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Themembranes of endosomes, phagosomes andmacropinosomes can become
damaged by the physical properties of internalized cargo, byactive pathogenic
invasion or by cellular processes, including endocytic maturation. Loss of
membrane integrity is often deleterious and is, therefore, prevented bymitiga-
tion and repair mechanisms. However, it can occasionally be beneficial and
actively induced by cells. Here, we summarize the mechanisms by which
cells, in particular phagocytes, try to prevent membrane damage and how,
when this fails, they repair or destroy damaged endocytic organelles.
We also detail how one type of phagocyte, the dendritic cell, can deliberately
trigger localized damage to endocytic organelles to allow for major histocom-
patibility complex class I presentation of exogenous antigens and initiation of
CD8+ T-cell responses to viruses and tumours. Our review highlightsmechan-
isms for the regulation of endocytic organelle membrane integrity at the
intersection of cell biology and immunology that could be co-opted for
improving vaccination and intracellular drug delivery.

1. Introduction
The ability of cells to internalize exogenous material was first observed at the
turn of the nineteenth century by Ilya Metchnikoff [1]. He noted that amoeboid
cells in starfish larva were capable of ingesting small splinters and termed the
process phagocytosis from the Greek words ‘phagos’ and ‘cyte’meaning ‘to eat’
and ‘cell’, respectively. Nearly half a century later, Lewis [2] recorded a series of
time-lapse movies in which phagocytes and transformed fibroblasts could be
observed extending wave-like projections over their dorsal surfaces. Occasion-
ally, those structures would recede into the cell to generate large, phase-bright
vacuoles filled with the extracellular medium. Lewis termed this process pino-
cytosis from ‘pinean’ meaning ‘to drink’. Over the years, pinocytosis has been
divided into a number of distinct and well-studied processes, including
clathrin-mediated endocytosis, caveolae-dependent uptake and macropinocyto-
sis [3,4]. Phagocytosis and pinocytosis allow not only the internalization of
exogenous material, but also for the turnover and recycling of plasma
membrane constituents. In this review, we focus on events that occur post-
internalization, namely those that affect the membrane integrity of endocytic
organelles, including endosomes, phagosomes and macropinosomes at
different stages of maturation.

After internalization, a series of fusion and fission events occur that are often
accompanied by luminal acidification by vacuolar-type ATPases. The concomi-
tant delivery of hydrolases, often with low pH optima, generates an
environment that facilitates the degradation of the internalized cargo, which is
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accentuated by lysosomal fusion. Solutes liberated from the
cargomust then be exported out of the vesicle for incorporation
into metabolic processes of the cell or for excretion into the
extracellular milieu through plasma membrane transporters
(reviewed in [4,5]).

The highly dynamic and rapid generation of degradative
compartments poses several challenges for the cell, not least
of which is to maintain the membrane integrity of these
endocytic organelles. The latter must be protected from the
harsh biochemistry of the acidic lumen, which can contain
membrane-damaging reactive oxygen species (ROS) and
degradative enzymes, including lipases and proteases [6–8].
Endocytic organelle membranes must also resist mechanical
stresses imposed by the cargo: internalized protein aggregates
[9], crystals [10], viruses [11,12], bacteria [13] and hyphae-
extending fungi [14] all present distinct physical challenges.
Last, but not least, the rapid accumulation of osmolytes from
the breakdown of cargo imposes osmotic stress, which, if left
unresolved, can rupture membranes [15].

