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Abstract: Emerging literature suggests that virtual reality (VR) may be a viable therapy for neuro-
pathic pain (NP). This pilot study aimed to investigate the immediate effect of VR in reducing NP in
people with spinal cord injury (SCI). Eight individuals with chronic NP after SCI were recruited and
underwent consecutive exposure to scenery and somatic virtual environments (VE). The numeric
rating scale (NRS) was used to assess pain before and after exposure to each VE. The Immersive
Tendencies Questionnaire (ITQ) and Presence Questionnaire (UQO-PQ) were used to investigate the
interaction between reported pain relief post-intervention with immersion and presence. There was
a significant reduction in pain levels (5.1 ± 0.4, mean ± SEM) after short exposure to the scenery
(3.1 ± 0.7, p = 0.04) and somatic VE (3.0 ± 0.7, p = 0.04), with no difference between intervention
types (p = 0.56). There was a statistically significant negative correlation between the total ITQ score
and the change in NRS after the scenery VR intervention (rs = 0.743, p = 0.035). PQ scores showed
no significant correlation with changes in pain following either intervention type. We found that
short-term exposure to VR environments results in a reduction in chronic NP intensity in people
with SCI.

Keywords: virtual reality; neuropathic pain; spinal cord injury; neuroplasticity; immersiveness

1. Introduction

Neuropathic pain (NP) affects 40% to 70% of people with spinal cord injury (SCI) and
approximately one-third of those affected describe their pain as severe or excruciating [1,2].
It often leads to functional impairments and a decrease in the individual’s quality of life,
as about 20% of SCI survivors report that neuropathic pain is more incapacitating than
a motor disability [3]. Furthermore, NP often deters people with SCI from completing
exercise programs, negatively impacting their rehabilitation process [4].

It has been suggested that persistent NP in people with SCI results from increased
depersonalization symptoms originating from a mismatch between the sensory input and
the cortical sensorimotor representation of the body [5,6]. Similar mismatch mechanisms
have been suggested to underlie phantom pain [7–9]. Though NP is mechanistically well
understood from the lens of body representation, treatment options for NP are limited
and the efficacy of the current recommended treatment options are modest, with many
reported side effects and pharmacological intolerances [10–13].

It is postulated that in people with SCI, the loss of somatosensory drive is thought
to generate aberrant nociceptive impulses that are interpreted as pain. Importantly, this
results in functional reorganization of the primary somatosensory cortex (SI) and there is
accumulating evidence of an association between the degree of this cortical reorganization
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and the severity of NP [14]. Therefore, strategies aimed at reversing or modulating the
somatosensory neural organization may be valuable alternative approaches to treating
neuropathic pain.

As an alternative to pharmacological treatment options, the use of virtual illusion in
treating neuropathic pain started in 1992 with the use of mirror visual feedback (MVF) in
patients with phantom limb pain. The mechanistic theory behind MVF is that it works
to reverse maladaptive neuroplastic changes and effects on central regulation [15]. How-
ever, MVF only works for unilaterally affected individuals as it requires the ability to
move the unaffected limb, limiting its effects on individuals with SCI who typically have
bilateral impairments.

Based on the same physiological idea, the use of VR to treat chronic pain started
being studied two decades ago and has increased significantly in recent years, showing
positive results [16–19]. In a VR intervention, the observation of goal-directed actions,
motor imagery, and action execution may reduce pain by influencing overlapping cortical
processes [20–22]. The activation of the somatic nervous system, and an increased sense of
immersion and presence, could potentially contribute to therapeutic success by regulating
somatosensory neuropathic pain and the viewer’s perception of pain [23].

VR has also been shown to reduce pain via distraction among individuals with both
acute [24,25] and chronic pain [26]. The underlying analgesic mechanisms of distractive
VR remain unclear, though researchers hypothesize that distracting stimuli can decrease
perception of pain by downregulating nociceptive neural signaling [27,28]. To date, few
studies have investigated the influence of different virtual environments (VEs) on the
potential pain-relieving effects of VR. Although there is substantial evidence that VR can
result in chronic pain relief [29], the significance of its analgesic effect in SCI-associated
neuropathic pain remains unclear [30].

The purpose of this study was to investigate the effect of two different VR protocols
on pain intensity in people with SCI. We hypothesized that short-term exposure to a VR
protocol would result in an immediate pain reduction in people with SCI and NP and that
somatic VEs would produce a greater reduction in pain than scenery VEs. In addition, we
also investigated whether participant immersive tendencies and presence influenced the
response to the VE.

