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Abstract: Due to the high degree of design freedom and rapid prototyping, laser powder bed
fusion (L-PBF) presents a great advantage in the super-hard cemented carbide compared with
conventional methods. However, optimizing processing parameters to improve the relative density
and surface roughness is still a challenge for cemented carbide fabricated by L-PBF. For this, the
effect of the remelting strategy on the forming quality of the L-PBF processed cemented carbide was
studied in this article, aiming to explore a suitable process window. The surface quality, relative
density, microstructure, and microhardness of the cemented carbide parts fabricated under a single
melting and remelting strategy were compared. The results showed that the remelting strategy could
efficiently improve the specimens’ surface quality and relative density. Besides, the cracks were not
obviously aggravated, and the WC grains could distribute more homogeneously on the binder matrix
under the remelting strategy. Therefore, the microhardness showed an improvement compared to
the single melting strategy.

Keywords: laser powder bed fusion; remelting strategy; surface quality; relative density

1. Introduction

Laser powder bed fusion (L-PBF), as an extremely promising embranchment of addi-
tive manufacturing (AM) techniques, utilizes a powder bed system to supply the metallic
powder and laser beam to selectively melt metallic powder in a layer-wise mode, so it can
rapidly build complex-shaped metallic parts according to the CAD model [1,2]. The high
amount of design freedom and manufacturing flexibility of L-PBF present the advantage
of low cost and high efficiency over traditional methods in manufacturing non-standard
and personalized parts. To date, L-PBF has been applied in multiple industries, including
aerospace, biomedical, tooling, and automotive industries [3,4]. Meanwhile, dozens of
materials have been successfully fabricated by L-PBF [5].

Although L-PBF technology presents significant advantages in fabricating complex
geometric parts compared to conventional technologies, it still has many drawbacks that
need to be overcome, including the low surface quality and pore formation [6,7]. Previous
studies revealed that processing parameters such as laser power, scanning speed, and
scanning strategy directly affect these qualities of the L-PBF. Optimizing these process
parameters to obtain parts that satisfy the engineering application is critical to L-PBF pro-
cessing [8,9]. In the work of Read et al. [10], the effect of scanning speed and laser power on
the densification of an L-PBF AlSi10Mg alloy was studied. The work revealed that decreas-
ing the laser power or increasing the scanning speed would reduce the laser energy input
on the metal powders, thus leading to an incomplete melt of materials and the formation of
pores on the parts. Similar phenomena were also demonstrated by Koutiri et al. [11] and
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Moussaoui et al. [12]. In addition, the insufficient energy input caused by a high scanning
speed and low lase power resulted in irregular single tracks with various defects such as
balling and discontinuity, which tended to be distorted and loosen the bonding between
adjacent laser tracks, thus producing a coarser surface [13–15]. The remelting strategy
could also significantly influence the pore formation and surface morphology. Liu et al. [16]
adopted a laser remelting strategy in the L-PBF fabrication of AlSi10Mg, and it revealed
that the laser remelting strategy extends the building time, which was conducive to good
metallurgical bonding between the molten pools, thus improving the surface quality and
relative density. Yu et al. [17] found that the additional remelting of processed layers
helped to obtain the highest relative density and lowest surface roughness for the L-PBF-W
materials. Yasa et al. [18] and Qiu et al. [19] proved that the bonding between the layers
could be significantly improved by the remelting strategy, thus decreasing the porosity in
the specimens. Wei et al. [20] found that the remelting strategy could improve the surface
quality and density and enhance the mechanical properties, including the microhardness
and tensile strength.