In this review, we will first discuss the mechanisms
by which the membrane integrity of endocytic organelles
is maintained. Emphasis will be placed on phagocytes, includ-
ing dendritic cells and macrophages, given their relatively
unique ability to continuously endocytose large quantities of
exogenous material. Next, we discuss how some cells, specifi-
cally dendritic cells, have evolved mechanisms to deliberately
rupture endocytic organelle membranes in some instances to
perform highly specialized roles in the induction of immunity.
Finally, we outline how current and emerging biotechnological
and therapeutic applications seek to compromise endocytic
organelle integrity to improve delivery of materials to the
cytosol of cells.
2. The maintenance of endocytic organelle
membrane integrity

2.1. Osmotic control of membrane tension
One challenge common to all forms of endocytosis is that the
osmolyte content of the lumen is, often dramatically, different
from that of the cytosol. As endocytic organelles mature,
osmolytes gradually accumulate from the breakdown of
macromolecules into their building blocks. This is best exem-
plified during the phagocytosis of apoptotic cells, also known
as efferocytosis, which, in effect, doubles the phagocyte load
of nucleic acids, proteins, lipids and carbohydrates [16]. The
breakdown of such macromolecules into nucleosides, amino
acids and sugars generate steep gradients, which, if left
unchecked, would result in the movement of water into the
lumen, generating outwardly directed tension on the mem-
brane [5]. Biological membranes have a limited capacity for
stretch, predicted to be around 3% before they rupture
[14,17,18]. To counter osmotically induced tension, an array
of transmembrane solute carriers is delivered to endocytic
organelle membranes to transport osmolytes into the cytosol
(reviewed in [4]). Osmotically induced tension is further
reduced by the incorporation of transporters that move
monovalent and divalent cations across membranes [5]. The
importance of solute carriers can be appreciated from the var-
ious lysosomal storage disorders that result from their loss of
function [15,19].
The movement of osmolytes across the membrane not
only maintains osmotic neutrality but also lowers volume,
at least in the case of macropinosomes [20,21] (figure 1). As
surface area does not change, the loss of volume results in
crenation or furrowing of the limiting membrane, which, in
turn, facilitates the maintenance of endocytic organelle integ-
rity by (i) further reducing tension such that any mechanical
stress from cargo can be tolerated if necessary through mem-
brane unfurrowing [14,22], and (ii) facilitating the recruitment
of membrane-stabilizing proteins via their curvature-sensing
domains (discussed below).

2.2. Membrane-stabilizing proteins
As endocytic organelles lose volume, the reduction in mem-
brane tension results in the recruitment of curvature and
tension-sensitive proteins such as those belonging to the Bin–
Amphiphysin–Rvs (BAR) domain-containing protein family
[5,21,23,24] (figure 1). Although this represents a relatively
new area of investigation, BAR domain-containing protein
already have well-documented roles in the scaffolding and
stabilization of curved membranes [25]. In addition to their
direct membrane-stabilizing effect, BAR domain-containing
proteinsmay further buffer against tension-inducedmembrane
stress in a manner akin to caveolae at the plasma membrane
[26]. The recruitment of BAR domain-containing proteins also
drivesmembrane tubulation and fission events [27]. These tem-
porarily increase the surface to volume ratio of the endocytic
organelle, which likely facilitates the rapid export of osmolytes
that are small enough to diffuse into the tubules and access
membrane solute carriers [5,28]. Tubulation also helps to
spatially segregate cargo destined for recycling (including
receptors and membrane) away from hydrolytic enzymes
[21,29] (figure 2).

Maturing endocytic organelles can also acquire trans-
membrane proteins that protect the membrane from the
harsh luminal environment [30,31] (figure 1). The best studied
are the lysosome-associated membrane proteins LAMP1
and LAMP2 and the lysosome integral membrane protein
LIMP2. These proteins are abundant in lysosomes and
are delivered to maturing endosomes, phagosomes and
macropinosomes through vesicle fusion. As they are heavily
glycosylated, they form a thick (approx. 8 nm) luminal glycoca-
lyx believed to physically exclude acid hydrolases [31,32]. Loss
of LAMP1 and LAMP2 does not have marked effects on
lysosomal membrane integrity [33,34], possibly because of
redundancy, but loss of LIMP2 results in severely damaged
lysosomes [31].