2. Materials and Methods
2.1. Study Design and Participants

We performed an individual pilot study with a comparison pre- and post-intervention.
Patients underwent two consecutive VR sessions (scenery and somatic) in a randomized order.

Participants were recruited from the Burke Medical Research Institute spinal cord
injury database from 2015 to 2016. The inclusion criteria were as follows: (a) presence of
chronic neuropathic pain at or below the level of injury for at least 6 months following
trauma or disease of the spinal cord, (b) pain intensity of at least 4/10 on the numeric rating
scale (NRS) at initial contact, (c) stable pharmacological treatment for at least two weeks
prior to study and throughout the trial, and (d) cervical spine control (enough to hold their
head in an upright position).

We excluded patients below the age of 18, with severe pain of another origin, with
the presence of psychiatric or other neurological disorders, and those with a medical
history of head injuries that caused cognitive or visual impairments, severe vertigo, and/or
medical instability.

All patients were aware of the purpose of the study. Informed consent was obtained
from the patients and the experimental protocol was performed with the full approval of
the Burke Rehabilitation Hospital Committee for Human Rights in Research (BRC-527).

2.2. Virtual Reality Intervention

Study participants were exposed to two VR environments: scenery, where the par-
ticipant is exposed to a VE consisting of passive sceneries such as nature experiences;
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and somatic, where the VE consisted of upper and lower extremity movements (Figure 1).
Two types of somatic environments were used, and participants chose the most appropriate
environment based upon their self-reported location of their most prominent pain: an
upper extremity VE or a lower extremity VE. While viewing the VEs, no specific com-
mands were given, and participants were not encouraged to focus on any particular part
or element of the VE. Patients underwent the two consecutive VR sessions (scenery and
somatic) in a randomized order. Each VR session was 10 min in duration. The participant
was permitted to leave the laboratory and move freely within the campus (in some cases
for several hours) and return for the second VR session once the participant reported a
return to baseline pain level.
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Figure 1. Virtual reality setup for the somatic and scenery virtual environments. (A) Samsung Gear
virtual reality headset frontal (top) and side view. (B) Scenery virtual environment: participants are
shown scenes that do not involve somatic interaction with the painful limb (in this case a scene taken
from the Museum of Natural History). (C) Somatic virtual environment: participants are shown
scenes that involve functional movements of the upper and lower limbs. Written informed consent
was obtained from the individual for the publication of this image.

The VR system consisted of the Samsung Galaxy S3 housed in a Samsung Gear VR
headset (Figure 1). Patients were placed in a seated position on a chair or their personal
wheelchair, with the ability to look around freely. Patients were instructed to report any
discomfort and given the possibility to ask to stop the intervention at any time.

2.3. Clinical Assessments and Outcome Measures

The primary outcome for this study was change in neuropathic pain measured through
the Numeric Rating Scale (NRS). The NRS scale consists of asking the participant to rate
their pain from 0 to 10 (11-point scale), with 0 equal to “no pain” and 10 equal to “worst
possible pain”. The NRS provides a valid, reliable, and easy to administer score [31].
NRS pain scores were assessed at baseline and immediately after each VR intervention
(scenery and somatic). Participants were also requested to give as many details on the pain
characteristics as possible. Reported symptoms of discomfort, dizziness, or nausea were
also noted.

The Immersive Tendencies Questionnaire (ITQ) [32] was developed to measure the
capability or tendency of individuals to be involved or immersed in a VE. It consists of
18 questions divided into 4 subcategories: focus, implication, emotion, and game, with
responses provided according to a 7-point scale ranging from “never” to “often”. The UQO-
PQ, the Cyberpsychology Lab version of the presence questionnaire [33], was designed
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to measure the degree to which individuals experience presence in a VE. The UQO-PQ
consists of 5 questions, each rated on a 0 to 100 percent scale. Both questionnaires were
completed by each participant at the end of the VR intervention.

2.4. Data Analysis

Post-intervention NRS pain scores were evaluated for significant differences in com-
parison to baseline using Wilcoxon signed-rank tests. Three datasets were tested for
significant differences: (1) Baseline NRS and post-scenery NRS to evaluate whether the
scenery VE significantly reduced the participants’ pain score. (2) Baseline NRS and post-
somatic NRS to evaluate whether the somatic VE significantly reduced the participant’s
pain score. (3) Post-scenery changes in NRS and post-somatic change in NRS to evaluate
whether there was a significant difference in the pain-relieving effects of the somatic VE
compared with the scenery VE. Additionally, we performed a Spearman correlation to
evaluate whether the ITQ and PQ scores correlated with a change in pain following the
scenery and somatic VEs.

