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Abstract

Objective

In stroke survivors, a treatment-resistant problem is inability to volitionally differentiate

upper limb wrist extension versus flexion. When one intends to extend the wrist, the oppo-

site occurs, wrist flexion, rendering the limb non-functional. Conventional therapeutic

approaches have had limited success in achieving functional recovery of patients with

chronic and severe upper extremity impairments. Functional magnetic resonance imaging

(fMRI) neurofeedback is an emerging strategy that has shown potential for stroke rehabilita-

tion. There is a lack of information regarding unique blood-oxygenation-level dependent

(BOLD) cortical activations uniquely controlling execution of wrist extension versus uniquely

controlling wrist flexion. Therefore, a first step in providing accurate neural feedback and

training to the stroke survivor is to determine the feasibility of classifying (or differentiating)

brain activity uniquely associated with wrist extension from that of wrist flexion, first in

healthy adults.

Approach

We studied brain signal of 10 healthy adults, who performed wrist extension and wrist flexion

during fMRI data acquisition. We selected four types of analyses to study the feasibility of

differentiating brain signal driving wrist extension versus wrist flexion, as follows: 1) general
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linear model (GLM) analysis; 2) support vector machine (SVM) classification; 3) ‘Winner

Take All’; and 4) Relative Dominance.

Results

With these four methods and our data, we found that few voxels were uniquely active during

either wrist extension or wrist flexion. SVM resulted in only minimal classification accuracies.

There was no significant difference in activation magnitude between wrist extension versus

flexion; however, clusters of voxels showed extension signal > flexion signal and other clus-

ters vice versa. Spatial patterns of activation differed among subjects.

Significance

We encountered a number of obstacles to obtaining clear group results in healthy adults.

These obstacles included the following: high variability across healthy adults in all measures

studied; close proximity of uniquely active voxels to voxels that were common to both the

extension and flexion movements; in general, higher magnitude of signal for the voxels com-

mon to both movements versus the magnitude of any given uniquely active voxel for one

type of movement. Our results indicate that greater precision in imaging will be required to

develop a truly effective method for differentiating wrist extension versus wrist flexion from

fMRI data.

Introduction

Wrist movement impairment is common in chronic stroke (6+ months post-stroke), even

after standard therapy is complete. Tasks of daily living require coordinated wrist and forearm

joint movements of flexion-extension, radial-ulnar deviation, and forearm pronation-supina-

tion [1]. In particular, wrist extension is critical to achieving a functional position of the hand

and fingers for grasp and object manipulation during occupational and recreational activities

[2].

Conventional and emerging therapies have had limited success in functional recovery for

patients with chronic or severe motor impairment [3,4]. Our previous work was promising

but required long-duration treatment [5]. Some have studied brain-computer interfaces

(BCIs) to provide neural feedback to stroke survivors attempting to re-learn coordination

[6,7]. BCIs for rehabilitation are designed to drive the reorganization of neural circuits by pro-

viding feedback contingent upon brain activity evoked during motor execution or motor

imagery [8,9].

Electroencephalography (EEG)-based BCIs show some promise and mixed results [10–16].

One limitation of EEG-based BCIs is the lack of spatial precision in identifying and targeting

brain regions for feedback. In contrast, functional MRI provides higher spatial resolution,

potentially enabling a BCI to better identify specific brain regions to employ for motor re-

learning strategies [17]. Though no studies have published recovery of motor control, there is

evidence that fMRI neurofeedback has enabled participants to volitionally regulate their brain

signal from the primary motor cortex [18,19] and pre-motor cortex [20,21]. Stroke survivors

have shown acquired self-modulation of ventral premotor cortex [22] and motor cortico-tha-

lamic communication [23]. These studies are not examples of fine motor learning applications.

Nevertheless, they present initial quantified evidence of participants modifying their brain
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signal in motor-related regions through neural feedback. Based on these initial studies, it is

reasonable to consider that MRI-based BCIs could potentially contribute to improved motor

control. For example, our group studied feasibility of using real time fMRI as the basis of a BCI

system for motor learning after stroke [24]. Though promising, these studies, including our

own, have not solved a number of problems inherent in a brain neural feedback system

designed to improve dyscoordinated movement.

