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Environmental Enrichment Preceding Early Adulthood
Methylphenidate Treatment Leads to Long Term
Increase of Corticosterone and Testosterone in the Rat
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Abstract

Attention-deficit/hyperactivity disorder (ADD/ADHD) has been emerging as a world-wide psychiatric disorder. There
appears to be an increasing rate of stimulant drug abuse, specifically methylphenidate (MPH) which is the most common
treatment for ADHD, among individuals who do not meet the criteria for ADHD and particularly for cognitive enhancement
among university students. However, the long term effects of exposure to MPH are unknown. Thus, in light of a
developmental approach in humans, we aimed to test the effects of adolescence exposure to enriched environment (EE)
followed by MPH administration during early adulthood, on reactions to stress in adulthood. Specifically, at approximate
adolescence [post natal days (PND) 30-60] rats were reared in EE and were treated with MPH during early adulthood (PND
60-90). Adult (PND 90-92) rats were exposed to mild stress and starting at PND 110, the behavioral and endocrine effects of
the combined drug and environmental conditions were assessed. Following adolescence EE, long term exposure to MPH led
to decreased locomotor activity and increased sucrose preference. EE had a beneficial effect on PPI (attentive abilities),
which was impaired by long term exposure to MPH. Finally, the interaction between EE and, exposure to MPH led to long-
term elevated corticosterone and testosterone levels. In view of the marked increase in MPH consumption over the past
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decade, vigilance is crucial in order to prevent potential drug abuse and its long term detrimental consequences.
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Introduction

Methylphenidate (MPH; Ritalin) is commonly prescribed for
the treatment of attention-deficit/hyperactivity disorder (ADD/
ADHD), a psychiatric disorder that is more common during
childhood and early adulthood. Treatment with MPH is generally
effective in reducing symptoms associated with ADHD: inatten-
tiveness, impulsivity, impaired working memory and hyperactivity
[1-4]. Despite the widely recognized efficacy of MPH in the
treatment of ADHD, little is known about the neural mechanisms
that underlie the behavioral/cognitive actions of this drug. MPH
inhibits dopamine and norepinephrine transporters, thereby
increasing the extra-cellular concentration of these neurotransmit-
ters [5-7].

Although ADHD can be difficult to diagnose [8,9], the use of
prescription stimulants for its treatment has increased over the past
decade [10-12], particularly of MPH [13-15]. The latter findings
may increase the likelihood that individuals who do not meet
ADHD criteria, are being exposed to stimulants [10,16] and could
lead to extensive MPH abuse. The documented abuse consists of
6-9% non-medical consumption by individuals who do not have
ADHD [17,18], and 14% secondary abuse by ADHD patients
who use their prescriptions for over consumption [19]. Impor-
tantly, MPH 1is also being widely consumed in an unsupervised
manner for improving concentration and enhancing performance,
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or for recreational purposes among university students [20-24]. A
report from 2006 indicates that more than 7 million people in the
US have abused ADHD stimulants, and as many as 750,000
teenagers and young adults may show signs of addiction [25]. Yet,
little is known about the long-term consequences of the exposure
to MPH.

In trying to assess the time frame of adolescence in rat, it is
difficult to characterize absolute boundaries [26]. Spear L.P.
(2000) suggested that adolescence be considered between postnatal
day (PND) 2842 [26] while Spear L. (2000) suggested PND 28—
55 [27]. Laviola (2003) suggested a wider definition between PND
21-60 [28], and recently Marco (2011) suggested PND 35-50
[29]. Thus, in order to encompass the various definitions, in the
current study we have defined PND 30-60 as adolescence.
Previous studies, utilizing a rat model, showed that the exposure to
MPH during PND 20-35 decreased response to rewarding stimuli,
increased depressive- and anxiety-like behaviors and enhanced
corticosterone levels following restraint stress in adulthood [30-
33]. However, in order to increase face validity of an animal model
of MPH treatment in a non-ADD/ADHD condition, we aim to
examine the long-term behavioral consequences of administration
of MPH during early adulthood. Therefore, we postulate that a
common human developmental path is comprised of the exposure
to enriched environment (EE) during adolescence, a long term
use/abuse of MPH during early adulthood, followed by coping
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with a stressful experience in adulthood. Importantly, we have
focused on MPH treatment that occurred during early adulthood,
since MPH has been widely unruly used by students for cognitive
enhancement, weight loss or euphoric effects [20,22,24].