2.3. Lipid bilayer modifications
Just as the protein content of their membranes is modified
as endocytic organelles mature, so too is the lipid compo-
nent (reviewed in [4,35]). Lipid kinases, lipases and efflux
proteins can all modify membrane lipids [32,36–38] (figure 1).
Lipid modification facilitates the recruitment of proteins
involved in endocytic organelle trafficking and maturation
but appears to play an additional role in osmoregulation and
membrane biomechanics. On phagosomes and macropino-
somes, for example, the generation of phosphatidylinositol
3,5-bisphosphate [PtdIns(3,5)P2] by the cytosolic phosphoino-
sitide kinase PIKfyve opens lipid-gated channels to facilitate
the efflux of monovalent ions and, therefore, water [20,21,38].
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Figure 1. Maintenance of endocytic organelle integrity. (a) Following internalization of cargo, osmotically induced tension is regulated by solute carriers and
transporters that move monovalent and divalent cations across endocytic organelle membranes. This results in the efflux of water and a subsequent reduction
in membrane tension. (b) The reduction in volume promotes recruitment of curvature-sensitive BAR domain-containing proteins that stabilize curved membranes,
while fusion with lysosomes brings in highly glycosylated transmembrane proteins that help shield the membrane from the luminal environment. (c) Modification of
lipids regulates organelle trafficking but also facilitates osmoregulation as in the case of phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2], which promotes efflux
of monovalent ions through lipid-gated channels. (d) In macrophages, renitence vacuoles (RVs) are associated with phagosomes and are thought to safeguard
against direct fusion between lysosomes and damaged phagosomes. Created with Biorender.com.
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This decreases membrane tension, facilitates membrane
furrowing and ultimately helps the recruitment of the BAR
domain-containing proteins discussed above. PtdIns(3,5)P2,
incidentally, is also required for the fusion of endocytic orga-
nelles with lysosomes and, therefore, for the incorporation of
LAMP and LIMP proteins into these organelles [39,40].

Other lipids can have more direct effects on the biomecha-
nics of the endocytic organelle membrane. Cholesterol, a
key component of the plasma membrane, is incorporated into
the membranes of early endocytic organelles but its levels
decrease during maturation [41–43] (figure 1). Cholesterol in
the plasma membrane decreases membrane tension and
enhances resistance to rupture [44]. Similarly, endocytic orga-
nelle membranes enriched in cholesterol are more resistant
to damage [45], while lysosomal membranes, which have
low cholesterol content, possess the highest amounts of
membrane-stabilizing LAMP and LIMP proteins [46]. In
addition, cholesterol content is associated with membrane
budding events that contribute to volume control of endocytic
organelles [47,48]. Nevertheless, exactly how cholesterol
contributes to membrane integrity is unclear and, in some
cases, cholesterol accumulation in phagolysosomes may
actually provoke membrane rupture through formation of
membrane-damaging crystals [49,50].

2.4. Renitence vacuoles
Professional phagocytes employ unique and inducible mech-
anisms to guard against phagosomal damage. Macrophages
form so-called renitence vacuoles (RVs) during phagocytosis
as they take up particulate targets [51,52]. RVs form in a pro-
cess much like macropinocytosis but differ in that they do not
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shrink in size as they mature. Rather, they remain associated
with phagosomes and buffer the fusion with lysosomes via a
mechanism that remains unclear [52] (figure 1). RV formation
is enhanced upon stimulation of phagocytes with microbial
products such as lipopolysaccharide and is believed to safe-
guard against lysosomal fusion with phagosomes damaged
by pathogens [52].
3. Repair and removal of damaged
endocytic organelles

