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Automated severity assessment of coronavirus disease 2019 (COVID-19) patients can

help rationally allocate medical resources and improve patients’ survival rates. The

existing methods conduct severity assessment tasks mainly on a unitary modal and

single view, which is appropriate to exclude potential interactive information. To tackle

the problem, in this paper, we propose a multi-view multi-modal model to automatically

assess the severity of COVID-19 patients based on deep learning. The proposed

model receives multi-view ultrasound images and biomedical indices of patients and

generates comprehensive features for assessment tasks. Also, we propose a reciprocal

attention module to acquire the underlying interactions between multi-view ultrasound

data. Moreover, we propose biomedical transform module to integrate biomedical data

with ultrasound data to produce multi-modal features. The proposed model is trained

and tested on compound datasets, and it yields 92.75% for accuracy and 80.95%

for recall, which is the best performance compared to other state-of-the-art methods.

Further ablation experiments and discussions conformably indicate the feasibility and

advancement of the proposed model.

Keywords: COVID-19, deep learning, multi-view, multi-modal, computer aided diagnosis

1. INTRODUCTION

In December 2019, coronavirus disease 2019 (COVID-19) broke out and began spreading to
many countries around the globe, causing the ongoing coronavirus pandemic (1, 2). During the
COVID-19 pandemic, lung imaging has played a crucial role in clinical care and epidemiological
studies. COVID-19 has a significant impact on patients’ respiratory systems, causing changes
in the parenchyma of the lungs. Therefore, lung imaging is not only an effective technique for
detecting COVID-19 but can also provide important information for clinicians to judge the
severity of COVID-19 in patients through imaging features (3, 4). Common medical imaging
techniques include computed tomography (CT), X-ray, and ultrasound. Among those medical
imagingmodalities, ultrasound possessesmany advantages over others, including a high equipment
penetration depth, ease of operation, the absence of radiation exposure, portability, the ability to
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perform real-time diagnosis, affordability, etc. (5–8). It is widely
used as an additional screening and practical imaging method.

However, utilizing lung ultrasound images to assess the
severity of COVID-19 patients is a complex and time-consuming
task. Besides, manual judgments of sonographers will be
influenced by inevitable subjective factors, leading to the
omittance of inapparent image features. Deep learning (9) has
achieved great success in the medical imaging domain (10–
12). Deep neural network (DNN) models (9) even outperform
human experts in the diagnosis of some diseases (13–15).
Recently, many researchers have applied deep learning to the
diagnosis or evaluation of COVID-19 (16–20). Wang et al.
(21) proposed the COVID-Net to classify X-ray images into
normal, pneumonia, and COVID-19. Chen et al. (22) established
a deep-learning-based diagnostic system to identify COVID-19
pneumonia. Aboutalebi et al. (23) leveraged transfer learning to
transfer representational knowledge for predicting the airspace
severity of a SARS-CoV-2 positive patient based on CXR images.
Amyar et al. (24) proposed a new multitask deep learning model
to jointly identify COVID-19 patients and segment COVID-
19 lesions from chest CT images. Park et al. (25) proposed
a novel multi-task vision transformer that leverages low-level
CXR feature corpus for COVID-19 diagnosis and severity
quantification. Sharifrazi et al. (26) proposed a model fusing
convolutional neural network (CNN), support vector machine
(SVM), and Sobel filter to detect COVID-19 using X-ray images.
Ayoobi et al. (27) proposed to predict new cases and death rates
of COVID-19 patients in different time spans utilizing multiple
deep learning methods. Asgharnezhad et al. (28) proposed
to quantify the competency of DNNs for generating reliable
uncertainty estimates for COVID-19 diagnosis by introducing
novel performance metrics. Alizadehsani et al. (29) proposed to
cope with insufficient labeled COVID-19 data by introducing
a semi-supervised classification method relying on Sobel edge
detection and generative adversarial networks (GANs). Similarly,
to mitigate the shortage of medical resources, Joloudari et al.
(30) proposed DNN-GFE which combined DNNs with a Global
Feature Extractor (GFE) for COVID-19 diagnosis. Khozeimeh
et al. (31) proposed to deal with unbalanced data by introducing
a data augmentation procedure based on autoencoders (AEs)
and constructing CNN-AE to automatically diagnose COVID-19
cases. However, there are still several flaws in existing methods.
(1) Most studies (19, 21, 23, 24) focus on chest X-ray and
CT imaging, and little work takes lung ultrasound images into
consideration. (2) Existing methods (17, 19, 21, 23, 24, 32) mostly
leverage single-view images as input while it is more rational to
exploit multi-view ones. (3) Existing methods (17, 19, 21, 23–
25, 32) mostly utilize data of single modality (unitary CT, X-
ray, ultrasound, or other modalities) while multi-modal data are
conductive to offer more information.