Due to their excellent wear-resistance and ultra-high hardness, cemented carbide
materials have covered a wide range of applications in many industries where they face
extremely harsh working conditions, such as geological drilling, machining, tunneling, and
molding [21,22]. However, the traditional sintering method can only fabricate the cemented
carbide parts with symmetrical and simple geometry. Besides, the ultra-high hardness
makes the post-machining of cemented carbide parts costly and time-consuming [23].
Therefore, to achieve rapid fabrication of the cemented carbide parts with a complex
shape to satisfy the requirements of the advanced industry, researchers are attempting to
employ L-PBF technology for manufacturing cemented carbide parts [24,25]. However,
the existing research found many severe defects during the L-PBF processing of cemented
carbide, such as the low relative density, cracks, and high surface roughness [26,27]. On
the one hand, these defects were primarily induced by the low flowability and brittleness
of materials [28,29]. Khmyrov et al. [30] proved that brittle-phase W3Co3C was formed
during the L-PBF process, which was responsible for cracking. On the other hand, studies
on the processing optimization of L-PBF cemented carbide are fewer than that of other
materials. Gu et al. [31] fabricated the cemented carbide by L-PBF with different scanning
speeds. Domashenkov et al. [32] studied the effect of the laser power and scanning speed
on the microstructural evolution of L-PBF cemented carbide. Uhlmann et al. [23] and
Chen et al. [25] changed the hatching space in the L-PBF fabrication of cemented carbide.
However, more kinds of processing parameters should be considered, particularly the
remelting scanning strategy, which is highly effective to improve the forming quality of
parts fabricated by L-PBF.

Therefore, in this study, the remelting strategy was applied in the L-PBF processing of
cemented carbide, aiming to improve the parts’ relative density and surface roughness. To
find the suitable process parameters to match the remelting strategy, the effect of different
laser powers and scanning speeds on the forming quality of cemented carbide were studied.

2. Experimental Details
2.1. Powder Characteristics

This study employed commercial spherical WC-17Co (WC: 83, Co: 17) powders
supplied from the Shenyang Institute of Nonferrous Metals. The morphology of the
powders was characterized by the Phenom Prox scanning electron microscope (SEM,
Eindhoven, The Netherlands), and the particle size distribution of powders was measured
by the laser particle size analyzer (Bettersize 3000 Plus, Dandong, China). As shown in
Figure 1, the WC-17Co powders present a spherical shape with a D50 value of 34.72 µm. In
addition, the flowability of the WC-17Co powders was determined using the static Angle
of Repose (AOR), as shown in Table 1. The AOR of the WC-17Co powders, determined
based on a flow tester powder comprehensive characteristic tester (Bettersize 100, Dandong,
China), was 26.3◦, proving good flowability for the powders.
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Table 1. Classification of flowability by the AOR.

AOR Flowability

20◦ < α < 30◦ Very free-flowing

30◦ < α < 38◦ Free-flowing

38◦ < α < 45◦ Fair to passable flow

45◦ < α < 55◦ Cohesive

55◦ < α < 70◦ Very cohesive

2.2. L-PBF Process

All specimens were fabricated by the L-PBF system (EOSINT M280, Munich, Germany),
which has a fiber laser with a maximum power of 400 W and a spot size of 100 µm. A pure
nickel substrate was used in this fabrication because our previous study had proven that
the nickel substrate presented excellent adhesive bonding to the WC-17Co materials for a
wide range of laser energy inputs [27]. Moreover, the substrate was pre-heated to 80 ◦C
before the fabrication. The manufacturing process was controlled by the PSW software and
operated in an Argon (Ar) protection environment, which was used to ensure an oxygen
content of less than 0.1% during the process.

A single melting strategy (Figure 2a) and a remelting strategy (Figure 2b), with a rota-
tion angle of 67◦ between layers, were used. The processing parameters of the specimens
are shown in Table 2.
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Table 2. L-PBF processing parameters of the cemented carbide specimens.