One of those problems is the current treatment-resistant problem in which undesirable co-

contraction of muscles occur which are antagonistic to the desired movement [25] and ineffec-

tive activation and contraction of the desired agonist muscles. For example, after stroke, wrist

coordination is impaired such that the intention and effort to execute wrist extension is char-

acterized by undesired co-contraction of wrist flexor muscles. This is antagonistic to the

intended wrist extension and may result in the opposite movement. Given such motor

impairment, we reasoned that an important motor control re-learning goal is to modulate

accurately the differential activation of wrist extensor versus wrist flexor muscles, for either the

extension or the flexion movement, depending upon the intended task. We further reasoned

that to re-learn such modulated brain control, it would be most informative to the stroke survi-

vor to have a ‘window’ into their own brain activations during intended flexion versus exten-

sion movements of the wrist joint. Therefore, the purpose of this study was to learn if we could

identify differential neural activities distinguishing the simple wrist extension movement from

wrist flexion movements, to improve future studies of image-guided BCI feedback therapy.

Thus, this critical information could serve as the basis for a future neural feedback motor

learning system.

Others have reported the ability to differentiate brain signals of differing movements. With

limited success, others have attempted to utilize electroencephalography (EEG) to differentiate

between both real and imaginary movements of the right wrist [26,27]. Researchers have used

functional magnetic resonance imaging (fMRI) to discriminate between different types of

motor tasks as follows: right-hand actions, according to whether these responses were evoked

using motor imagery or motor execution [28,29]; prediction of handedness using functional

connectivity of primary motor cortex and dorsal premotor cortex [30]; intrinsic versus extrin-

sic action coordinate frames, utilizing isometric wrist extension-flexion [31]. There remains a

gap in the literature in which there has been no establishment of brain signal pattern that can

differentiate simple volitional extension movement of the wrist versus simple volitional flexion

movement of the same joint, a gap that the present study attempts to address in part. This dif-

ferentiation of wrist extension brain signal from wrist flexion brain signal is critical in the

future application of BCI systems to the problem of wrist dyscoordination after stroke.

Therefore, given the potential promise of that information for the stroke survivor attempt-

ing to re-learn wrist coordination and the fact that it is not known how the brain drives per-

fectly modulated wrist extension and wrist flexion in normal adults, we conducted necessary

initial exploratory work in healthy adults to characterize differential brain signal for wrist

extension versus wrist flexion. For this, we selected four models of analysis, each with different

advantages, mainly used in fMRI, and looked to be promising for the future purpose. These

four models were: the univariate analysis, general linear model; multivariate classification anal-

ysis, support vector machine; the winner take all voxel-wise t-statistics; and the voxel-wise rela-

tive percent signal change for action preference.

The purpose of this paper is to describe the methods we used and the results that we

obtained so that others will realize that even more refined approaches are needed to obtain

more definitive conclusions. Using these four models to analyze our group and individual

data, we have gained knowledge about and are presenting the steps required to improve the

design of future studies and increase the likelihood of a future successful outcome.
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Methods

Study design

We acquired functional MRI data from a cohort of healthy participants who performed right

wrist flexion and right wrist extension movements. We applied four different types of off-line

analyses to explore the feasibility of differentiating brain activation patterns for wrist extension

versus wrist extension.

Participants

We enrolled 11 healthy individuals (7 males and 4 females; average age 43.8 ± 22.9 years). All

participants were right-handed except one male. Participants gave written informed consent

prior to the study in accordance with the Declaration of Helsinki. The study was approved by

University of Florida’s human subjects’ protection oversight board.

One female participant (C07) was excluded from further analysis based on an excessive

number of artifacts from head motions. That is, each run had greater than or equal to 46/116

images classified as containing artifacts, as follows: run 1 = 46/116; run 2 = 60/116; run 3 = 58/

116; run 4 = 56/116. The resulting sample size was ten participants.

Procedures and analysis

Behavioral protocol. The fMRI motor task protocol consisted of a blocked design, and

further, each movement was cued within a given block (that is, each of the cued movements

was considered an ‘event’ within the given block. This design is illustrated in Fig 1. We will

refer to this design as a mixed blocked and event-related design. The visual cueing was pro-

vided for each movement at pseudo-random intervals. A first type of task block was defined

as a series of 15 flexion movements. A second type of task block was defined as a series of

15 extension movements. A ‘run’ consisted of two task blocks, with one block containing a

series of 15 repetitions of extension movements and a separate task block containing a

series of 15 repetitions of flexion movements, with a 15 s rest period prior to and after each

block. At least four runs were completed by each participant. Visual instructions were dis-

played at the beginning of a series of either wrist extensions or wrist flexions. During this

instruction period, the participant adopted the forearm posture (pronation or supination)

required for the forthcoming movement series. The motor task was simple, active wrist

extension or flexion, performed against gravity. We selected this motor task for the study

of brain control because it is the task which the stroke survivor must master before pro-

gressing to more complex or more forceful movements. Without the mastery of simple

wrist movement (against only gravity), the stroke survivor is not able to progress to more

functionally relevant motor learning training.