Despite the barriers discussed above, damage to the mem-
brane of endocytic organelles does occur, often induced by
foreign agents such as pathogen-derived toxins or engulfed
particulates [53,54] (figure 3). As such, eukaryotic cells have
evolved mechanisms for rapid repair of membrane damage
using a highly ordered sequence of interconnected events
that rapidly stabilize the injury, remove damaged lipids and
replace the damaged membrane [55,56]. This was explored
initially in the context of damage to the plasma membrane
[55–57] but has since been extended to the repair of endocytic
organelle membranes [53,54,58,59] (figure 3).
3.1. Signals for endocytic organelle repair
A universal signal for membrane repair is the localized flux of
calcium ions (Ca2+) at sites of membrane damage [56].
Eukaryotic cells maintain a steep concentration gradient of
Ca2+ across the plasma membrane and sudden rupture
results in localized influx of Ca2+ ions. This activates a diverse
range of proteins such as calpains, transglutaminases, synap-
totagmins and components of the SNARE fusion complexes
that can function in membrane repair [57,60]. Cells deficient
for calpain-I have impaired plasma membrane repair
responses [61]. Calpain-I proteolytically degrades exposed
cortical cytoskeletal substrates such as talin and vimentin at
the site of injury, denuding the damage site and thereby
facilitating fusion of exocytic vesicles that repair the mem-
brane [61]. Calcium-activated transglutaminases mediate
protein cross-linking and serve to limit diffusion across the
injury site [57,60]. Calcium-regulated exocytosis of endocytic
organelles, such as lysosomes, is also thought to be essential
for plasma membrane repair. Such calcium-dependent exocy-
tosis of lysosomes is regulated by the lysosomal membrane
protein synaptotagmin-7 through its interactions with the
v-SNARE VAMP7 on lysosomes and t-SNARE syntaxin-4
on the plasma membrane [57,60].

3.2. Re-sealing broken membranes with ESCRT
Lesions of less than approximately 100 nm are typically
repaired by components of the endocytic sorting complexes
required for transport (ESCRT) machinery (figure 3). The
ESCRT complex is responsible for many key membrane
remodelling processes including intraluminal vesicle for-
mation, cytokinetic abscission, exosome release and viral
budding [62]. Following damage with membranolytic
agents, escape of Ca2+ from endocytic organelles into the
cytosol [54] causes recruitment of both ESCRT-I proteins
TSG101 and ALIX, which in turn recruit the ESCRT-III com-
plex to promote rapid re-sealing of the lesions [53]. ESCRT
repair of damaged endocytic organelle membranes is thought
to occur through exosomal shedding or ‘budding off’ of the
damaged lipids [53,54]. The depletion of ESCRT components
prevent this shedding and results in death of the cell [53,58].
Intriguingly, an ESCRT-independent repair pathway invol-
ving trans-bilayer motion of sphingomyelin on damaged
lysosomes has also, recently, been reported [63].

3.3. Removal of damaged endocytic organelles by
selective autophagy

Larger fissures cannot be repaired by ESCRT-dependent
mechanisms and tend to trigger the removal of damaged
endocytic organelles via selective macroautophagy (hereafter
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referred to as autophagy). In this process, the damaged endo-
cytic organelle is specifically recognized, sequestered within
an autophagosome and ultimately recycled via lysosomal
degradation (figure 3). Various forms of selective autophagy
exist, of which lysophagy (the selective degradation of lyso-
somes) [64] and xenophagy (the selective degradation of
intracellular pathogens, literally ‘foreign-eating’) [65] are
particularly pertinent for this review.

Damaged phagosomes and endosomes appear to undergo
selective removal via mechanisms similar to lysophagy. The
process of selective autophagy of endocytic organelles is
initiated by galectins, a family of lectins predominantly loca-
lized within the cytosol. Galectins bind to β-galactoside-
containing glycoconjugates that would normally be restricted
to the extracellular aspect of the plasma membrane or the
lumen of endocytic organelles but can become exposed to the
cytosol upon damage [66]. The role of galectins in the detection
of damaged endocytic organelles was first discovered as a
response to ruptured vacuoles during bacterial invasion
[67,68] but they are now known to be involved in the cellular
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response to diverse triggers of endomembrane damage,
including viruses, bacterial toxins, crystalline particles, neuro-
toxic protein aggregates and transfection reagents [69–72]. The
recruitment of galectins to damaged endocytic organelles
occurs within minutes and detection of this phenomenon by
immunofluorescent staining with anti-galectin antibodies or
by using fluorescent galectin fusion proteins is a common
method to identify membrane disruption [73].

