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Unsupervised Phenotype-Based Clustering of
Clinicopathologic Features in Cutaneous
Melanoma

Sarem Rashid1, Nikolai Klebanov2, William M. Lin2 and Hensin Tsao1,2
Pathogenic phenotypes in cutaneous melanoma have been vastly cataloged, although these classifications lack
concordance and are confined to either morphological or molecular contexts. In this study, we perform un-
supervised k-medoids clustering as a machine learning technique of 2,978 primary cutaneous melanomas at
Mass General Brigham and apply this information to elucidate computer-defined subsets within the clinico-
pathologic domain. We identified five optimally separated clusters of melanoma that occupied two distinct
clinicopathologic subspaces: a lower-grade partition associated with common or dysplastic nevi (i.e., nevus-
associated melanomas) and a higher-grade partition lacking precursor lesions (i.e., de novo melanomas).
Our model found de novo melanomas to be more mitogenic, more ulcerative, and thicker than nevus-
associated melanomas, in addition to harboring previously unreported differences in radial and vertical
growth phase status. The utilization of mixed clinicopathologic variables, reflective of actual clinical data
contained in surgical pathology reports, has the potential to increase the biological relevance of existing
melanoma classification schemes and facilitate the discovery of new genomic subtypes.
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INTRODUCTION
Melanoma constitutes approximately 5% of all skin cancers,
yet accounts for >75% of skin cancer deaths (Rebecca et al.,
2020). Before current molecular and immune therapies, long-
term survival was largely correlated with observed clinico-
pathologic (CP) features refined over decades of epidemio-
logical research (Gupta and Tsao, 2017; Mihm et al., 1971).
Breslow (1970) first introduced pathology-based prognosti-
cation by demonstrating a positive relationship between tu-
mor thickness and the risk of melanoma metastasis.
Subsequent studies identified pathologic features, such as
vertical growth phase and lymphovascular invasion, to be
significantly associated with metastatic disease and outcome
(Elder, 1999). Thus, there had been mixed attempts at feature-
based predictions (e.g., thickness) and morphology-based
classifications (e.g., superficial spreading melanoma). More
recently, there have been efforts to stratify melanoma into
outcome-defined classes on the basis of distinct histological
features (Amin et al., 2017).
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With the advent of genomic technologies, unsupervised
machine learning approaches have uncovered latent molec-
ular classes of melanoma that define new relationships be-
tween clinical and gene expression changes while
underscoring potential etiological pathways (Cancer Genome
Atlas Network, 2015; Harbst et al., 2012; Thakur et al.,
2019). Through these studies, various molecular types of
melanomas have been discovered and designated in accor-
dance with the predominant gene signatures, for example,
immune and pigmentation types. One of the recognized as-
sets of unsupervised approaches is the ability to define pre-
viously unappreciated relationships between variables that
may allow one to formulate novel classifiers. Although this is
now standard in transcriptomic studies where gene expres-
sion levels (all continuous variables) have been used to
identify the classes mentioned earlier, all parameters,
including CP features, can be subjected to unsupervised
clustering using algorithms that can employ mixed data. With
this in mind, we set out to perform class discovery using
mixed CP variables (e.g., continuous for thickness, dichoto-
mous for ulceration) from 2,978 melanoma cases seen at
Mass General Brigham (MGB), Boston, MA, over a 17-year
period to identify the key differentiating factors while eluci-
dating the potential clinical implications.

RESULTS
Cluster phenotypes

To determine whether CP features could classify primary
cutaneous melanomas into discrete subgroups, we performed
unsupervised clustering of our training set data using k-
medoids clustering. Clustering variables are specified in
Table 1. Of note, the vast majority of melanomas were pre-
dicted as early-stage lesions at biopsy (69.3% American Joint
Committee on Cancer [AJCC]-predicted stage IA or IB).
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Table 1. Baseline Summary of Randomized Melanoma
Entries for Training and Replicate Data Sets

Feature Training Set Replicate Set P-value1

n 1,979 999

Thickness (mm),

median (IQR)

1.14 (0.7e2.3) 1.10 (0.67e2.08) 0.255

Mitoses (per mm2),

median (IQR)