Materials and Methods

Animals

Male Wistar rats were purchased from Harlan (Jerusalem,
Israel) and were reared at the institutional animal housing facility.
Rats were housed four per cage (30Lx30Wx18H cm). Room
temperature maintained at 23*1°C with 67% humidity with a
12:12 day/night cycle (lights on at 06:00) and ad-libitum food and
water access allowed. All behavioral tests and manipulations were
held between 07:00 and 17:00. This study was carried out in strict
accordance with the recommendations of the Guide for the Care
and Use of Laboratory Animals of the National Institutes of
Health. The protocol was approved by the Committee on the
Ethics of Animal Experiments of the Israel Ministry of Health
(Permit Number: IL-09-06-040). All efforts were made to minimize
animal suffering.

Procedure

Between PND 30-60 (adolescence) rats were kept under
enriched environment (EE) conditions. During early adulthood
(between PND 60-90) rats were treated with MPH. Finally, in
order to examine ability to cope with mild stress in adulthood, rats
were exposed to stress (acute swim, elevated platform and
restraint) during three consecutive days (PND 90-92) (Figure 1).
To evaluate the long-term behavioral consequences, starting at
PND 110, all rats went through behavioral tests (i.e; open field,
sucrose preference test and pre-pulse inhibition). Rats were
decapitated twenty-four hours after the behavioral tests and trunk
blood samples were collected for hormonal analysis (Figure 1).

Enriched Environment

Between PND30 and 60, forty rats were kept under enriched
environment conditions, 8 rats interacted socially per customized
cage (B0Lx50Wx50H cm) with various objects (e.g. running
wheel, stairs, tubes, Lego cubes, wood parts, hanging items, etc.).
Each week the objects were replaced with new ones for subtle
novelty. The cage also contained an extra elevated (25 cm) surface
(20Lx50W cm) that was accessible via stairs. In addition, a
sandbox (20Lx10W cm) was included in the main floor; in order
to provide textural diversity within the cage.

Drug treatment

Methylphenidate hydrochloride (Sigma-Aldrich, St. Louis,
USA) was dissolved in a sterile saline solution. Rats were injected
with methylphenidate hydrochloride (randomly 4 days per week/
2.7 mg/Kg body weight/intraperitoneally) or with saline, between
PND 60-90.

Stress

Rats were exposed to the following stressors during 3
consecutive days (PND 90-92).

Acute Swim. At PND 90, rats were allowed 15 minutes to
swim in a squared water (23=1°C) tank: 38 x30 cm, water depth:
60 cm [34,35].

Elevated Platform. At PND 91, rats were placed on a 50 cm
high, 10 cm diameter platform three times for 30 minutes each
time with 1 hour spent in a resting cage between periods on the

platform [36].
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Restraint. At PND 92, rats were placed in a radial-shaped
restrainer (6 cm height) according to the exposure regime of the
elevated platform (modified from [37]).

Behavioral Tests

All tests were carried out in a dimly lit room (50 lux) with stable
temperature 24+ 1°C.

Open Field Test. The open field is made of a black lusterless
Perspex box (100Lx100W x40H cm). Rats were placed in the
corner of the open field (facing the wall). Their behavior (i.e;
locomotor activity and freezing) was videotaped for 5 min by a CC
TV Panasonic camera with post-recording analysis performed
using Ethovision XT software (Noldus, Wageningen, The
Netherlands).