Sample Laser Power (W) Scanning Speed (mm/s) Hatching Space (µm) Layer Thickness (µm) Scanning Strategy

I 95, 125, 155, 185, 215 240, 370, 500 90 40 Scan I

II 95, 125, 155, 185, 215 370 90 40 Scan II

2.3. Characterization

The densities of the specimens for densification characterization were obtained by the
Archimedes principle for three measurements and are presented as a relative density to the
WC-17Co (13.85 g/mm3). The surface morphologies of the specimens were characterized by
SEM. The surface roughness (Ra) was measured by the laser scanning confocal microscope
(Olympus 4000, Tokyo, Japan) from the three-dimensional morphologies of specimens
according to the ISO 25178 standard. The phase composition of the polished surface of the
specimens was determined employing X-ray diffraction (XRD, Smartlab, Tokyo, Japan).
The Vickers hardness of the samples was determined using a hardness tester (VTD512,
Shenzhen, China) at a load of 500 gf applied for 15 s. An average of at least 10 readings
was reported.

3. Results
3.1. Surface Morphology

Figure 3 shows the surface morphologies of the blocks formed at different processing
parameters in the Scan I strategy. It revealed that the surface morphologies were highly
dependent on the laser powers and scanning speeds. At the scanning speed of 500 mm/s,
the blocks had considerably coarse morphologies, which were occupied by severe humps
and larger quantities of holes. Besides, no regular scanning tracks were found on these
surfaces because the serious defects disrupted the formation of the regular scanning tracks.
It could also be found that increasing the laser power could improve the surface quality;
the surface morphology of the block formed at 215 W was better than that of the block
formed at 95 W, although this surface was still rough. When the scanning speed decreased
to 370 mm/s, the surface quality had an effective improvement. When the laser power was
185 and 215 W, the surface consisted of regular scanning tracks that had less severe humps
and holes, thus forming a relatively flat surface compared to the surface at a scanning
speed of 500 mm/s. As the scanning speed continued to decrease to 240 mm/s, the surface
quality was still improved. However, the surface quality was not effectively improved at
laser powers of 185 and 215 W compared to that at a scanning speed of 370 mm/s, meaning
that the continuous increase in laser power or decrease in scanning speed could no longer
optimize the surface quality.

The high-magnification SEM pictures of the surface morphology at 240 mm/s and
370 mm/s are shown in Figure 4. These high-magnification pictures helped to find the tiny
cracks on the blocks. It revealed that the cracks were inevitably generated on all specimens,
similar to the previous studies [23,27]. The formation of cracks was mainly attributed to
the brittleness of the cemented carbide. In addition, the cracks on the blocks formed at the
low scanning speed of 240 mm/s were more serious compared to that of the blocks formed
at 370 mm/s, particularly at a laser power from 185 to 215 W (Figure 4i–k). These cracks
were wider and more continuous, in accordance with Equation (1):

D =
P

νht
(1)

where D is the laser energy density, P is the laser power, ν is the scanning speed, h is the
hatching space, and t is the layer thickness [33]. The low scanning speed and high laser
power produced a high laser energy input. Therefore, the result demonstrated that the
overly high laser energy input not only had little effect on improving the surface quality
but would also cause more severe cracks.
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The surface morphology of the samples formed at the scanning speed of 370 mm/s
and the Scan II strategy are shown in Figure 5. It exhibited that the defects of humps, holes,
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and irregular scanning tracks on the surface decreased sharply compared to that of the
specimens formed at both 370 mm/s and 240 mm/s without the remelting strategy. The
surface morphology approached a common smooth plane especially when the specimens
were formed at 185 and 215 W under the Scan II strategy, meaning the remelting strategy
could effectively improve the surface quality. According to Yu et al. [17], adopting laser
source remelting on the deposited layers meant applying an additional laser energy input,
equal to the original laser energy input, on the specimens, meaning the remelting strategy
was another method to improve the laser energy input. However, Figure 5c–e showed that
the cracks on the surface of these specimens were merely slightly aggravated in comparison
with the samples fabricated at 370 mm/s under the Scan I strategy (Figure 4c–e). However,
it was still much better than the samples formed under the high laser energy density
(Figure 4i–k). The result demonstrated that the remelting strategy might provide a more
suitable process window than increasing the laser energy density.
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The front surface morphology of the specimens was also observed by SEM, as shown
in Figure 6. It revealed that a large quantity of the powders adhered to all of the blocks’
surfaces. This phenomenon, similar to the previous studies [34], was inevitable because
the liquid phase would sinter adjacent powders to form the molten pools. Although the
existence of these powders led to difficulty in observing the actual surface morphology of
these blocks, it was still found that apparent delamination appeared at the surface when
the samples formed at 95 W, 500 mm/s, and severe cracks on the surface when the samples
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formed at 185–215 W, 240 mm/s. In contrast, other blocks had an intact surface without
apparent defects.
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3.2. Surface Roughness