2.00 (0.8e5.0) 1.00 (0.0e4.0) 0.523

Anatomic (Clark) level 0.101

2 92 51

3 535 296

4 1,219 604

5 133 48

Ulceration 0.793

Absent 1,636 822

Present 343 177

RGP 0.208

Absent 489 226

Present 1,490 773

VGP 0.658

Absent 19 14

Epithelioid 1,428 713

Spindled 114 52

Small 39 21

Unspecified

PL 0.779

Absent 1,504 758

Common 234 111

Dysplastic 220 116

Other2 21 14

TILs 0.944

Nonbrisk/absent 1,829 924

Brisk 150 75

VI 0.867

Absent 1,801 911

Present 178 88

Regression 0.214

Absent 1,943 974

Present 36 25

Sex 0.235

Female 858 456

Male 1,121 543

Age (y), median (IQR) 66.00 (55.00e76.00) 66.00 (54.00e76.00) 0.611

Month of diagnosis,

median (IQR)

7.0 (4.0e9.0) 7.0 (4.0e9.0) 0.729

Predicted AJCC Stage 0.424

IA 591 315

IB 758 398

IIA 292 129

IIB 214 94

IIC 124 63

Abbreviations: AJCC, American Joint Committee on Cancer; IQR,
interquartile range; PL, precursor lesion; RGP, radial growth phase; TIL,
tumor-infiltrating lymphocyte; VGP, vertical growth phase; VI, vascular
invasion.
1Statistical tests were performed by the Mann‒Whitney test for continuous
variables and chi-square testing for categorical variables.
2Other category includes the following precursor lesions: melanocytic
hyperplasia, nevus of special sites, small dermal melanocytic nest, and
lentigo maligna.
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Using the silhouette width optimization technique, a
five-cluster solution (training set clusters [TCs] 1e5) yielded
the highest average silhouette width (silhouette score ¼
0.215). Visualization of these five clusters in the CP space is
shown in the t-distributed stochastic neighbor embedding
plot (Figure 1a), and cluster definitions are enumerated in
Table 2.

On initial inspection, nevus-associated melanomas
(NAMs) appeared to be discretely separated from de novo
melanomas (DNMs). TC1 (n ¼ 235) and TC2 (n ¼ 210) tu-
mors tended to be nonulcerated, have higher rates of radial
growth phase (RGP), and nearly always harbored benign and
dysplastic nevi, respectively. TC1 and TC2 lesions were also
less thick than TC3 (n ¼ 644), TC4 (n ¼ 610), and TC5 (n ¼
280) tumors (respective medians: 0.90 and 0.76 vs. 1.10 mm,
1.10, and 3.60 mm; P < 0.0001) with significantly fewer
mitoses per mm2 (1.00 and 1.00 per mm2 vs. 1.00, 2.00 and
9.00 per mm2; P < 0.0001). In addition, TC2 had the highest
rate of brisk tumor-infiltrating lymphocytes (13.3%) among the
five clusters (P ¼ 0.0082). TC3e5 melanomas were largely de
novo lesions. TC5 had the thickest tumors (P < 0.0001), the
highest densities of mitoses (P < 0.0001), and the largest rates
of ulceration (78.9% positive, P < 0.0001) among the five
clusters. TC5 was separated from TC4 by the absence of
regression (95.4% vs. 98.0%, respectively; P < 0.0001) and
sex category (77.9% vs. 4.1% men, respectively; P< 0.0001).
When compared with TC4 and TC5, TC3 tumors were found
almost exclusively in men (95.7% male, P < 0.001), had
lower mitotic rate (P < 0.0001) thresholds, and had increased
presence of RGP (84.6% positive, P < 0.0001).

Because the algorithm appeared to have identified NAMs
and DNMs as the strongest partitions among all the mela-
nomas within the CP space, we examined NAMs and DNMs
individually as superclusters. As shown in Figure 1c, DNMs
had significantly greater thickness (P < 0.0001) and mitotic
rate (P < 0.0001) than NAMs. DNMs were also associated
with increased presence of spindled- or unspecified-type
vertical growth phase (6.4% and 22.0% vs. 3.6% and
9.2%, respectively) but decreased presence of RGP (70.9%
vs. 90.3%, respectively) (P < 0.0001).

We next projected the five TC groups onto clinical features
that were not used in the initial clustering (i.e., AJCC staging
and pathologic subtype) to determine whether there were
any significant correlations. Superficial spreading melanoma
was the overall most common subtype for all cluster assign-
ments with the exception of TC5, which demonstrated a
predominance of nodular melanomas (26.4% nodular
melanomas; P ¼ 0.0058 Fisher’s exact test; P < 0.0001 chi-
square test). TC5 contained the highest proportion of AJCC-
predicted stage IIB and stage IIC melanomas (P < 0.001),
with 36.1% and 34.6% for each pathologic stage, respec-
tively, and which is consistent with the increased thickness
and ulceration rate. TC1 and TC2 contained the highest
proportion of stage IA melanomas (37.4% and 52.9%,
respectively) (P < 0.001).