To mitigate the aforementioned flaws, in this paper, we
propose an automated multi-view multi-modal model to
analyze the severity in COVID-19 patients. The proposed
model receives dual-view ultrasound image pairs and
biomedical indices of patients to automatically conduct the
comprehensive severity assessment tasks. We also propose
reciprocal attention module and biomedical transform

TABLE 1 | The clinical information related to coronavirus disease 2019

(COVID-19) patients.

Characteristics Total

Age, mean (s.d.) (years) 58.67(12.07)

Gender, n (%)

Male 79 (48.17)

Female 85 (51.83)

Patient’s classification, n (%)

Mild 125 (76.22)

Severe 39 (31.2)

Laboratory test (the latest laboratory test in lung ultrasound examination)

LYMa, median (range, Q1-Q3) (109/L) 1.6 (0.28, 3.68)

CRPb, median (range, Q1-Q3) (mg/L) 2.06 (0.5, 278.11)

LDHc, median (range, Q1-Q3) (IU/L) 193 (116, 847)

PCTd, median (range, Q1-Q3) (ng/mL) 0.04 (0.01, 9.25)

IL-6e, median (range, Q1-Q3) (pg/mL) 1.71 (1.5, 1716)

aLYM, lymphocytes. bCRP, C-reactive protein. cLDH, lactate dehydrogenase. dPCT,

procalcitonin. e IL-6, interleukin 6. Continuous variables that conform to the normal

distribution are described as the mean (s.d.), otherwise, using the median and interquartile

range values.

module, respectively, to extract and integrate multi-view and
multi-modal features.

Briefly, the main contributions of our model are as follows:

(1) A novel multi-view multi-modal DNN is proposed. To the
best of our knowledge, we are one of the forerunners to
use both multi-view and multi-modal model for severity
assessment in COVID-19 patients. Our proposed model has
been evaluated on this dataset and outperformed all other
state-of-the-art methods.

(2) A novel reciprocal attention module is proposed. Reciprocal
attention module embedded with attention mechanism
(33) rationally explores the inherent connection between
ultrasound images of multiple views, generating attention
features.

(3) A novel biomedical transform module is proposed. The
biomedical transform module incorporates information of
biomedical indices into ultrasound features, producing
comprehensive hybrid features for assessment.

2. MATERIALS AND METHODS

2.1. Data Acquisition
We collected data from a total of 164 patients, ranging in
age from 17 to 87 years old, with 48.17% males and 51.83%
females from Zhongnan Hospital of Wuhan University and
Leishenshan Hospital to form the two datasets of COVID-19
patients. We collected 1,712 ultrasound images from the patients
and simultaneously, we collected the corresponding biochemical
indices related to pneumonia, including lymphocytes, c-reactive
protein, lactate dehydrogenase, procalcitonin, and interleukin 6.
See Table 1 for detailed information.

All lung ultrasound images were saved in .jpg format.
The ultrasound equipment used was a Siemens ACUSON
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FIGURE 1 | Typical examples of abnormal ultrasound cases related to coronavirus disease 2019 (COVID-19). (A) The pleural line is jagged or concave. (B) The pleural

line is broken. (C) The scanning area shows a wide range of dense white areas, with or without large consolidation.

OXANA1 with 6C1HD and 9L4 probes. The probes were placed
perpendicular to the chest wall and parallel to the frame on
areas 1–6 on the left and right sides (for both the left and right
sides: the upper and lower axillary areas, the front and side
areas of the chest wall, and the area of breast attachment and of
the shoulder blade angle on the posterior side). Notably, since
patients in ICUs could not lie on their sides, only the anterior and
lateral thorax (areas 1–4) were examined. According to a general
ultrasound triage protocol (34), if an abnormal ultrasound sign
was discovered (e.g., irregular pleural lines, B lines, consolidation,
and pleural effusion), a static picture of the scan was saved. The
examples of abnormal ultrasound cases are presented in Figure 1.