The surface roughness of the blocks formed under different process parameters is
shown in Figure 7, where the standard deviation is plotted as error bars. It directly proved
that the remelting strategy provided a great improvement in the surface quality of the
cemented carbide parts. When under the Scan I strategy, the surface roughness of the
blocks presented a decreasing tendency with the increase in laser power or the decrease
in scanning speed. With the scanning speed decreasing from 500 to 370 mm/s and laser
power increasing from 95 to 215 W, the surface roughness decreased from 35.57 to 18.43 µm.
When the scanning speed decreased to 240 mm/s, the best surface roughness was still
obtained at the high laser power of 185 and 215 W, but the Ra value was not efficiently
decreased compared to that of the blocks formed at 370 mm/s. Meanwhile, the surface
roughness of the blocks was significantly decreased when the Scan II strategy was applied
at 370 mm/s. Moreover, the best surface roughness of 14.10 µm was obtained. In addition,
it could also be found that the small error bars were obtained when the surface roughness
was good due to low fluctuation of the average roughness value, also proving the excellent
surface quality.
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Figure 8 shows the three-dimensional surface morphology of the blocks under different
process parameters, and the corresponding surface profile of these blocks is shown in
Figure 9. The results revealed that the rugged surface formed under low laser energy input
(Figure 8a,b) induced a highly fluctuating surface profile. According to the roughness
calculation formula (2)

Ra =
1
L

∫ L

0
| f (x)|dx (2)

L is the measured length and f (x) is the surface height from the average height of the
surface (0 µm in Figure 9) [35]. Therefore, the strong fluctuant surface profile with a large
height led to the high surface roughness, while the smooth surface profile with a small
height (Figure 9c,d) corresponds to the low surface roughness. As shown in Figure 3,
defects such as humps and holes that formed on the blocks directly caused this coarse
surface morphology, which was not conducive to achieving low surface roughness.
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3.3. Densification Behaviors

The relative density of the samples formed under different laser processing parameters
and laser energy densities are shown in Figure 10. From Figure 10a, it was found that the
relative density of the sample was closely related to the process parameters. At the scanning
speed of 500 mm/s, the relative density increased from 74.89% to 94.11%, with the laser
power increasing from 95 W to 215 W. When the scanning speed decreased to 370 mm/s,
the relative density showed an obvious increment. The relative density still presented an
increasing trend when the laser power increased from 95 W to 185 W, corresponding to
the relative density increase from 78.55% to 96.44%. However, it decreased to 93.64% at
the laser power of 215 W. Instead, the relative density did not increase when the scanning
speed decreased to 240 mm/s, particularly at the high laser powers of 185 W and 215 W,
whereby the relative density was 95.87% and 94.61%, lower than that at the scanning speed
of 370 mm/s. The variation of the laser energy density caused this phenomenon. As shown
in Figure 10b, a poor relative density was achieved at the low energy density, and increasing
the laser energy density improved the relative density. However, the overly high laser
energy density worsened the densification behavior. For comparison, it was found that
the remelting strategy applied at the scanning speed of 370 mm/s could present better
densification behavior for the specimens. Under the Scan II strategy, the relative density
showed a similar increasing tendency from 95 to 185 W to the Scan I strategy, and the
values were higher than that of Scan I, and the best relative density of 97.50% was achieved
at 185 W. Besides, there is also a decrease in the laser power of 215 W, similar to the samples
formed under the Scan I strategy.
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Figure 11 shows the polished surface of the blocks, and it exhibited that the pores
and cracks on blocks induced the low relative density. When the laser energy density
was low, large amounts of irregular pores formed on the blocks, leading to a low density.
With the increase in the laser energy density, the number and size of irregular pores
decreased, improving the relative density. However, some almost circular pores with a
size of approximately 30–50 µm appeared, as shown in Figure 11c,d, when the laser energy
density was high. These circular pores were keyholes, which were caused by the collapse of
the vapor cavity that formed by the evaporation of the materials under a high laser energy
density [36]. In addition, the cracks became more evident, and as shown in Figure 11d, the
cracks were long and wide. Both the keyholes and serious cracks could also induce the low
density of the blocks. Besides, the remelting strategy was able to effectively restrain the
formation of pores at a low energy density, and the cracks merely became slightly worse
compared to that under the single melting strategy. Therefore, a better relative density
was achieved.
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Low energy density would lead to insufficient liquid materials in the molten pools.
Besides, according to Equation (3),