Finally, we applied the five-cluster k-medoids algorithm
to an independent set of 999 cases randomly selected from
our initial cohort of 2,978 cases (replicate set clusters (RCs)



Figure 1. Training set CP cluster comparisons and projected outcomes. (a) t-SNE, a computational method for visualizing high dimensional data, of k-medoids

clustering assignments that demonstrates how the algorithm conceptualizes the data in CP space. (b) Individual feature comparisons show distinct organization

on the basis of PL status. TC1 and 2 were largely comprised of NAMs and were differentiated by the presence of common or dysplastic lesions, respectively (P <

0.0001). Conversely, TC3e5 were made of DNMs. (c) Supercluster comparisons demonstrate significantly increased thickness, mitotic rate, and age in DNMs

compared with those in NAMs (P < 0.0001). (d) To the left, we observe a greater proportion of IIA, IIB, and IIC melanomas in TC3e5 (P < 0.0001). To the right,

the plot shows the highest prevalence of SSM for all TCs. ****Significant associations with P < 0.0001. Abs, absent; AJCC, American Joint Committee on Cancer;

ALM, acral lentiginous melanoma; CP, clinicopathologic; DN, dysplastic nevi; DNM, de novo melanoma; LM, lentigo maligna; NAM, nevus-associated

melanoma; PL, precursor lesion; SSM, superficial spreading melanoma; t-SNE, t-distributed stochastic neighbor embedding; TC, training set cluster; TIL, tumor-

infiltrating lymphocyte; VGP, vertical growth phase.
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of 1e5) (Figure 2). The clinical features between the training
and replication sets were not statistically different (Table 1).
Again, the model agnostically separated melanoma entries
into two NAM subgroups (RC1 and RC2), distinguished by
benign versus dysplastic lesions, and three DNM subgroups
(RC3e5) separated by sex and vertical growth phase status
(Figure 3). Consistent with the training set, RC3e5 tumors
were thicker (respective medians of 1.30, 1.10, and 1.23
mm; P < 0.0001) and overall more mitogenic (respective
medians of 2.00, 1.00, and 2.00 per mm2; P < 0.0001) than
RC1 and 2 tumors (Table 3). Altogether, precursor lesion
(PL) status remains a strong classifier within the replicate CP
space.
DISCUSSION
Although many histological associations have been identified
in melanoma over decades of research, most of these have
relied on supervised approaches, such as logistic regression.
We employed a fundamentally different approach using un-
supervised clustering on multiple CP factors on the basis of a
calculated similarity distance (in this case, Gower distance)
between each case. With this approach given our data, there
appear to be five optimally separated subclasses of mela-
noma that occupy two distinct CP subspaces: a lower-grade
partition (TC1e2) that are associated with common or
dysplastic nevi (i.e., NAMs) and a higher-grade partition
(TC3e5) that lack PLs (i.e., DNMs). Pathologic reports were
www.jidinnovations.org 3
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Table 2. Summary of Clinicopathologic Features for Each Cluster Using the k-Medoids Algorithm (k [ 5) on the
Training Data Set (n [ 1,979)

Feature TC1 TC2 TC3 TC4 TC5 P-value1

n 235 210 644 610 280

Thickness (mm), median (IQR) 0.90 (0.60e1.39) 0.76 (0.56e1.10) 1.10 (0.70e2.00) 1.10 (0.66e1.90) 3.60 (2.25e5.89) <0.0001

Mitoses (per mm2), median (IQR) 1.00 (0.00e2.00) 1.00 (0.00e2.80) 1.00 (0.00e3.00) 2.00 (0.80e4.00) 9.00 (5.80e14.90) <0.0001

Anatomic (Clark) level <0.0001

2 21 (9) 13 (6.3) 28 (4.6) 30 (5.2) 0 (0)

3 82 (34.9) 87 (41.4) 177 (27.5) 162 (26.6) 27 (9.6)

4 131 (55.7) 108 (51.4) 404 (62.7) 383 (62.8) 193 (68.9)

