accuracy is higher, reaching 96.6%, and the
classification accuracy of the remaining comparison algorithms is 94.4%. The results
show that the method in this paper has the best classification for the 4.00 comfort level.

5. From the summary classification accuracy, it can be seen that the method in this
paper has the highest classification accuracy for comfort level, reaching 95.8%, which
is higher than other comparison algorithms. Among other comparison algorithms,
linear SVM has a higher recognition rate, reaching 94.4%, and the results show that the
method in this paper has a better classification effect for lower limb exercise comfort
level analysis and determination, and can achieve an effective level classification for
lower limb exercise comfort.

4. Discussion

Lower limb movement is a kind of complex movement which has multi-dimensional
and multi-degree freedom. It is necessary to introduce the comfort level as a reference index
into many fields, such as designing and optimizing lower limb-assistive sports equipment
and comfort estimation of lower limb rehabilitation medical treatment. However, due to
the lack of comprehensive and effective quantitative evaluation standards for the comfort
level in the process of lower limb movement, most of the relevant studies have evaluated
the comfort level of the lower limb from only single psychological or physiological comfort
index. The crux of the matter is human comfort feeling is not a single psychological or
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physiological response, but a multidimensional fusion of human feelings. Therefore, in
order to resolve the fuzzy and one-sidedness problem of the comfort judgment, this paper
obtained and analyzed the psychological comfort and physiological comfort indexes to es-
tablish a lower limb movement comfort degree data set. Finally, we establish a decision tree
model for lower limb comfort level analysis and determination, which incorporates both
psychological comfort indexes and physiological comfort indexes into the consideration of
lower limb comfort level judgment. The following points were found in the study.

1. In this paper, the EMGFT algorithm was used in the process of extracting the feature
values of skeletal muscle comfort, and for its inability to quantify the fatigue degree
level at any time point in the time dimension, an improvement was proposed to
realize the quantitative analysis of the fatigue degree at any time point during lower
limb exercise, which provided data support for the later study and also provided
a new idea for the EMGFT algorithm to conduct the evaluation of skeletal muscle
fatigue level.

2. Since a single skeletal muscle fatigue state cannot accurately reflect the comfort
perception of lower limbs, this paper introduces lower limb joint stability monitoring
and innovatively evaluates the stability of joints during motion by calculating the
variance of angular acceleration of lower limb joints to achieve the comfort evaluation
of lower limb joints.

3. In order to comprehensively consider the influence of psychological factors and
physiological factors on the determination of lower limb comfort level, this paper se-
lects Mt

n, ELt
n(R), ELt

n(A), D(Ht
n), D(Kt

n) and D(At
n) from the psychological comfort,

skeletal muscle comfort and joint comfort, respectively, to carry out relevant research,
and filters out Mt

n, ELt
n(R), D(Kt

n), three comfort characteristic indexes, by principal
component analysis, which realizes the dimensionality reduction processing of the
data set at the same time. It can be seen that the lower limb rectus femoris and lower
limb knee joint have a greater influence on the lower limb movement state during the
lower limb squatting movement.

4. In the QUEST-based lower limb exercise comfort level analysis and determination
model, it can be seen that Mt

n in the independent variable is the node that splits first,
and the node is the basis for the judgment of comfort level 1.00 and 2.00 and comfort
level 3.00 and 4.00, which indicates that the psychological comfort index can make a
two-level judgment of the comfort level during lower limb exercise, but it does not
provide a detailed comfort feeling grading. ELt

n(R) and D(Kt
n) are needed to produce

a detailed classification of comfort level, and the skeletal muscle comfort index ELt
n(R)

has higher contribution to the classification of comfort level 1.00 and 2.00, and the
joint comfort index D(Kt

n) has higher contribution to the classification of comfort level
2.00 and 3.00, indicating that the single psychological comfort evaluation is more
ambiguous during lower limb movement, and the skeletal muscle discomfort feelings
appear earlier than the uncomfortable feelings of the joints.

5. In the comparison with other supervised classification algorithms, it is found that
the method of this paper has obvious advantages, especially in the recognition and
classification of comfort level 2.00 and 4.00. By comparing the classification accuracy
of this paper and the comparison algorithms for each comfort level, it can be found
that all types of algorithms are more stable and more accurate for the recognition of
comfort level 1.00 and 4.00, and the classification accuracy is higher for the comfort
level 2.00 and 3.00. For the transitional comfort level 2.00 and 3.00, the classification
rate is lower. It means that the comfort feature values obtained from the data set of
this paper are more accurate for the evaluation of comfortable and uncomfortable
states, but more vague for the evaluation of transitional states.

However, there are several shortcomings in the methodology of this paper as follows:

1. In this paper, a fixed-length weightless lower limb squat test was used as the test
paradigm to obtain the comfort characteristics data set, and the test subjects’ age
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and gender were relatively limited. However, there are many kinds of lower limb
movements, and a single lower limb squatting movement does not reflect the complete
lower limb movement status. In the next study, all kinds of lower limb movements
should be used as the test paradigm, and the effects of different types of test subjects
should be considered to increase the reliability of the dataset.

2. The unstable clustering results of the K-means++ algorithm leads to a more am-
biguous classification of the transition comfort state in the lower limb comfort level
determination dataset, and in the next study, reference variables for classifying the
transition state should be introduced to improve the reliability of the lower limb
comfort level determination dataset.

3. Although the method in this paper can achieve the classification of comfort states
during lower limb squatting exercise, the accuracy of the classification of transitional
comfort states needs to be improved.

In summary, the QUEST-based lower limb exercise comfort level analysis and deter-
mination model proposed in this paper can realize the monitoring of comfort status and
comfort level determination during lower limb squatting exercise and provide quantitative
comfort indexes, which can provide theoretical support for comfort status monitoring in
the fields of lower limb exercise analysis, related lower limb exercise aids and lower limb
medical rehabilitation.

5. Conclusions

The purpose of this paper is to establish a QUEST decision tree model for analyzing
and judging lower limb movements. In this model, the eigenvalues of physiological comfort
and psychological comfort are simultaneously considered in this model to comprehensively
judge the lower limbs comfort during exercise. The comprehensive classification accuracy
of the model reaches 95.8%, of which the classification accuracy of the four comfort levels
reaches 95.2%, 97.3%, 92.9%, and 97.8%, respectively, realizing the effective comfort level
analysis during the lower limb squatting movement and judgment. In the following related
research work, factors such as different lower extremity movement patterns and the age
and gender of the subjects should be taken into consideration to improve the reliability of
the comfort level judgment dataset. The reference variable for classifying transition comfort
state is introduced to improve the classification accuracy of the model for the transition
comfort state during lower extremity movement, and to better realize multi-dimensional
monitoring and grade determination of lower extremity movement comfort state.

In summary, the QUEST-based lower limb exercise comfort level analysis and determi-
nation model proposed in this paper can achieve effective comfort level determination and
classification in the process of lower limb squatting exercise, which puts forward a new
idea for lower limb exercise comfort status monitoring and largely remedies the problem
of ambiguity in the evaluation of comfort perception of a single comfort index, and also
provides theoretical support for subsequent research.
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