Pre-Pulse Inhibition (PPI). The PPI test is held in a
ventilated sound proof box (Campden instruments, UK) and
aims to examine the function of the sensorimotor gating. The
session (a total of 80 trials) started with 3 min acclimatization
period with a 57 dB background noise level that was delivered
continuously throughout the test session. To evaluate the startle
response, the first and last ten trials consisted of single 40 ms,
120 dB “pulse-alone” startle stimuli. These trials were used to
obtain a measure of habituation in response to repeated delivery of
the startling stimuli (inter-trial-interval 1 min). The middle 60
trials were comprised of random delivery of ten “no stimuli” trials,
during which no stimuli are delivered, ten “pre stimuli” (at 59, 61,
65, 69, 73, 78 or 85 dB), and forty “pre pulse” trials. The latter
trials, consisted of a single 120 dB pulse preceded (80 ms interval)
by a 20 ms “pre pulse” of 2, 4, 8, 12, 16, 21 or 28 dB above
background (i.e., 59, 61, 65, 69, 73, 78 or 85 dB). Finally, PPI was
calculated as a percent score that reflects the ratio between the
inhibited (“pre pulse” trial) response, and the individual startle
(“pulse-alone”) response: [100—(max response to ‘“‘pre pulse”
trial/max response to “pulse alone” trial x100)].

Sucrose Preference Test. During the acclimatization period
(1 week), rats were allowed to consume 1% (w/v) sucrose or tap
water, in order to overcome neophobia. Moreover, they were under
water limitation (access allowed for 4 h a day). On the 6" day the
amount of total liquid consumption was assessed (over a period of
4 h), to detect general differences in liquid consumption. Following
acclimatization period, on the 8" day, the test was carried out
individually for each rat: following a 16 h period of water limitation,
two drinking bottles, identical to the home cage water bottles, were
mnserted into the cage through the metal mesh top cover. The
bottles, one containing a 10% sucrose solution and the other water,
were weighed just before the test and immediately following its
completion (after 4 h) and the sucrose preference which indicates
natural reward was calculated. The relative positioning of the
bottles providing sucrose and water was reversed after two hours, in
order to prevent the development of side preference.

Corticosterone and Testosterone

Twenty-four hours after the behavioral tests, rats were
decapitated. To avoid circadian variability, all decapitations were
performed between 11-12 a.m., when plasma hormones concen-
tration is relatively low. Blood samples were centrifuged (2000 xg
at 4°C for 20 min), serum was collected and stored at —80°C until
assayed. Serum corticosterone and testosterone levels were
assessed using commercial ELISA kits (AssayPro, St. Charles,
MO, USA) according to the manufacturer’s instructions.

Statistical Analysis

Data were analyzed for statistical significance using two-way
ANOVA with group and treatment as main factors (4x2). For
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Figure 1. Schematic diagram of experimental design and procedures.

doi:10.1371/journal.pone.0022059.g001

analyzing body-weight and PPI we used ANOVA for mixed
design, with group as between subject’s factor and test timing or
pre-pulse intensity as within subject’s factor. In order to further
explore the main effects, a Post-Hoc Tukey test was performed. A
result was significant when p<<0.05. All tests were calculated as
two-tailed with SPSS V17.0. Results are presented as means *
standard error of the means (SEM).

Results

The long-lasting effects of MPH on locomotion and
freezing behaviors

A significant difference in locomotor activity measured by distance
(Figure 2A) and velocity (Figure 2B) was detected between the groups
[F(3, 71)=25.4, P<0.0001)]. We found that adolescence EE led to a
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long term decrease in distance and velocity (P<<0.0001). Surprisingly,
MPH administration following adolescence EE intensifies these
effects over time (P<<0.022; P<<0.008, respectively). Interestingly, the
exposure to a brief stress (EE+Stress) in adulthood moderates these
alterations. In order to exclude the effect of body weight on locomotor
behavior, indeed an insignificant difference in body weight gain
(Figure 2C) between all groups was found [F(7, 71)<1].