5 1 (0.4) 2 (1) 35 (5.4) 35 (5.7) 60 (21.4)

Ulceration <0.0001

Absent 225 (95.7) 195 (92.9) 608 (94.4) 549 (90) 59 (21.1)

Present 10 (4.3) 15 (7.1) 36 (5.6) 61 (10) 221 (78.9)

RGP <0.0001

Absent 33 (14) 10 (4.8) 99 (15.4) 128 (21) 219 (78.2)

Present 202 (86) 200 (95.2) 545 (84.6) 482 (79) 61 (21.8)

VGP <0.0001

Absent 2 (0.9) 4 (1.9) 9 (1.4) 4 (0.7) 0 (0)

Epithelioid 199 (84.7) 167 (79.5) 442 (68.6) 427 (70) 193 (68.9)

Spindled 7 (3) 9 (4.3) 35 (5.4) 46 (7.5) 17 (6.1)

Small 7 (3) 9 (4.3) 11 (1.7) 12 (2) 0 (0)

Unspecified 20 (8.5) 21 (10) 147 (22.8) 121 (19.8) 70 (25)

PL <0.0001

Absent 0 (0) 0 (0) 633 (98.3) 599 (98.2) 272 (97.1)

Common 230 (97.9) 0 (0) 0 (0) 0 (0) 4 (1.4)

Dysplastic 0 (0) 210 (100) 0 (0) 6 (1) 4 (1.4)

Other2 5 (2.1) 0 (0) 11 (1.7) 5 (0.8) 0 (0)

TILs 0.0082

Nonbrisk/absent 220 (93.6) 182 (86.7) 602 (93.5) 560 (91.8) 265 (94.6)

Brisk 15 (6.4) 28 (13.3) 42 (6.5) 50 (8.2) 15 (5.4)

VI <0.0001

Absent 201 (85.5) 186 (88.6) 571 (88.7) 569 (93.3) 274 (97.9)

Present 34 (14.5) 24 (11.4) 73 (11.3) 41 (6.7) 6 (2.1)

Regression 0.0023

Absent 233 (99.1) 208 (99) 637 (98.9) 598 (98) 267 (95.4)

Present 2 (0.9) 2 (1) 7 (1.1) 12 (2) 13 (4.6)

Sex <0.0001

Female 104 (44.3) 79 (37.6) 28 (4.3) 585 (95.9) 62 (22.1)

Male 131 (55.7) 131 (62.4) 616 (95.7) 25 (4.1) 218 (77.9)

Age (y), median (IQR) 60.00 (47.00e73.00) 62.50 (52.00e72.00) 70.00 (59.00e78.00) 62.00 (52.00e74.00) 71.00 (59.00e80.00) <0.0001

Month of diagnosis, median (IQR) 7.0 (4.0e9.0) 7.0 (4.0e10.0) 6.0 (4.0e9.0) 7.0 (4.0e9.0) 6.0 (4.0e9.0) 0.233

Abbreviations: IQR, interquartile range; PL, precursor lesion; RGP, radial growth phase; TC, training set cluster; TIL, tumor-infiltrating lymphocyte; VGP,
vertical growth phase; VI, vascular invasion.
1Statistical tests were performed by Mood’s median test for continuous variables and by chi-square testing for categorical variables.
2Other category includes the following precursor lesions: melanocytic hyperplasia, nevus of special sites, small dermal melanocytic nest, and lentigo
maligna.
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randomized into training and testing (replicate) sets to eval-
uate model consistency, and the testing results showed a
concordant five-cluster model. Our model was able to reli-
ably segregate melanomas on the basis of PL status. However,
it is important to highlight that models trained on such data
may not be applicable to other data formats.

Although the relationship between NAMs and DNMs has
been carefully studied in the past (Cymerman et al., 2016;
Dessinioti et al., 2021; Lin et al., 2015; Martin-Gorgojo et al.,
2018; Pampena et al., 2017; Reiter et al., 2021; Sheen et al.,
2017), the unsupervised clustering suggests that NAMs are
more similar to each other across all CP features than DNMs.
JID Innovations (2021), Volume 1
In other words, NAMs (e.g., TC1e2) tend to be less mito-
genic, less ulcerative, and less thick than DNMs (TC3e5).
Although some of these associations have been previously
described (Reiter et al., 2021; Sheen et al., 2017), our un-
supervised algorithm agnostically identified a group of mel-
anomas that is associated with less aggressive features despite
the lack of melanoma-specific mortality data to supervise the
clustering. Furthermore, the model has reported supercluster
differences in both vertical growth phase and RGP statuses,
which have not, to our knowledge, been previously
described in the literature. Between TC1 and TC2, tumors
with precursor dysplastic nevi have a slightly higher rate of