ην =
16
15

√
m
kT

σ (3)

where ην is the dynamic viscosity of the liquid phase in the molten pool, m is the atomic
mass, k is the Boltzmann constant, T is the molten pool temperature, and σ is the surface
tension, which is inversely proportional to T [37], the low temperature of the molten pools
caused by the low laser energy density would induce high viscosity of the liquid materials.
Therefore, the wettability and spreadability of the liquid phase worsened. The metal
liquid would not well spread and wet the metal powders, which limited the formation
of regular and continuous scanning tracks, as shown in Figure 3, and the scanning tracks
were irregular and discontinuous. Once these irregular scanning tracks form, the overlap
between the adjacent scanning tracks would be loose and irregular. The irregular pores
would form under these conditions. With the laser energy density increase, the molten pools
would have more liquid materials with good wettability, forming regular and continuous
laser tracks. The overlap between the adjacent scanning tracks was tight and regular. The
formation of pores would be restrained. However, the thermal stress would be increased
when the laser energy density increased, which aggravated the crack defects [23]. When the
blocks were formed under the Scan II strategy, the remelting of the molten pools lengthened
the solidification time of liquid materials [16]. The liquid phase had more time to spread
and wet more materials, which contributed to regular scanning tracks with a large width,
thereby achieving the tight overlap between adjacent laser tracks. The formation of pores
would be efficiently restrained. Moreover, compared with the increment in the laser energy
density by decreasing the scanning speed to 240 mm/s under the Scan I strategy, the
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remelting strategy had lower energy density input, which would decrease the thermal
stress in the L-PBF processing and restrain the formation of serious cracks.