Measuring freezing behavior (Figure 2D), a significant differ-
ence was detected between the groups [F(3, 71)=75.83,
P<0.0001]. The highest freezing level was detected in the EE
group (P<0.0001), while the EE followed by stress (EES)
demonstrated a significant increase compared to both control
and stress groups (<<0.0001). In addition, MPH was associated
with significantly higher freezing in both control (P<0.001), EE
(P<0.0001) and EES (P<0.006) groups.
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Figure 2. The effect of MPH on locomotor activity. A significant difference in distance (A) and velocity (B) were detected between the groups in
the open field test. Rats exposed to MPH following EE showed the lowest distance and velocity. These effects were not related to differences in body
weight (C). MPH treatment significantly increased freezing duration (D) compared to saline. Following EE, MPH led to the highest freezing duration.
* P<0.0001 versus control; ** a: P<<0.022, b: P<<0.008, c: P<0.0001 versus EE saline; n=9 to 10 per group.

doi:10.1371/journal.pone.0022059.g002

MPH modulates the response to rewarding stimulus
(hedonia)

In order to test the response to rewarding stimulus, we have
tested hedonia/anhedonia rate by measuring sucrose intake
(Figure 3). A significant diversity in sucrose preference was
observed between the groups [F(8, 71)=31.57, P<0.0001].
Complementarily to the highest freezing level observed in the
EE group, a significant long term anhedonia was detected
(P<0.019). Fascinatingly, MPH administration has led to
anhedonia in the controls (P<0.001), while in the EE group
MPH significantly shifted to increased hedonia (£<0.0001).
Finally, the EES group showed a significant hedonia (£<<0.0001)
as compared with either the EE or stress groups, that was not
affected by MPH administration.

MPH detrimental effects on Pre-Pulse Inhibition
following adolescence EE or preceding stress in
adulthood

Pre-Pulse Inhibition test (PPI) is a neurological phenomenon
(measured also in human subjects) in which a weaker acoustic pre-
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pulse, inhibits the reaction to a subsequent strong startling pulse.
The reduction of the amplitude of response reflects the ability of
the nervous system to temporarily adapt to a strong sensory
stimulus when a preceding weaker signal is given. We found
(Figure 4) a significant distinction in PPI along different pre-
intensities (59 db to 85 db) across all groups [F(6, 30)=459.42,
P<0.0001) and between the groups [F(3, 35)=161.12, P<0.0001].
The exposure to adolescence EE has led to a long term beneficial
effect on PPI (P<<0.0001), while stress following EE has lessened
this increase (P<<0.019). When administrated following EE
(EE+MPH) or prior to stress (MPH+stress), MPH had a long
term deteriorating effect on PPI (P<<0.022; P<<0.004, respectively).
However, by itself (MPH group) or in the EES group, MPH
seemed to have only minor effect.

MPH leads to a long-term increase of Corticosterone and

Testosterone depending on the developmental context

In trying to depict the endocrine mechanism mediating the
effects of MPH in the context of the developmental approach,
previous studies found that EE lowered baseline corticosterone
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Figure 3. The effect of MPH on sucrose preference test.
Considerable variation in sucrose intake was observed between the
groups. While significant long term anhedonia was detected in the EE
group, MPH treatment following EE significantly recovers this effect.
* P<<0.019 versus control; ** P<<0.0001 versus EE saline; n=9 to 10 per

group.
doi:10.1371/journal.pone.0022059.g003

(CGORT) level [38] or did not influence its level at all [39], while
MPH (similar to hyper-arousal following stress) was found to
increase CORT level [30,33,40,41]. To clarify the aforementioned
behavioral effects, we measured serum CORT level (Figure 5A)
and found a significant difference between the groups [F(3,
56)=151.019, P<0.0001]. Without MPH, a long term significant
CORT reduction was found in the EE group (P<0.026) while in
the stress and the EES groups CORT was elevated (P<<0.004).
Interestingly, MPH administration increased CORT level (more
than 152%) in the EE (P<0.0001) and EES (P<0.002) groups.
Finally, MPH is known to affect aggression [42,43]. Specifically,
it has been suggested that children with ADHD generate more

Early Adulthood MPH Abuse Elevates CORT and TST

aggressive responses to provocation and that this may be
exacerbated by administration of MPH [42]. This led us to
examine the endocrine correlate of aggression, by measuring
Testosterone (T'ST) serum level [44-47]. A significant variation in
TST level (Figure 5B) was observed between the groups [F(3,
56) = 14.12, P<<0.0001]. Surprisingly, we found a robust long-term
increase (more than 154%) in the EE and EES groups treated with
MPH (P<<0.001 and P<<0.012 respectively).

