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Knowing pairs of residues in a protein that are close together in space, even if—especially if—they
are not close together in the amino-acid sequence, allows determination of the three-dimensional
structure. This was first shown by NMR protein structure determinations, in which the Nuclear
Overhauser effect spectroscopy (NOESY) identifies pairs of protons in spatial proximity. Similar
information is available from amino-acid sequence data if a family of homologous proteins shows
correlated mutations in pairs of residues.

The underlying mathematics leading from contact information to three-dimensional structure
tells us that, for any set of points, knowledge of the numerical value of the distance between every
pair of points straightforwardly determines the three-dimensional structure (up to enantiomorph
ambiguity). But neither NMR nor sequence analysis specifies the value of the distances precisely,
and the information is limited to a small subset of pairs of atoms. Yet, by adding stereochemical
constraints and energy functions, it has been possible to determine structures from limited
neighbor data.

The approach via amino-acid sequence analysis is to identify pairs of positions that show
correlated mutations. Correlated mutations are patterns of amino-acid substitutions appearing in
multiple sequence alignments, where change in an amino acid at some position corresponds to
change in the amino acid at one or more other positions. For the sequences in which the amino
acid at the first position is constant, there is no mutation at the other positions also. Thus, in a
set of positions showing strictly correlated mutations, each amino acid observed at every position
corresponds to a unique amino acid at the other positions.

Why should correlated mutations appear? If the amino-acid sequence of a protein is
tuned by selection to achieve a precise structure and function, a mutation may perturb
these features. Mutations also, of course, allow proteins to explore neighborhoods in sequence
space, to alter function—including for instance substrate specificity—and even to develop new
functions (see The Structure-Function Linkage Database sfld.rbvi.ucsf.edu). However, a random
succession of mutations would be expected to destroy function and even structure, as we see in
pseudogenes. Selection for correlated mutations, then, is the “guard rail” that keeps the evolving
proteins functional.

In many cases, a second mutation is compensatory—that is, it has the effect of repairing the
insult to the protein from the first mutation. Often the structural compensation is local, that is,
the amino acids corresponding to the two mutations are in contact. For this reason, correlated
mutations generally indicate spatial proximity of the residues involved.

The idea of using correlated mutations to detect spatial proximity is an old one. A serious
problem has been “transitivity”: If residue A is near residue B, and residue B is near residue C,
mutations in A and C may appear to be correlated. A and C may be spuriously indicated as
neighbors. What is necessary has been the development of methods to extract from the data the
true neighbors: A and B and B and C.

Recognition of the problem led to its solution. What is necessary is to compute partial
correlations; that is, correlations between each individual pair of residues after subtracting out the
dependence on all the other variables. Suppressing these dependencies can eliminate, or at least
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reduce substantially, the transitivity effects. Use of partial
correlations, plus calibrating the number of expected contacts
to what is empirically observed in known protein structures of
suitable size, improved the accuracy of inference of residues
in contact from correlated mutations. A seminal paper was by
Marks et al. (2011).

Analysis of correlated mutations has produced impressive
results in the prediction of the structures of single proteins
(e.g., Kosciolek and Jones, 2014), and also protein-protein
complexes (Hopf et al., 2014) and RNAs (Weinreb et al., 2016).
Correlated mutations play important roles in the leading protein
structure prediction projects, as assessed in the most recent
CASP programme (Zheng et al., 2019); these include Rosetta
(Ovchinnikov et al., 2016), and AlphaFold (Senior et al., 2019).

Mutations affect dynamics as well as structure; a very
interesting dimension of protein evolution. Butler et al. (2018)
have studied the effect of correlated mutations on atomic
motions. In principle, correlated mutations that affected function
but not structure, via changes in dynamics, would be missed in a
protocol selective for function. However, success of applications
of correlated mutations to protein structure prediction suggests
adequate persistence of signal.

1. BUT ONE NEEDS THE SEQUENCES . . .

To achieve statistically-meaningful results, thousands of
sequences are required. Widespread genomic sequencing has
produced copious amounts of amino-acid sequence information.
Indeed, for many families of proteins, enough data are available
to allow detection and application of correlated mutations.
But what if adequate sequence information is not available?
For example, a protein with limited species distribution, or a
recently-evolved protein, or even a de novo designed protein?

In such cases, why not “roll your own” (sequences)? Two
techniques support the in vitro extension of the correlated-
mutation approach. These are the ease of creating mutant
proteins by error-prone PCR (Wilson and Keefe, 2001), and
the ability to select from among the mutants those that retain
function of a selected protein. Recently, several papers have
successfully applied these ideas to generate mutated proteins,
and to use correlated mutations in their sequences to determine
neighbors (Fantini et al., 2019; Rollins et al., 2019; Schmiedel and
Lehner, 2019; Stiffler et al., 2019).

Work reported in recent papers has demonstrated that these
methods could determine neighboring residues in the B1 domain
of Streptococcal protein G (Schmiedel and Lehner, 2019), or in
β–lactamases (bacterial proteins that cleave the β–lactam ring of
penicillin, conferring resistance) (Fantini et al., 2019; Stiffler et al.,
2019), and acetyltransferase AAC6 (Stiffler et al., 2019).