3. Results
3.1. Participant Characteristics

Eight people with chronic neuropathic pain after SCI were recruited (four female;
55 ± 3 years, mean ± SEM) for this research study. Five participants presented with
cervical lesions, two with thoracic, and one with lumbar (Table 1). The average time since
injury was 13 ± 4 years and the average baseline pain levels were scored as 5.1 ± 0.4 on
the NRS (Table 2).

Table 1. Participant characteristics. Participant’s sex, age, level of injury, time since injury in years,
and American Spinal Injury Association (ASIA) Neurological Classification of Spinal Cord Injury.

ID Age Level of Injury Time Since
Injury (Years) Injury ASIA

1 56 T4 23 Non-Traumatic D
2 45 C2 1 Traumatic D
3 44 C6 22 Traumatic B
4 50 C5 36 Traumatic B
5 65 L4 5 Non-Traumatic D
6 58 C5 3 Traumatic C
7 71 T10 6 Non-Traumatic C
8 51 C4 9 Traumatic C

Mean 55 - 13 - -
SEM 3 - 4 - -

Table 2. Participant’s pain, immersion, and presence scores. Participant’s baseline and post-
intervention scores were recorded.

NRS ITQ UQO-PQ

ID Baseline Post-Scenery Post-Somatic Total Scenery Somatic

1 4 4 4 55 30 13
2 5 5 5 74 20 8
3 7 5 4 69 38 35
4 5 5 5 68 51 52

5 4 2 2 40 45 13
6 6 2 1 35 44 63
7 4 2 3 55 88 35
8 6 0 0 37 55 40

Mean 5.1 3.1 3.0 54.1 46.4 32.4
SEM 0.4 0.7 0.7 5.5 7.2 7.0
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3.2. Effects of VR on Pain

There was a significant reduction in relation to baseline pain levels (5.1 ± 0.4,
mean ± SEM) after short exposure to the scenery (3.1 ± 0.7, p = 0.04) and somatic VE
(3.0 ± 0.7, p = 0.04). There was no significant difference between intervention types regard-
ing a change in pain scores (p = 0.56), see Figure 2.
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Figure 2. Numeric Rating Scale (NRS) pain scores at baseline before the intervention, post-scenery
virtual environment, and post-somatic virtual environment. There was a significant reduction in NRS
pain scores after the scenery and somatic virtual environments compared to the baseline. * indicates
statistical significance (p < 0.05).

3.3. VR, Immersion, and Presence

A Spearman correlation analysis revealed a statistically significant negative correlation
between total ITQ score and the change in pain after the scenery VR intervention (rs = 0.743,
p = 0.035). This suggests that the greater the ITQ score, meaning the more immersed one
is, the greater the decrease in pain. No significant correlation was found between the
total ITQ score and the change in pain after the somatic VR intervention (rs = 0.663,
p = 0.073). Regarding the subcategories, there was only a statistically significant negative
correlation between the focus subcategory of ITQ and the change in pain after the somatic
(rs = 0.805, p = 0.016) and scenery VR intervention (rs = 0.776, p = 0.024). PQ scores
showed no significant correlation with changes in pain post-scenery and post-somatic
VR interventions.

4. Discussion

Our pilot study showed a significant reduction in pain levels following short-term
exposure to a virtual environment in people with neuropathic after SCI. However, no
significant difference in the magnitude of NRS reduction was observed between scenery
and somatic interventions.

VR has been utilized as a pain management tool among individuals with acute [34–36],
chronic [17], neuropathic [30,37–39], and phantom limb pain [40,41], with almost unani-
mously positive results. VR therapy is also emerging as a promising alternative treatment
for NP in people with SCI [30]. Our results showed an average pain NRS decrease of
2.00 (39%) post-scenery and 2.13 (42%) post-somatic VR intervention, which are compa-
rable to effect sizes seen in other studies investigating the utility of VR for chronic pain



Int. J. Environ. Res. Public Health 2021, 18, 8923 6 of 9

relief [14,22,42]. Thus, the significant reductions in NRS pain scores compared to baseline
after both the scenery and somatic VR interventions that were observed in this pilot trial
appear to be consistent with the existing literature surrounding VR and chronic pain.