Figure 2. Enrollment and attrition for

patient entries in the clustering

analysis. MIS, melanoma in situ; NA,

not applicable.
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brisk tumor-infiltrating lymphocytes, suggesting that mela-
nomas associated with dysplastic nevi may be more immu-
nogenic than those contiguous with a common nevus.
Numerous previous studies have reported increased thick-
ness, ulceration, nodular subtype, pathologic stage, and/or
mortality in DNMs compared with those in NAMs
(Cymerman et al., 2016; Martin-Gorgojo et al., 2018;
Pampena et al., 2017). One year before, Lin et al. (2015)
reported significant associations in ulceration status, age,
pathologic subtype, and truncal site in NAMs; however, their
study exclusively selected patients undergoing sentinel
lymph node biopsy. Furthermore, investigators have shown a
central anatomic site (e.g., head, neck, and truncal areas)
predisposition for DNMs and increased likelihood of nodular
subtype DNMs that are truncally located (Dessinioti et al.,
2021). Pandeya et al. (2018) have also shown a signifi-
cantly increased proportion of BRAF(V600E) mutations in
NAMs. Taken together, the literature suggests significant
biological differences supported by this model that seem to
link phenotype with a molecular senescence model of
melanogenesis. In this model, the intrinsic or acquired pres-
ence of certain pathogenic mutations in banal nevi such as
BRAF(V600E) triggers an oncogene-induced senescence
(Shain and Bastian, 2016). Various interactions from down-
stream effectors and the tumor microenvironment drive the
acquisition of somatic passenger mutations (e.g., TERT,
CDK2NA); therefore, facilitating a small minority of banal
nevi to eventually progress to melanoma.

Interestingly, we isolated a group of thick DNMs in men
with minimal RGP and the highest rates of mitoses and
ulceration (TC5). TC4 is a female-enriched DNM class that
appears to harbor less aggressive features than TC3, how-
ever more aggressive ones than TC5. Again, without access
to survival information, the algorithm has identified sex as a
critical discriminant within the DNM subspace. To date,
there is no clear etiology for the male survival disadvan-
tage, although the neglect of sun-protective behaviors, sex
steroid interactions, oxidative stress exposure, and vitamin
D metabolism have all been suspected to play a role in
compromised cancer immune surveillance (Gamba et al.,
2013).

The unsupervised clustering also suggests a notable cor-
relation between higher-partition melanomas (DNMs) and
stage, predicted according to the eighth edition of AJCC
guidelines using tumor thickness and ulceration (Figure 1d).
TC3 and TC4 demonstrated nearly identical stage composi-
tions. In particular, this may suggest that male de novo tumors
are costaged with female de novo tumors with slightly
increased rates of mitoses and angioinvasion. Both CP fea-
tures have been reported as independent adverse prognosti-
cators of tumor size, depth of invasion, and/or mortality in
previous studies (Crowson et al., 2006; Scolyer et al., 2020).
Of note, mitotic rate was removed as a T-stage parameter in
the eighth edition of the AJCC melanoma staging system,
although a collection is still recommended for inclusion in
biopsies (Amin et al., 2017). Although this model should not
be used to replace the current staging guidelines, the
phenotypic associations presented certainly encourage the
investigation of a broader set of parameters to inform
personalized melanoma prognostication.

Altogether, the oncogene-induced senescence hypothesis
suggests a distinct pathogenesis for growth-arrested NAMs
that involves either dysregulation of the MAPK signaling
pathway, intrinsic changes to the cellular microenvironment,
or a combination of both (Damsky and Bosenberg, 2017).
Lesions in a male host are expected to be less resilient against
www.jidinnovations.org 5
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Figure 3. CP comparisons and projections for RCs. (a) Visualization of RC assignments using t-SNE. (b) Again, individual feature distributions showed precursor

lesion status to be the strongest partition within the CP space. RC1e2 tumors tended to be NAMs, whereas RC3e5 tumors tended to be DNMs with increased

thickness and mitotic rate. (c) RC3e5 demonstrated the highest proportion of stage IIC melanomas (P < 0.0001). SSM was the most common pathologic subtype