Of the 15 mammalian galectins, galectin-3 and galectin-8
are best-established as initiators of damaged endocytic
organelle autophagy. Galectin-1 has also been shown to par-
ticipate in lysophagy and xenophagy of some but not all
invasive bacterial species [70,74], although it and galectin-4
are only weakly recruited to damaged endocytic organelles
[75]. This is likely due to compartment-specific differences
in membrane glycan composition as the fine specificity of
galectins varies despite the fact that they all have affinity
for β-galactosides [76]. This specificity may also drive the
recruitment of different galectins to distinct microdomains
on damaged endocytic organelles [77].

Galectins initiate selective autophagy through recruit-
ment of a number of cytosolic autophagy receptors,
including p62, nuclear dot protein 52 (NDP52), optineurin
and TAX1BP1 [70,78–80], which direct galectin-decorated
damaged endocytic organelles to the autophagy machinery.
Autophagy receptors also recognize ubiquitin that has been
added by E3 ubiquitin ligases onto proteins (or lipids as
recently discovered in the case of Salmonella [81]) at sites of
endocytic organelle damage. The recruited autophagy recep-
tors tether endomembrane damage sites to ATG8 paralogues,
such as LC3, on autophagosomal membranes, sorting the
damaged endocytic organelle for degradation (reviewed
in [82,83]).
3.4. Coordination between repair, removal and
biogenesis

Membrane repair by ESCRTs and selective autophagy of
injured endocytic organelles have been considered largely
distinct. However, although accumulation of the ESCRT com-
ponent ALIX on damaged lysosomes is initially Ca2+-
dependent and galectin-3-independent [53,54,84], galectin-3
appears essential for enhancing the recruitment of both
ALIX and the ESCRT-III component CHMP4 for restoration
of lysosomal function following damage [84]. Furthermore,
at later stages of the damage response, interactions between
galectin-3 and the ubiquitin ligase TRIM16 promote a
switch from membrane repair to autophagic removal of
damaged lysosomes [84]. The core autophagy-related protein
ATG9A has also, recently, been reported to interact with mul-
tiple ESCRT components and cooperate with the ESCRT
machinery in plasma membrane sealing after damage [85],
although whether a similar phenomenon occurs in the mem-
brane repair of endocytic organelles is unknown. Finally,
galectins also complement the loss of damaged lysosomes
by stimulating lysosome biogenesis through the activity of
the transcription factor TFEB [84,86]. Activation of lysophagy
also results in small LAMP2+ vesicles accumulating in the
cytosol, perhaps enabling recycling of LAMP2 [87]. These
observations suggest that damage elicits a coordinated
response designed to restore endomembrane homeostasis.
4. Phagosomal rupture and cross-
presentation

There are instances when endocytic organelle rupture might
be beneficial and even actively promoted. Presentation of
antigens as peptides bound to major histocompatibility com-
plex (MHC) proteins is a key mechanism by which antigen-
presenting cells (APCs) orchestrate antigen-specific T-cell
immunity [88,89]. MHC class I (MHC-I) predominantly
presents fragments of proteins synthesized by the cell
(endogenous antigens), effectively displaying at the plasma
membrane a representation of that cell’s proteome for perusal
by CD8+ T cells. However, in order to induce effector CD8+

T cells against tumours and some viruses, APCs, such as den-
dritic cells, additionally need to present exogenous antigens
on MHC-I [89,90]. This is known as ‘cross-presentation’
(XP) and its mechanistic basis has been the subject of intense
scrutiny since its discovery more than 40 years ago [91]. Two
main mechanisms have been proposed. In the first, luminal
proteases degrade antigens into peptides that directly bind
MHC-I present in phagosomes [92,93] (reviewed in [94]).
The second proposes that exogenous antigens undergo
phagosome-to-cytosol (P2C) transfer to effectively become
‘endogenous’ antigens. This has been postulated to occur
via specific transporters that translocate polypeptides to the
cytosol [95,96] or by membrane disruption that permits
wholesale disgorgement of phagosomal contents [97,98].
The latter has gained experimental support in recent years
[99–101] revealing a link between inducible phagosomal
rupture and immunity.