All biomedical indices were collected according to patients′

medical records, including Lymphocytes, C-reactive protein,
Lactate dehydrogenase, Procalcitonin, and Interleukin 6. Table 1
shows that lymphocytes possess Q1 (1st Quartile) of 0.28 109/L,
Q3 (3rd Quartile) of 3.68 109/L, and a median of 1.6 109/L. C-
reactive protein possesses Q1 of 0.5 mg/L, Q3 of 278.11 mg/L,
and a median of 2.06 mg/L. Lactate dehydrogenase possesses
Q1 of 116 IU/L, Q3 of 847 IU/L, and a median of 193 IU/L.
Procalcitonin possesses Q1 of 0.01 ng/mL, Q3 of 9.25 ng/mL,
and a median of 0.04 ng/mL. Interleukin 6 possesses Q1 of
1.5 pg/mL, Q3 of 1716 pg/mL, and a median of 1.71 pg/mL.
Given that one patient usually has one ultrasonic examination
and multiple pathological examinations, to make our work more
reliable, biochemical indices from the pathological examination
closest to ultrasonic examination were collected. Utilizing the
summarized information, four experienced doctors made clinical
diagnoses and annotated the corresponding data.

2.2. Overall Architecture
The architecture of the proposed model is presented in
Figure 2. Generally, the proposed model receives multi-modal
information of COVID-19 patients, containing ultrasound
image pairs of two views and biomedical indices. Afterward,
two branches of features are extracted from ultrasound
image pairs. The two sets of features then undergo the
proposed reciprocal attention module to acquire their
attention features. Subsequently, attention features are further
processed to obtain high-dimensional features. After average
pooling, the high-dimensional features undergo the proposed
biomedical transform module, where biomedical indices of
corresponding patients are integrated to generate hybrid
features. Exploiting hybrid features, our model conducts the
final decision. Detailed architectures of reciprocal attention
module and biomedical transform module are discussed in the
following sections.

2.3. Reciprocal Attention Module
Different views of lung ultrasound images may contain
complementary information. Hence, it is feasible to explore
their inherent connections. Based on this, we propose
a reciprocal attention module to acquire the attention
feature from source view to target view bidirectionally, i.e.,
from left view to right view and from right view to left
view simultaneously.

The detailed architecture of the reciprocal attention module
is presented in Figure 3. The module receives features of two
views extracted from previous CNN networks and calculates
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FIGURE 2 | Overall flowchart of the proposed model. The proposed model receives multi-view ultrasound image pairs and biomedical indices of COVID-19 to

conduct severity assessment tasks. The proposed reciprocal attention module tackles the multi-view ultrasound data and the proposed biomedical transform module

tackles the biomedical data.

FIGURE 3 | Detailed architecture of reciprocal attention module. Reciprocal attention module receives ultrasound image pairs and generates bidirectional attention

features utilizing attention mechanism (33).

attention features utilizing attention mechanism (33). Initially,
features of two views {FT , FS} ∈ R

H×W×C are processed
by an embedder to produce two independent embeddings
{ET ,ES} ∈ R

HW×D, where S and T stand for source view
and target view; H, W and C are the channel, height, and
width of features; D is the dimension of embeddings. Then,
according to (33), a query matrix Q ∈ R

HW×D, a key matrix
K ∈ R

HW×D, and a value matrix V ∈ R
HW×D are obtained

as following:







Q = ETWQ

K = ESWK

V = ESWV

(1)

where
{

WQ,WK,WV

}

are learnable transform weights of
query, key, and value, respectively. Exploiting acquired Q,

K, V, reciprocal attention RA (·) ∈ R
HW×D is calculated

as follows:

RA (Q,K,V) = softmax

(

QKT

√
D

)

V (2)

Similar to self-attention, reciprocal attention represents the
weights from source embedding toward each element in target
embedding. To conduct effective fusion with features of target
view, reciprocal attention is firstly reshaped via convolution
layers and then added to target features. Formally, attention
feature is computed as follows:

FA = σ (FT + τ (ε(RA))) (3)

where FA is the attention feature after fusion, ε stands
for reshaping convolution, τ is the dropout operation,
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FIGURE 4 | Detailed architectures of biomedical transform module. The biomedical transform module receives biomedical indices and generates parameters of affine

transformation for ultrasonic features to obtain hybrid features.

and σ denotes the layer normalization. During the
inference procedure, each view serves both as target and
source and the other view serves as the opposite, yielding
two branches of attention features corresponding to
multi-view networks.