across all replicate set clusters. ****Significant associations with P < 0.0001. Abs, absent; AJCC, American Joint Committee on Cancer; ALM, acral lentiginous

melanoma; CP, clinicopathologic; DN, dysplastic nevi; DNM, de novo melanoma; LM, lentigo maligna; NAM, nevus-associated melanoma; RC, replicate set

cluster; SSM, superficial spreading melanoma; t-SNE, t-distributed stochastic neighbor embedding.
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innate defenses of the host immune response, which may
modulate melanoma development through an independent
mechanism. The inclusion of molecular correlates, for
example, BRAF-mutant melanocytic nevi, may further un-
ravel hidden classifiers within our data and would therefore
be valuable to include in a clustering approach in future
studies.

MATERIALS AND METHODS
Study subjects

Clinical and pathologic data were obtained using the MGB

(formerly Partners) Healthcare Research Patient Data Registry and

were approved by the MGB institutional review board. We

queried patients of all ages with a medical record‒level diagnosis

of personal history of malignant melanoma of the skin at all

available MGB sites. Data included demographics variables, and

free-text surgical pathology report texts were requested for dates

starting from 1 January 2000 to 11 October 2017. Tumor biopsies

had been obtained from patients as part of routine care with

appropriate informed consent.

Data preprocessing and variable selection

From the 24,016 entries retrieved in the original query, we

excluded nonmelanoma pathology reports, reports with missing

accompanying clinical data, and reports that were pertaining to
JID Innovations (2021), Volume 1
sentinel lymph node biopsies. For patients with rebiopsies due to

microsatellites or metastatic disease, the thickest entry was

included. Next, we randomized the remaining sample in an

approximately 2:1 ratio to compose the training and replicate sets

(Figure 2).

Pathologic features were extracted from free-text pathology syn-

optic reports using regular expression text matching (grep base R

function, version 3.6.2). Features with �25% missing data were

excluded from the analysis. Observations with incomplete data (or

that were not available) in variables with <25% missing data were

also excluded. Anatomic location and laterality were not extracted

and therefore not included in our final clustering analysis.

PL entries were classified as 0 (Absent), 1 (Common), 2

(Dysplastic), and 3 (Other). Lesions included in the Other category

are listed in Tables 1 and 2. From our data, six lesions had melanoma

in situ designated as a PL, although this was not uniformly catego-

rized across the data set. As such, we did not consider in situ mel-

anomas as a PL but rather the earliest phases of the invasive

melanoma for five of the six entries. The remaining entry was not a

precursor to invasive melanoma and was therefore excluded from

the analysis. Furthermore, tumor-infiltrating lymphocytes were

stratified into two categories: nonbrisk/absent versus brisk. For older

entries reporting mitoses per high power field, the following con-

version was used: 1 mitosis per 10 high power fields ¼ 0.4 mitosis

per mm2. Predicted AJCC stage for cluster assignments was



Table 3. Summary of Clinicopathologic Features for Each Cluster Using the k-Medoids Algorithm (k [ 5) on the
Replicate Data Set (n [ 999)

Feature TC1 TC2 TC3 TC4 TC5 P-value1

n 101 116 285 299 198

Thickness (mm), median (IQR) 1.00 (0.61e1.69) 0.69 (0.51e1.13) 1.30 (0.80e2.50) 1.10 (0.70e1.80) 1.23 (0.70e2.77) <0.0001

Mitoses (per mm2), median (IQR) 1.00 (0.00e2.00) 1.00 (0.00e2.00) 2.00 (0.80e6.00) 1.00 (0.80e4.00) 2.00 (0.00e5.00) <0.0001

Anatomic (Clark) level <0.0001

2 8 (8.2) 14 (12.3) 11 (4) 8 (2.8) 10 (5.5)

3 23 (22.8) 64 (55.2) 70 (24.6) 94 (31.4) 45 (22.7)

4 67 (66.3) 36 (31) 194 (68.1) 180 (60.2) 127 (64.1)

5 3 (3) 2 (1.7) 10 (3.5) 17 (5.7) 16 (8.1)

Ulceration <0.0001

Absent 97 (96) 111 (95.7) 210 (73.7) 245 (81.9) 159 (80.3)

Present 4 (4) 5 (4.3) 75 (26.3) 54 (18.1) 39 (19.7)

RGP <0.0001

Absent 19 (18.8) 6 (5.2) 74 (26) 70 (23.4) 57 (28.8)