2. TOO FEW SEQUENCES? GET OVER THE

HUMP WITH CAMELS: COUPLING

ANALYSIS BY MOLECULAR EVOLUTION

LIBRARY SEQUENCING

Using methods similar to those of directed evolution
(Arnold, 2018, 2019), Fantini et al. (2019) subjected a

β−lactamase-encoding plasmid to alternating cycles of
mutation, by error-prone PCR; and selection, by survival
when challenged by a medium containing the β−lactamase
inhibitor ampicillin. In each “generation” plasmids were
sequenced using the Pacific Biosciences Sequel platform, using
the SMRT (Single Molecule, Real Time) method. It was necessary
to use a sequencing method that not only had adequate capacity
to deal with the large number of mutants, but one for which the
accuracy was constant over a read length longer than the gene.

The challenge in design of the protocol is to achieve a high
mutational load but retain an adequate survival rate, while
keeping the number of transformants within the sequencing
capacity of the Sequel platform. The number of mutants
increased approximately linearly in successive generations
of mutation/selection cycles. After twelve generations, the
sequences had a median of 25 mutations of amino acids
per protein (not nucleotides per gene, which would include
silent mutations). This is approximately 10% of the length of
the protein.

The sequence data produced were treated by computational
methods similar to those proven successful for natural sets of
homologous sequences.

The results presented by Fantini et al. provide proof of
principle. That a predicted structure of TEM-1 β−lactamase does
not appear is attributable to the distribution of pairs of positions
in contact: The distance map produced shows short and medium
range distances (measured as distance between the positions of
the amino acids in the sequence). However, compared to the
natural evolutionary data set, from Uniprot, it lacks the long-
range distances necessary to build a three-dimensional structure.
It is likely that pushing the technique will overcome this problem.

Another apparent limitation is the necessity for a method
for selection. In this respect, TEM-1 β−lactamase has ideal
properties. But many proteins will not. It may be that protein
interactions more general than enzyme-substrate interactions
will come to the rescue.

Stiffler et al. (2019) applied similar methods to two other
proteins: aminoglycoside acetyltransferase AAC6 (130 residues)
and β−lactamase PSE1 (266 residues).

3. PREDICTION OF THE STRUCTURES

Rollins et al. (2019) and Schmiedel and Lehner (2019) carried
out the second part of the proof of principle. Using the dataset
of Olson et al. (2014), who performed extensive mutagenesis
and functional evaluation of the GB1 domain, they predicted
the structure of the B1 Immunoglobulin-binding domain of
Streptococcal protein G, a 56-residue domain. Olson et al. (2014)
performed the allumwandlung1 (= replacement of the natural
residue with all 19 other possibilities), at all positions except for
the N-terminal methionine, producing 55 × 19 = 1, 045 single
mutants. Olson et al. (2014) also produced 535917 of the possible
55 × 54/2 × 19 = 536085 double mutants. Selection was for
binding to an IgG fragment.

1The allumwandlung is a chess problem in which, in different variations, a pawn is
promoted to all possible other pieces: knight, bishop, rook, queen.
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For the best structure predictions of GB1 by Rollins et al.
(2019) and by Schmiedel and Lehner (2019), based on this
dataset, the r.m.s.d. of all Cα atoms between the predicted
structures and the experimental structure (wwPDB codes 1PGA
and 1PGB) were in the range of 1.9− 3 Å.

Stiffler et al. (2019) derived from their mutated sequence
data the three-dimensional structures of aminoglycoside
acetyltransferase AAC6 and β−lactamase PSE1. The predictions
closest to the experimental structures had r.m.s.d.’s of 4.5 Å for
240 out of 266 residues for PSE1 and 3.8 Å for 122 out of 130
residues for AAA6.

It should not be overlooked that these are predictions of
known structures, unlike the blind tests of the CASP programmes.
There is no reason whatsoever to think that the authors “peeked”
at the answer. However, the sophistication and complexity
of learning algorithms trained on the wwPDB—as used by
Schmiedel and Lehner (2019), but not by Fantini et al. (2019),
Rollins et al. (2019), nor Stiffler et al. (2019)—can make the
contributions of these methods sufficiently obscure that it may
be difficult to exclude the inadvertent “leakage” of information
about the target structure into the prediction.

There is an obvious question about how the method will scale
up to larger proteins (Chiasson and Fowler, 2019 call attention

to this point). After all, the number of possible pairs of positions
goes as the square of the sequence length. Rollins et al. (2019)
suggest that structures of comparable quality could be computed
from only small fraction of the contacts [this was also explored
some time ago by Skolnick et al. (1997), and Kolinski and
Skolnick (1998)]. Neverless a fractional decrease in the number
of contacts is still only a linear advantage fighting against the
quadratic increase in the potential data.

4. CONCLUSION

The results appearing in these recent publications are an essential
step toward the establishment of another powerful approach
to structure determination of biological macromolecules and
complexes. If not the beginning of the end, they are at least the
end of the beginning.
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