A possible connection between disruption of endocytic
organelle membranes and cross-presentation was first pro-
posed as the ‘indigestion’ hypothesis. It suggested that a
subset of phagosomes release their content into the cytosol in
a stochastic manner, allowing access of exogenous antigens to
the endogenous MHC-I processing and presentation
pathway [97,98].While the experiments leading to the ‘indiges-
tion’ hypothesis used inert particles, the notion that vacuolar
compartment rupture associates with cross-presentation has
also been noted during infection. For example, Mycobacterium
tuberculosis or Listeria monocytogenes containing the pore-form-
ing haemolysin, listeriolysin O, can induce permeabilization of
vacuolar membranes to allow bacterial and other exogenous
antigens to be presented by MHC-I [102–104]. Thus, bac-
terial-induced P2C correlates with MHC-I cross-presentation
but whether P2C can be actively induced by the phagocyte
and extends to non-infection scenarios has only been explored
more recently.

An important source of antigens for cross-presentation is
dead tumour or virally infected cells that can be phagocy-
tosed by dendritic cells [105–107]. Dendritic cell subtypes
that take up dead cell debris often express the receptor
DNGR-1 [107], which binds F-actin exposed by the cargo
[108,109]. We have, recently, found a role for DNGR-1 in pro-
moting phagosomal damage to induce cross-presentation of
dead cell-associated antigens [101]. We found that in
response to ligation by F-actin exposed in dead cell remnants,
DNGR-1 in phagosomes signals via the kinase SYK to induce
intense and sustained local activation of the NADPH oxidase
protein complex, which, in phagocytes, includes the NOX2
catalytic subunit. NADPH oxidase activation induces ROS
and increases the probability that some of those phagosomes
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will rupture and permit release of cargo (figure 4) [101].
Notably, the DNGR-1-SYK signalling axis can induce
phagosomal membrane rupture and cross-presentation in
heterologous cells, including non-professional APCs such as
HEK293T cells that have NADPH oxidases, suggesting that
the pathway is latent in multiple cell types but requires
specialized receptors to ‘plug’ into it. Notably, SYK is also
the adaptor kinase for a large number of immunoreceptors
including Fcγ receptors, integrins, C-type lectin receptors,
the B cell receptor and adaptors such as DAP12 and FcRγ
[110]. It is interesting to speculate that additional receptors
that signal via SYK might in some instances couple to the
phagosomal damage pathway described above, perhaps
by engaging the SYK effector, VAV. This might explain
instances of cross-presentation following phagocytosis of
different particle-associated antigens, which has in some
cases been shown to involve a Vav–Rac–NOX2-dependent
cross-presentation pathway [111,112].

Precisely how NADPH oxidase activation within the
phagosome contributes to phagosomal rupture is poorly
understood. ROS produced by NADPH oxidase can directly
damage endocytic organelle membrane lipids to increase
membrane fragility and the probability of rupture [99,100].
Oxidized lipids alter the physical properties of the lipid
bilayers disturbing ion transport, increasing membrane per-
meability, promoting aberrant membrane curvature and
decreasing lateral diffusion of lipids [113,114]. Of note, lipid
peroxidation of the phagosomal membrane has, recently,
been reported by van den Bogaart and colleagues [99,100]
to promote antigen release from endosomes and promote
cross-presentation.
Synchronized rupture of phagosomes and the release of
destructive lysosomal proteases into the cytoplasm is likely
to be toxic and cause cell death [115]. As DNGR-1 is confined
to the early endocytic pathway, its signalling only increases
the rupture probability of early LAMP1− non-degradative pha-
gosomes. This remains a stochastic process and is possibly
offset by repair via ESCRT-III such that only a subset of early
phagosomes may rupture in any given DNGR-1-expressing
dendritic cell at any given time. This may serve to balance
the need for cross-presentation of dead cell-associated antigens
with preventing overwhelming cell toxicity. Following
DNGR-1 engagement, sensors ofmembrane damage including
galectins accumulate on the ruptured phagosomes through
binding to exposed glycans present on the intraluminal side
of the phagosomalmembrane [101]. As discussed above, galec-
tins orchestrate coordinated programmes of repair, removal or
replacement of damaged endo(lyso)somal compartments
[70,84,86,116]. Whether ruptured phagosomes undergo
autophagic removal remains an open question.
5. Applications of endocytic organelle
disruption in medicine