Present 82 (81.2) 110 (94.8) 211 (74) 229 (76.6) 141 (71.2)

VGP <0.0001

Absent 3 (3) 3 (2.6) 0 (0) 2 (0.7) 7 (3.5)

Epithelioid 86 (85.1) 100 (86.2) 285 (100) 242 (80.9) 0 (0)

Spindled 3 (3) 3 (2.6) 0 (0) 7 (2.3) 39 (19.7)

Small 1 (1) 3 (2.6) 0 (0) 4 (1.3) 13 (6.6)

Unspecified 8 (7.9) 7 (6) 0 (0) 44 (14.7) 139 (70.2)

PL <0.0001

Absent 0 (0) 4 (3.4) 283 (99.3) 290 (97) 181 (91.4)

Common 90 (89.1) 13 (11.2) 1 (0.4) 0 (0) 7 (3.5)

Dysplastic 7 (6.9) 96 (82.8) 0 (0) 6 (2) 7 (3.5)

Other2 4 (4) 3 (2.6) 1 (0.4) 3 (1) 3 (1.5)

TILs 0.0057

Nonbrisk/Absent 95 (94.1) 105 (90.5) 269 (94.4) 264 (88.3) 191 (96.5)

Brisk 6 (5.9) 11 (9.5) 16 (5.6) 35 (11.7) 7 (3.5)

VI 0.2833

Absent 90 (89.1) 103 (88.8) 255 (89.5) 280 (93.6) 183 (92.4)

Present 11 (10.9) 13 (11.2) 30 (10.5) 19 (6.4) 15 (7.6)

Regression 0.9428

Absent 99 (98) 114 (98.3) 277 (97.2) 292 (97.7) 192 (97)

Present 2 (2) 2 (1.7) 8 (2.8) 7 (2.3) 6 (3)

Sex <0.0001

Female 36 (35.6) 80 (69) 269 (94.4) 10 (3.3) 148 (74.7)

Male 65 (64.4) 36 (31) 16 (5.6) 289 (96.7) 50 (25.3)

Age (y), median (IQR) 65.00 (50.00e73.00) 62.00 (49.50e70.75) 71.00 (59.50e80.00) 60 (49.00e70.00) 70.50 (63.00e78.00) <0.0001

Month of diagnosis, median (IQR) 8.0 (4.0e10.0) 5.0 (3.0e9.0) 6.0 (4.0e9.0) 7.0 (4.0e9.0) 6.0 (4.0e9.0) 0.178

Abbreviations: IQR, interquartile range; PL, precursor lesion; RGP, radial growth phase; TC, training set cluster; TIL, tumor-infiltrating lymphocyte; VGP,
vertical growth phase; VI, vascular invasion.
1Statistical tests were performed by Mood’s median test for continuous variables and by chi-square testing for categorical variables.
2Other category includes the following precursor lesions: melanocytic hyperplasia, nevus of special sites, small dermal melanocytic nest, and lentigo
maligna.
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calculated on the basis of the T-stage criterion only because infor-

mation on regional and distant metastasis is not contained within

MGB pathology reports. A summary of patient characteristics for

each data set is described in Table 1. Notably, the pathologic fea-

tures included in MGB pathology reports include additional prog-

nostic parameters beyond those utilized by the eighth edition of the

AJCC staging system. Thus, replication of this model may be

confined to a limited number of datasets.

Computational and statistical methods

Clustering analysis was performed using statistic software R (version

4.0.2; R Development Core Team). Data randomization was
performed using the default rand operation in Microsoft Excel (Excel,

version 16.40, Microsoft, Redmond, WA). Cluster member features

were compared using chi-square testing for nominal variables and

the Mann‒Whitney test for continuous variables.

Pathologic reports were compiled into a mixed continuous‒cat-

egorical data frame and were used to calculate a Gower dissimilarity

matrix, implemented using the daisy function from the cluster

package (version 2.1.1; https://cran.r-project.org/package¼cluster).

For clustering assignments, the k-medoids algorithm (using the pam

function from cluster) iteratively determined the minimum overall

cost within a cluster to select partition medoids, defined as repre-

sentative objects for each cluster. Optimal cluster number (k) was
www.jidinnovations.org 7
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determined computationally; the average silhouette width is the

method of choice for the k-medoids algorithm. We optimized a

priori cluster number for k ¼ 2e10.
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