Discussion

Psychostimulants have proven to be an effective pharmacother-
apy for ADD/ADHD, with MPH being the preferred medication
for this neuropsychiatric disorder [48]. Moreover, in several
pediatric populations more than half of those treated with MPH
do not meet the criteria for attention disorders [10,16,49].Given
the prevalence of prescribed use of MPH, it is surprising that only
few studies have utilized a developmental approach to explore the
long-term effects of MPH. These studies showed enduring
behavioral alterations in adult animals as a consequence of
repeated therapeutic dose of MPH exposure during their juvenile
period [30-33]. However, in order to increase face-validity, one
should take into consideration the importance of timing and the
diversity of life experiences. The latter has major importance in
light of the raise of MPH abuse among college students [20,22,24].
Thus, we aim to examine the long-lasting behavioral and
endocrine consequences of the exposure to environmental
enrichment (during adolescence), long term MPH treatment
(during early adulthood) and stress (during adulthood).

Our findings show no significant effect of MPH administration
on body weight, similar to ADHD children treated with MPH
[50]. However, we found that adolescence EE lead to a long term
decrease in locomotor activity, while MPH increased these effects.
In line with these findings, we also found that EE increased
freezing duration compared with control group. It should be noted
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Figure 4. The effect of MPH on PPI. Significant differences in PPl scores were observed. EE led to the highest PPl compared with all groups
(P<<0.0001). Following MPH treatment, the EES group showed higher PPI compared with control (P<<0.0001) and stress (P<<0.001) groups. A panel of
representative traces demonstrate the differences in maximal response inhibition (at pre-intensity of 69 dB) of all four groups, with and without MPH.

n=9 to 10 per group.
doi:10.1371/journal.pone.0022059.g004
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Figure 5. The effect of MPH on CORT and TST levels. A significant
difference in CORT (A) and TST (B) levels was observed. MPH treatment
significantly increased CORT level in the EE and EES groups (* P<<0.0001;
** P<0.002 compared with their respective controls). TST level was
similar across all groups, while MPH treatment increased TST level in
both EE and EES groups (* P<<0.001; ** P<<0.012 compared with their
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doi:10.1371/journal.pone.0022059.9005

that MPH increased freezing in both control and EE groups. To
this end, Bolanos et al (2003) found that pre-pubertal MPH
treatment also decreased locomotor activity [30]. Moreover,
Britton et al (2007) found enhanced anxiety-like behaviors in
adult rats caused by early developmental MPH treatment [51].

However, in our study we suggested to take into account also
the environmental context in which the individual grows, since we
postulate that many children that were raised under EE consume
MPH mainly during early adulthood. In support of this idea, while
some reports indicate that EE has an anxiolytic effect [39,52,53],
others report that the exposure to EE pre-pubertally may serve as
anxiogenic factor [54,55]. A wide range of data in the literature
suggests that EE has beneficial effects on various behavioral
parameters in rodents. However, the magnitude of these effects
and their persistence after the cessation of enrichment vary
markedly across studies according to the developmental stage in
which the exposure occurred (starting pre-weaning [56] up to old
age [57]) and to the duration of enrichment (from a couple of
weeks [58,59] to up to a year [60]) [61].

In addition, EE has been suggested to recover some of the
deteriorating effects of early exposure to stress [62-64]; however
the preceding effects of EE on the reaction to stress later in life are
less investigated. In support of our findings, Amaral et al (2008)
also found that 4 weeks of EE post weaning decreased locomotion
activity in the open field test [61].

Since it was documented that MPH treatment during pre-
adolescence often produces side effects such as decreased response
to rewarding stimuli (i.e; increased depressive-like behaviors)
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[13,65,66], we have measured anhedonia utilizing the sucrose
preference test. Similar to the aforementioned findings, we also
found that MPH led to anhedonia in control animals. However,
the exposure to MPH following adolescence EE, has recovered the
anhedonia observed to the controls level. Interestingly, the
combination of adolescence EE and stress in adulthood, both in
MPH-treated and -untreated animals, led to increased hedonia.
Complementarily, EE+MPH (with or without stress) led to the
highest hedonia level, i.e; the preference of the rewarding stimulus.