Just as phagosomal rupture may be useful in cross-
presentation, disruption of endocytic organelle membranes
provides a framework for the delivery of therapeutics to
intracellular targets. Many disease-relevant proteins are cyto-
plasmic and, as such, overcoming the rate-limiting step of
exiting the endocytic organelle to reach them remains a key
priority for delivery of drugs that cannot diffuse passively
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across membranes. A range of strategies to induce escape
have been proposed, including mechanical disruption
[117], fusion [118,119], pore formation [120], osmotic pressure
[121], ROS [122], phospholipase activity [123], molecular
transporters [124] and vesicle budding and subsequent col-
lapse [125]. However, translational success has been limited
[124,126,127]. Encapsulation within lipid nanoparticles has
proven successful in recent years for first-in-kind RNA-
based therapies, notably the siRNA therapeutic patsiran
(Onpattro) approved by the FDA in 2018 for the treatment
of hereditary amyloidogenic transthyretin amyloidosis [128]
and the novel class of mRNA-based SARS-CoV-2 vaccines
developed for the COVID-19 pandemic [129]. These lipid
nanoparticles typically comprise an ionizable cationic lipid
thought to interact with negatively charged bilayer lipids to
destabilize endocytic organelle membranes, and three
helper lipids (cholesterol, a PEGylated lipid and a structural
lipid such as distearoylphosphatidylcholine) that improve
stability and augment endocytic organelle escape [130].
Mechanistic understanding of the latter process may well
enable more successful development of new delivery systems
[127]. The finding that DNGR-1 signalling via SYK and
NADPH oxidase promotes P2C [101], for example, suggests
a pathway that could be exploited to enable delivery of
therapeutic macromolecules into the cytosol.

Drug delivery mechanisms will likely need to be
optimized depending on the cargo, endocytic route and tar-
geted cell type [124,131]. Overall, activation of membrane
disruption activity during early endocytic stages would be
preferable in most applications in order to avoid the release
of lysosomal proteases that may trigger cell death [115].
Conversely, transformation is frequently characterized by
changes in lysosomal membrane volume and composition,
rendering cancer cells more vulnerable to lysosomal mem-
brane destabilization [132]. Agents targeting lysosomal
membranes may exhibit preferential cytotoxicity in tumour
cells and be advantageous as anti-cancer drugs.
6. Concluding remarks
Maintenance of endocytic organelle integrity is critical for
normal cellular function. Whether in the steady-state, as a
consequence of invasion by intracellular pathogens, or
because of ingestion of particulate matter, cells that are
unable to maintain endocytic organelle integrity typically
die. Here, we have summarized multiple strategies used by
cells to maintain the integrity of their endocytic compart-
ments. These include regulating membrane tension through
osmotic pumping, alterations in lipid composition and
recruitment of membrane-stabilizing proteins, while in paral-
lel repairing minor damage or, when damage is extensive,
recruiting components of the autophagic machinery to coor-
dinate disposal of broken endocytic organelles. We have
placed emphasis on phagocytes and indicated how their
response to endocytic organelle damage can also differ
depending on the nature of the cell and the cargo. In macro-
phages, the rapid and coordinated repair or removal of
phagocytic or macropinocytic vacuoles containing microbes
can be understood from the perspective of limiting pathogen
dissemination. In dendritic cells, signalling to increase phago-
somal damage may provide a means of coupling recognition
of ‘antigenically interesting’ cargo to the cross-presentation
pathway. We suggest that regulation of endocytic organelle
damage remains an area for future discovery in the fields
of cell biology and immunology with applications for
drug delivery.
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