2.4. Biomedical Transform Module
Ultrasound images can provide partial information about
the pulmonary lesions caused by COVID-19. However,
COVID-19 causes wider damages to various organs and
tissues, resulting in abnormal biomedical indices. Note that
image features after CNNs are usually high-dimensioned
while biomedical indices are low-dimensioned. Hence, it’s
significant to deploy biomedical indices and incorporate
them with ultrasonic features. On the basis of this, we
propose a biomedical transform module to undergo
legitimate fusions between extracted graphic features and
biomedical indices.

The detailed architecture of biomedical transform module is
illustrated in Figure 4. For any feature maps F ∈ R

H×W×C in
the network, X ∈ R

B denotes the corresponding biomedical
indices collected from the same patient and B is the dimension
of biomedical indices. Let Fi, i ∈ {1, 2, · · · ,C} be the
channel-wise features of F. Namely, [F1, F2, · · · , FC] = F

where [·] denotes the concatenation operator. We aim to
combine X and F through affine transformation. Concretely,
an auxiliary network is built to generate transform parameters
9 ∈ R

C and 8 ∈ R
C, which can be indicated

as follows:

{8,9} = fan(X) (4)

where fan denotes the auxiliary network. Specifically, the
auxiliary network is composed of multiple linear layers with
ReLU functions to project X to 8 and 9 . The auxiliary is
jointly learned during the training procedure. Subsequently,
affine transforms with the two learned parameters are applied
to feature maps from corresponding patients to acquire

hybrid features Fh ∈ R
H×W×C. Formally, Fh is obtained

as follows:

Fh =









Fh,1
Fh,1
· · ·
Fh,C









=









ψ1 ∗ F1 + φ1
ψ2 ∗ F2 + φ2

· · ·
ψC ∗ FC + φC









= 9 ∗ F+8 (5)

where Fh,i, i ∈ {1, 2, · · · ,C} is the channel-wise features of Fh, ∗
denotes scalar multiplication, and+denotes scalar addition.

2.5. Evaluation
First, for severity assessment of COVID-19 patients, we define
Positive for severe cases and Negative for mild cases. Then,
TP,TN, FP, FN denote true positive, true negative, false positive,
and false negative, respectively. To evaluate the performance
of our proposed model, the following evaluating metrics
are selected.

Accuracy: The most primitive evaluating metric in
classification problems, defined as the percentage of correctly
predicted results in the total sample. Formally, accuracy is
defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

Precision: It is defined as the proportion of correctly classified
positive samples among all samples predicted to be positive
and is a measure of how well the model can predict correct
results among all predicted positive samples. Formally, precision
is defined as follows:

Precision =
TP

TP + FP
(7)

Recall: The probability of predicting a correctly classified positive
sample among all actually positive samples. Formally, recall is
defined as follows:

Recall =
TP

TP + FN
(8)
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F-score: The comprehensive measure of model precision and
recall. We select two types of F-scores, F1-score and F1.5 score.
F1-score treats precision and recall of equal significance and it is
defined as follows:

F1-score =
2× Recall× Precision

Recall+ Precision
(9)

F1.5-score emphasizes more on recall than precision, which
is more rational in clinical practice (will be discussed in the
following section). Formally, F1.5-score is defined as follows:

F1.5-score =
13× Recall× Precision

9× Recall+ 4× Precision
(10)

3. EXPERIMENTAL RESULTS AND
DISCUSSION

3.1. Implementation Details
To construct rational dataset for our multi-view multi-modal
model, the aforementioned lung ultrasound images from 164
patients were separated into image pairs containing opposite
views. Namely, ultrasound images of L1 were combined with
those of R1 and the same for the remaining views. Under this
strategy, one patient could produce multiple cases for training
and test. Whereafter, biomedical indices were first normalized
and then added into corresponding cases to form the complete
dataset. In total, 834 cases were constructed, where 171 were
severe and 663 were mild. Afterward, a set of 627 cases (498 mild
and 129 severe) was selected as the training set, and the rest were
selected as the test set (165 mild and 42 severe).