Among other alternative pain interventions such as hypnosis, immersion is known to
play an important role in governing the responsiveness to the intervention. For instance, a
participant’s hypnotizability, meaning how able the participant is to enter a hypnotic state
and be immersed in it, is known to influence the efficacy of the intervention [43]. Immersive
tendencies and immersion in VR have been studied in numerous domains to determine
their effect on other rehabilitation health outcomes such as mobility, postural stability, and
functional task performance [44]. However, to our knowledge, the relationship between
immersive tendencies and the pain-relieving effects of VR has not been investigated. Our
novel finding of a significant negative correlation between immersive tendencies (rated by
ITQ) and the change in pain after the scenery VR intervention suggests that the therapeutic
response to VR intervention is influenced by the immersive tendencies of the viewer.
Furthermore, the significant negative correlation between the focus subcategory of ITQ
and the change in pain after the somatic and scenery VR interventions suggests that the
participant’s state of mental alertness, capability to concentrate on pleasurable activities,
and ability to remove distractions [33] influences the extent to which VR can produce a
pain-relieving effect. The mechanisms behind these correlations remain unknown and
should be further investigated.

Presence, unlike immersion, did not show a significant correlation with reduction in
NRS post-somatic and -scenery VE exposure. The lack of correlation between participant-
reported presence and efficacy of a VE has been observed previously, and one hypothesis
to support this finding is that presence in a VE is a different quality to engagement in that
same VE [45]. Stated another way, a VR user can be aware that they are experiencing a low
level of presence in a particular VE, but still be highly engaged due to strong immersive
tendencies. This theory is consistent with our findings.

Additionally, both somatic and scenery VEs resulted in a pain reduction among the
participants. Though it was initially hypothesized that a somatic VE would result in
greater pain reductions than a scenery VE, we observed no significant difference between
interventions. The observed reductions in reported pain may be the result of purely
distractive mechanisms underlying VR’s analgesic effects [46]. Distraction has certainly
been reported as a positive coping strategy for chronic pain patients [47,48]. The observed
pain reductions may also be due to underlying mechanistic differences between the somatic
and scenery VEs. The mechanisms of distractive VR analgesia rely on the rapid recruitment
of brain neuronal networks that activate inhibitory circuits, meaning diverting attention
away from pain may reduce available pain-processing resources, thereby resulting in pain
reductions [46,49] Pain relief after exposure to a somatic VE may be the result of long-term
neuroplastic changes in the sensorimotor regions of the brain, which can lead to complete
or partial recovery of both sensory and motor functions [50]. Therefore, a somatic VE
would take several sessions, perhaps weeks or months, to induce an effect that is mediated
by neuroplasticity [50]. Unfortunately, observation over this timeframe was beyond the
scope of the present, pilot study.

In addition, the placebo effect could have also caused similar pain reductions between
the somatic and scenery VE. Though placebo-induced analgesia is not as well established
for neuropathic pain as it is for nociceptive and idiopathic pain, the placebo effect has been
shown to increase the effectiveness of care in neurorehabilitation programs [51]. There is
evidence to suggest that placebo- and opioid-induced analgesia share the same neuronal
network [52]. Furthermore, higher baseline pain levels were previously correlated to higher
placebo-induced analgesia [53], a finding consistent with our results (Table 2). In order to
exclude the possibility of pain relief due to placebo or other confounding factors, a control
group would need to be incorporated into the study design. However, establishing a sham
VR protocol that controls for the possibility of pain reduction due to both distractive and
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neuroplastic mechanisms poses a methodological challenge for the field that has not yet
been comprehensively addressed.

Study Limitations and Future Directions

This pilot study is limited by the small number of participants, the short duration of
the VE, and the lack of a placebo control group. Moreover, the duration of the beneficial
effects is unknown due to the lack of a follow-up assessment. Future research will aim
to deepen the understanding of the observed correlation between therapeutic response
and immersive tendencies by using higher quality VEs alongside more participants with a
greater range of immersive tendencies. Understanding this feature with greater granularity
may allow for a more personalized approach to prescription of VR-based pain therapies.

Future directions should also include deployment of VR interventions for other
populations with similar neural mechanisms of chronic pain (i.e., traumatic brain injury
and stroke).

5. Conclusions

Our pilot study suggests that short-term exposure to VR environments (somatic or
scenery) has the potential to significantly decrease chronic neuropathic pain intensity in
people with chronic neuropathic pain. In addition, we found that immersive tendencies,
specifically focus, are correlated with neuropathic pain reductions. Future research needs to
be conducted in order to confirm these findings and better understand the generalizability
and scalability of this innovative approach to treating neuropathic pain. Furthermore,
the incorporation of a larger patient population, a control group, randomization, and
follow-ups into our study design can allow us to better understand the mechanisms behind
the trends observed.
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