3.4. Microstructures

The microstructures of the blocks formed under different laser energy densities are
shown in Figure 12, and it shows that the polygon-structured WC grains are distributed
on the Co binder matrix, and characteristics such as the grain size and homogeneity of
WC grains are highly dependent on the laser energy density. At the low energy density of
116.37 J/mm3, many of the tiny WC grains clustered on the Co binder matrix presented
an inhomogeneous distribution. This result was caused by the low temperature of the
liquid phase. According to Pasquet et al. [38], low laser energy density might produce
a low temperature of molten pools that only exceeds the melting point of Co binder
materials (1457 ◦C) but is lower than the melting point of WC (2870 ◦C), which was not
conducive to grain nucleation. Thus, the microstructure presented inferior characteristics.
When the laser energy density increased to 161.41 J/mm3, sufficient energy density could
produce a sufficiently high temperature for the sintering and melting of all the materials.
Therefore, it was found that the WC grains with large sizes were distributed uniformly on
the binder matrix. Due to the overly high temperature of the liquid phase, the grain size
continued to increase at the energy density of 248.84 J/mm3, and an apparent coarsening
characteristic of WC grains was observed, which, in turn, was considered harmful for
the performance of the cemented carbide parts [25]. Besides, it was found that both the
grain size and distribution of WC grains could be improved by applying the remelting
strategy by comparing the results of Figure 10a,d. The remelting strategy allowed for a
long duration for the transformation from the liquid phase to the solid phase, which was
beneficial to grain nucleation. The XRD result of the phase composition of the blocks,
shown in Figure 13, also proved these phenomena. The results showed that, in addition to
the WC phase and the hexagonal ε-Co phase, there was a Co3W3C phase in the specimens,
which was similar to the results of Khmyrov et al. [30]. Furthermore, the Co3W3C phase
would promote cracking. Moreover, it was found that the peak intensity of all phases
increased when a high laser energy density was applied or the remelting strategy was
adopted, leading to good grain nucleation, which was caused by the high temperature and
long solidification time.
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Figure 12. The microstructure of cemented carbide blocks formed under different laser energy
densities and scanning strategies: (a) Scan I, 116.37 J/mm3; (b) Scan I, 161.41 J/mm3; (c) Scan I,
248.84 J/mm3; (d) Scan II, 116.37 J/mm3.
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Figure 13. XRD spectrum of specimens formed under different process parameters and scanning
strategies.

3.5. Microhardness

Figure 14 shows the microhardness of the blocks formed under different laser energy
densities and scanning strategies. Under both the Scan I strategy and Scan II strategy,
the microhardness presented a variable tendency that increased first and then decreased.
Under the Scan I strategy, the lowest microhardness was around 1270–1300 HV when
the laser energy density was below 109 J/mm3. The high microhardness was around
1401.2–1458.2 HV when the laser energy density was 138.89 to 161.41 J/mm3. When the
laser energy density continued to increase, the microhardness decreased sharply. The
lowest value of 1136.8 HV was obtained at the laser energy density of 248.84 J/mm3.
Under the Scan II strategy, the high microhardness was around 1410.4–1484.4 HV at the
laser energy density of 116.37–161.41 J/mm3. This phenomenon closely depended on
the relative density and microstructure of the cemented carbide blocks. The high relative
density with the WC grains uniformly distributed on the Co binder matrix contributed to a
higher microhardness.
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4. Conclusions

This study applied the remelting strategy in the L-PBF processing of cemented carbide
parts, aiming to improve the formation quality. By combining different laser energy
densities and the remelting strategy, the specimens’ density, surface quality, microstructure,
and microhardness were characterized to find the optimal process window. The general
conclusions can be summarized as follows:

1. Irregular scanning tracks formed under a low laser energy density constituted a coarse
surface. Increasing the laser energy density and using the remelting strategy could
decrease the defects of scanning tracks, thus improving the surface quality. However,
the overly high laser energy input more easily aggravated the formation of cracks.

2. The surface roughness of the cemented carbide specimens widely varied from 35.57 to
18.38 µm at the single melting strategy. In contrast, the remelting strategy improved
the best surface roughness to 14.10 µm.

3. Under the single melting strategy, the large number of pores induced by the low
laser energy density and the serious cracks induced by the overly high laser energy
density led to a poor relative density for the specimens. However, under the remelting
strategy, the pores were decreased effectively on the specimens at a low energy density.
The cracks on the blocks did not worsen, in contrast to the single melting strategy,
thus obtaining the best relative density of 97.50%.

4. The size and homogeneity of WC grains could be effectively improved by increasing
the laser energy density or using the remelting strategy. However, an overly high
laser energy density would lead to coarse grains.

5. The best microhardness of the specimens formed at the single melting strategy was
approximately 1401.2–1458.2 HV. In contrast, the best microhardness of approximately
1410.4–1484.4 HV was obtained with the remelting strategy.

6. When the cemented carbide specimens formed under a laser energy density from
116.37 to 161.41 J/mm3 with the remelting strategy, good formation quality of the
specimens could be obtained.
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