To reduce the influence of unusual data distributions on
ultrasound images and improve the training efficiency of our
model, original images were first normalized and then resized
to 448 × 448 pixels. Common data augmentations like random
flip and crop were applied to ultrasound images before entering
the network.

The proposed network was implemented in Pytorch (35). The
network was trained with a batch size of 32 and the total training
epoch was set to 100. The initial learning rate was 1 × 10−4

and was adjusted according to ReduceLROnPlateau strategy (35).
Specifically, the learning rate was reduced by a factor of 0.5 when
the loss did not decline after 8 continuous epochs. Adam (36)
with default parameters was adopted as the optimizer. Given that
the number of mild cases and severe cases was disproportionate,
Focal loss (37) was selected as the loss function to cope with
imbalanced cases. Focal loss is defined as follows:

LFL =
{

−α(1− ȳ)γ logȳ, y = 1
−(1− α)ȳγ log(1− ȳ), y = 0

(11)

where ȳ is the output of networks, y is ground truth, α and
γ are parameters constructed to alleviate the negative influence
brought by imbalanced data. During the training procedure, we
set α = 0.25 and γ = 3.

TABLE 2 | Results of severity assessment in COVID-19 patients in terms of

Accuracy (Acc), Precision (Pre), recall, and F-score.

Model Acc% Pre% Recall% F1-score% F1.5-score%

VGG11BN (38) 91.30 90.00 64.29 75.00 70.48

DenseNet121 (40) 89.86 81.82 64.29 72.00 68.82

ResNet18 (39) 90.34 80.56 69.04 74.36 72.22

SENet (41) 90.82 92.59 59.52 72.46 66.87

SEResNet (41) 91.79 87.88 69.05 77.33 73.92

Xception (42) 90.34 77.50 73.81 75.61 74.91

InceptionV4 (43) 91.30 85.29 69.05 76.32 73.35

Sharifrazi et al. (26) 91.30 90.00 69.05 75.00 70.48

RAB (Ours) 92.75 82.92 80.95 64.29 81.55

3.2. Results of Severity Assessment of
COVID-19 Patients
In this section, we present the experimental results of severity
assessment in COVID-19 patients. To verify the advancement
of our model, the performance of our model is compared to
several other mainstream methods, namely, VGG (38), ResNet
(39), DenseNet (40), SENet (41), SEResNet (41), Xception (42),
InceptionV4 (43), and Sharifrazi et al. (26). We trained and
tested the comparative methods with the same strategy and
hyperparameters as the proposed model.

Table 2 summarizes the comparison of assessment results of
COVID-19 patients. Our proposed model was referred to as
RAB in this section. The experimental results indicated that
the performance of the proposed RAB exceeds other models in
almost all measurements. As for accuracy, our model achieved
92.75%, outperforming all other models. This indicates that
RAB performs efficiently in recognizing both mild and severe
cases. In terms of precision, RAB achieved 82.93%, inferior
to several models. However, in early screening of COVID-19
patients, it counts more to recognize severe cases as many as
possible, and it is tolerable to diagnose a tiny proportion of
mild cases as severe ones but disastrous in turn. Therefore,
precision is of less significance and emphasis should be placed
more on recall. For recall, RAB yielded 80.95%, outperforming
all other models. High performance in recall indicates that
RAB performs preeminently in distinguishing severe cases from
general COVID-19 cases, which is crucial clinically. Besides,
for both F1 and F1.5 scores, our model also yielded the best
outcomes, demonstrating that the comprehensive performance
of our model overmatches all state-of-the-art models.

To make the experimental results more intuitive, the
confusion matrices of all models were calculated and are
presented in Figure 5. It is apparent to find that comparative
methods tended to leave out more severe cases. For example,
VGG11BN (38) and DenseNet121 (40) failed to recognize 15
cases out of 42 severe cases (Figures 5A,B), ResNet18 (39),
SEResNet (41), and InceptionV4 (43) failed to recognize 13
severe cases (Figures 5C,E,G), and SENet (41) failed to recognize
17 severe cases (Figure 5D). The poor ability to identify severe
COVID-19 cases restrains their applications. While RAB yielded
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FIGURE 5 | Confuse matrices of severity assessment for COVID-19 patients. (A) VGG11BN (38), (B) DenseNet121 (40), (C) ResNet18 (39), (D) SENet (41), (E)