Since treatment with MPH is generally effective in reducing
such symptoms associated with ADHD as inattentiveness [2] and it
also has been found that EE improved attentive abilities [67,68],
we examined in our non-ADHD rats the attention ability as
reflected by the PPI test. Prepulse inhibition (PPI) of the acoustic
startle reflex refers to the reduction in the magnitude of the startle
reflex when a loud startling stimulus (termed the “pulse”) is
preceded by a quieter nonstartling stimulus (termed a “prepulse”)
at short stimulus onset asynchronies [69], and represents an
operational measure of sensorimotor gating [70,71]. However,
other studies have been shown that PPI is not a completely
automatic process; it occurs involuntarily but can be modulated by
controlled attentional processes and has been used as a tool for
investigating attention [72,73].

We found that compared with the control group, the exposure
to MPH didn’t significantly alter PPI. Thus, it appears that
allegedly MPH has no effect in “normal” conditions. However,
while the exposure to EE led to the highest PPI rate, subsequent
MPH treatment significantly impaired attentiveness. Similarly, the
exposure to mild stress was associated with intermediate PPI levels
(higher than the control but lower than EE), that were reduced by
the presence of MPH.

Taken together, the results of the PPI test indicate that when
MPH treatment is superfluous (i.e; without clear indication of
ADD/ADHD), it may bare no effect or even paradoxly impairs
attentiveness. It should be noted that previous studies which
evaluated behavioral alterations following the exposure to pre-
pubertal MPH, did not measure changes in attentiveness [30-33].

In order to better understand the behavioral consequences of
MPH treatment, we first measured serum CORT level. It has
been shown previously that MPH treatment leads to increased
levels of CORT [30,33]. Likewise, we found that long term MPH
administration elevated CORT to a marked degree, but only in
the EE and EES groups. Thus, we suggest that adolescence EE
together with early adulthood MPH abuse may act as a
predisposition for the development of possible stressful behaviors
in adulthood.

Studies of the hypothalamic-pituitary-adrenal (HPA) axis and
the hypothalamic-pituitary-testicular (HPT) axis revealed a
reciprocal relationship between these two endocrine pathways, in
which CORT increases the negative feedback effects of TST
[74-77]. Therefore, the observed high level of CORT subsequent
to MPH treatment is expected to be accompanied by a low level of
TST. Consequently, we found a surprising elevation of TST level
following MPH administration in the EE and EES groups. Hence,
adolescence EE followed by MPH treatment during early
adulthood, impaired the expected natural level balance between
the two hormones, and overall led to long term hormonal
agitation.

Furthermore, TST was found to elicit aggressive behavior in
children, juvenile and adult males, in both rats and humans
[76-81]. However, among ADHD treated patients, MPH was
found to reduce aggression [43,82]. Together with our finding, a
“pro-aggression” effect of MPH may be observed when given to
subjects without ADD/ADHD (i.e., abuse).
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Thus, we suggest that a distinction should be made between
justified medical consumption of MPH, which leads to beneficial
effects, and MPH abuse that may lead to increased arousal and
aggression. Additionally, it raises ethical questions regarding
reports on the use of MPH as a “Cognitive Enhancing drug” in
non-medical situations (i,e; shift work, military personnel, etc.)
[21].

Our study demonstrates for the first time the long term effects of
MPH treatment (in a non-ADD/ADHD condition) in the context
of various life experiences. Following adolescence EE, MPH had
deteriorating behavioral and hormonal effects. Adding stress in
adulthood restored only the behavioral effects, while both
corticosterone and testosterone levels remained high. Therefore,
in non-ADHD subjects, MPH allegedly has no overt (behavioral)
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Thus, cautious decision making while prescribing MPH is
required in order to prevent its harmful social long-term
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