SEResNet (41), (F) Xception (42), (G) InceptionV4 (43), (H) Sharifrazi et al. (26) and, (I) RAB (Ours).

the first place in recognizing severe cases and merely misdeemed
8 cases. Besides, it is noteworthy that Sharifrazi et al. (26)
achieved plain results in recognizing COVID-19 cases because
their method is aiming at X-ray images. X-ray images contain
distinct boundaries for tissues and organs while ultrasound
images usually have blurry ones. Hence, edge detection tends
to produce mediocre outcomes for ultrasound images. We
owe the remarkable performance of RAB to the proposed
reciprocal attention module and biomedical transform module.
The advancement of the two modules is discussed in the
following section.

3.3. Ablation Studies
In this section, to verify the advancement of the proposed
reciprocal attention module and biomedical transform module,
ablation experiments were conducted. The performance of our
model is compared to several baseline methods. Except for our
model, we also constructed 3 baseline models and 1 variant
model. As shown in Figure 6, the 3 baseline models were as
follows: Single View model (SV), Dual View model without
reciprocal attention module and biomedical transform module
(DV), and reciprocal attention model without biomedical

transform module (RA). The 1 variant model is inserting the
biomedical transform module before the reciprocal attention
module (named RAB-early). Our proposed model is referred as
RAB-late in this section. Similarly, we trained and tested the
baseline methods with the same strategy and hyperparameters as
RAB-late′s.

Table 3 summarizes the comparison of ablation results of
COVID-19 patients. The experimental results indicated that
the performance of the RAB-late model exceeds other baseline
models in most measurements. As for accuracy, the RAB-
late model achieved 92.75%, outperforming SV, DV, and RAB-
early, the same as RA. In terms of precision, the RAB-late
model achieved 82.93%, outperforming SV and RAB-early while
inferior to DV and RA. The same as mentioned before, we focus
more on recall. For recall, the RAB-late model yielded 80.95%,
overmatchingmost other models. Note that the RAB-early model
achieved the best recall of 85.71% while it had only 59.01% of
precision. Such a model is fallacious in clinical use. For both F1
and F1.5 scores, the RAB-late model yielded the best outcomes.

Additionally, the confusion matrices of all 5 models are
shown in Figure 7. As shown in Figure 7A, among 42 severe
cases, the SV model failed to recognize 13 cases, leading to
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FIGURE 6 | Structures of baseline models. (A) Single view (SV) Model. (B) Dual view model without reciprocal attention module and biomedical transform module (DV)

Model. (C) Reciprocal attention model without biomedical transform module (RA) Model. (D) Biomedical transform module before reciprocal attention module (named

RAB-early)-early Model.

TABLE 3 | Results of ablation experiments in terms of Acc, Pre, recall, and

F-score.

Model Acc% Pre% Recall% F1-score% F1.5-score%

SV 90.34 80.56 69.04 74.36 72.22

DV 91.79 83.78 73.81 78.48 76.62

RA 92.75 88.57 73.81 80.52 77.80

RAB-early 85.02 59.02 85.71 69.90 75.24

RAB-late 92.75 82.92 80.95 81.93 81.55

a disappointing recall. DV model surpassed the SV model
in both recall and precision, demonstrating the validity of
a dual-view strategy (Figure 7B). Moreover, the RA model
strengthened the model’s ability in identifying mild cases and
improving model’s precision, confirming the advancement of
our proposed reciprocal attention module (Figure 7C). Notably,
as presented in Figure 7D, the RAB-early model identified 36
severe cases out of the total 42 testing cases, yielding the best
performance in recall, whereas it failed to classify 25 mild
cases, far inferior to other models. In contrast, the RAB-late
model maintained the most remarkable in both precision and
recall and subsequent F-scores. The reason account for such

gaps lies in the intrinsic structures of RAB-early and RAB-late,
namely, the sequence of reciprocal attention and biomedical
transform. According to aforementioned methodology, the
reciprocal attention module seeks for connections of multiple
views on the hypothesis that different views may possess
complementary information. Nevertheless, such mechanism is
futile when confronting identical features. In the RAB-early
model, before the reciprocal attention module, biomedical
transform is conducted to dual-view features with parameters
generated from the same biomarker data, bringing identical
factors to subsequent blocks and those identical factors restrain
reciprocal attention mechanism. Whereas, the DAVB-late model
encounters no similar restraints.

Apart from the two proposed modules, the adopted focal
loss function is also discussed. We replaced the focal loss
with a more general loss function, BCE Loss, to train
and test our model. Table 4 summarizes the comparison of
different loss functions. The result indicates that the focal
loss apparently elevated our model’s overall performance.
Note that the BCE Loss model generated extremely uneven
precision and recall. The confusion matrices are shown in
Figure 8. BCE Loss model failed to recognize 18 severe
cases out of 42, distinctly inferior to the focal loss model.
Technically, focal loss reduces the weights of categories with
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FIGURE 7 | Confuse matrices of ablation experiments. (A) SV Model, (B) DV Model, (C) RA Model, (D) RAB-early Model, and (E) RAB-late Model.

TABLE 4 | Results of different loss functions in terms of Acc, Pre, recall, and

F-score.

Loss function Acc% Pre% Recall% F1-score% F1.5-score%

LBCE 90.34 92.31 57.14 70.59 64.73

LFL 92.75 82.92 80.95 81.93 81.55

FIGURE 8 | Confuse Matrices of different loss functions. (A) BCE Loss model.

(B) Focal Loss model.

vast majority, thus applicable for the imbalanced COVID-
19 data.

3.4. Visualization
To interpret that our model has indeed learned certain abnormal
signs to undergo an assessment of COVID-19 patients, grad
class activation map (grad-CAM) (44) was used to visualize
the most disease-indicative image areas learned by our model.
Figure 9 presents the heat maps relevant to COVID-19 generated
by the grad-CAM of our model. Distinctly, it demonstrates in
Figure 9 that our model has detected several abnormal signs like

irregular pleural lines, B lines, consolidation, and pleural effusion
as standards to conduct downstream tasks.

Additionally, to further interpret the advancement of
biomedical indices in an assessment task, the statistical
characteristics of biomedical indices are also considered. As
shown in Figure 10, the mean value and SD of those data are
demonstrated with × and bars with different colors indicate
mild and severe cases. In Figure 10, the red and blue bars
represent the SD for all biomedical indices, and the length
of each bar represents the data range from mean − std to
mean + std, standing for the approximate distribution of
biomedical indices for mild and severe cases. For C-reactive
protein, lactate dehydrogenase, procalcitonin, and interleukin
6, the data distributions of mild and severe patients overlap
completely. For absolute lymphocyte value, there also exists
overlaps. Data distributions of biomedical indices indicate that
mild and severe cases possess certain but no sheer disparity,
which brings challenges for manual judgments. Whereas, our
model successfully exploits the meritorious information in
biomedical indices and incorporates it into multi-modal data.

Still, our model owns several flaws. Subject to insufficient
laboratory data, the scale of our dataset is not as abundant
as million-level ones, imposing restrictions on our model. In
addition, for the same reason, not all patients have complete
biochemical indices available and we simply replaced those void
data with average ones. Those missing data may lead to restraints
to on our model as well. Experiments with data of larger-scale
and better integrity will be carried out in future work.

4. CONCLUSION

In this paper, we present a novel automated multi-view multi-
modal model to assess the severity of COVID-19 patients
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FIGURE 9 | Nidus-related visualization of ultrasound images. Using grad-CAM (44), the proposed model could highlight the image areas that are most relevant to

COVID-19.

FIGURE 10 | Statistical characteristics of biomedical indices. × stands for the mean value. The red and blue bar stands for the standard deviation for severe and mild

cases, respectively. (A) Lymphocyte (absolute value). (B) C-reactive protein. (C) Lactate dehydrogenase. (D) Procalcitonin. (E) Interleukin-6.

exploiting ultrasound images and biomedical indices. The
model has a dual-view structure and receives ultrasound images
along with biomedical indices to generate comprehensive
features. Specifically, the proposed reciprocal attention
module acquires inherent connections between multiple
views. and the proposed biomedical transformmodule integrates
biomedical indices with extracted ultrasonic features to form
hybrid features.

We have evaluated our model on compound datasets
composed of ultrasound images and biomedical indices of
COVID-19 patients. Experimental results demonstrate that our
method outperforms all other state-of-the-art methods with
better comprehensive performance. Further ablation studies
and discussions consistently substantiate the rationality and
advancement of our model. In the future, the model will be
extended to wider ranges of modalities and larger scales of data.
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