We varied stimulus onset (stimulus onset asynchrony (SOA)) between consecutive move-

ment cues during the motor execution period (6, 8, or 10 seconds), in order to improve charac-

terization of the blood-oxygenation-level dependent (BOLD) response and to minimize

habituation and anticipatory effects (Fig 1 subpanel B).

Imaging protocol. We acquired structural and functional MRI data using a 3 Tesla Philips

Achieva scanner. T1-weighted structural images were acquired [MPRAGE sequence, TE = 3.2

ms; TR = 7.0 ms; flip angle (deg) = 8; matrix size = 240�240; 176 sagittal slices, 1 mm isotropic

voxels]. Functional T2�-weighted echo-planar images were acquired [TE = 30 ms; TR = 3000

ms; SENSE factor = 2; flip angle (deg) = 90; matrix size = 80�80; 43 axial slices; 3 mm isotropic

voxels; 4 ‘dummy’ + 116 acquired images per run (6 min)]. Dummy images at the beginning of

each run allowed the magnetization to reach steady-state and were subsequently discarded.
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Regions of interest (ROI) for between-subject comparisons were obtained in MNI common

coordinates from the Human Motor Area Template (HMAT). ROI’s included the following:

each hemisphere’s primary motor area (M1), primary somatosensory area (S1), dorsal premo-

tor cortex (PMd) and ventral premotor cortex (PMv), supplementary motor area (SMA) and

pre-supplementary motor area (pre-SMA) [32]. We used locations and boundaries of these

regions that were previously established by others and reported in a meta-analysis utilizing

activation likelihood estimation (ALE) from 126 papers that had used motor tasks and

reported activation foci from any combination of the six motor-related cortices [32]. These

regions were investigated based on their putative functions [33], and have been reported on

extensively in the literature. Additionally, activation of contralateral primary motor and ven-

tral premotor regions have been associated with wrist extension-flexion movements [31].

In addition, for within-subject analyses we investigated Brodmann areas (BA) BA3 (pri-

mary somatosensory cortex), BA4 (primary motor cortex), and BA6 (premotor and supple-

mentary motor cortex) using masks derived from participant-specific cortical parcellations

generated by FreeSurfer [34]. The participant-specific BA4 masks were further subdivided by

identifying each hemisphere’s “hand knob”, using the criteria of Yousry, et al. [35]. The pur-

pose of subdividing BA4 in this fashion was to better localize fMRI activations within the

somatotopic organization of primary motor cortices [36], inasmuch as activations related to

wrist-activity are often found within or near the margin of the “hand knob”.

Fig 1. Study design. Panel A. Arm positions used for wrist extension and wrist flexion movements. Right wrist extension

executed against gravity: The forearm was pronated and a foam wedge positioned the elbow flexed 30 deg. Right wrist flexion

against gravity: The forearm was supinated, with the elbow positioned in 30 degrees of elbow flexion. Each repetition of the

motor task was cued by the word “Go” appearing on the screen, and the movement end-point (e.g., full wrist extension) was

instructed to be held for 1 sec, after which time the instruction on the screen changed to a fixation figure, and the participant

lowered the hand to the start position. Panel B. Blocked data acquisition design, with each movement cued within a given

block, for one run of the wrist movement task. The upper part of panel B shows the sequence of rest, instruction, and

execution periods. The lower part of panel B shows a detailed subsample of a motor execution series on an expanded time

scale. In this subsample, movement events are cued at pseudo-random intervals.

https://doi.org/10.1371/journal.pone.0254338.g001
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We applied four different signal analysis methods to assess their usefulness in differentiat-

ing wrist extension from wrist flexion: 1) general linear model (GLM) analysis; 2) support vec-

tor machine (SVM) classification; 3) ‘Winner Take All’; and 4) Relative Dominance.

Univariate analysis; general linear model, first type of analysis used. Statistical Parametric

Mapping 12 (SPM12; Wellcome Trust Centre for Neuroimaging, UCL, UK) running on

MATLAB R2015a (MathWorks Inc., Natick, MA) was used to preprocess and analyze func-

tional MRI data. The functional images were realigned, slice-time corrected, and co-registered

to the participant’s T1-weighted structural image. The Artifact Detection Tool (https://www.

nitrc.org/projects/artifact_detect/) was used to identify global mean signal outliers and motion

artifacts. Global mean signal outliers were defined as images having standard scores exceeding

Z = 3. Motion artifacts were defined as those images that exceeded thresholds of 0.9 mm fra-

mewise translational or 0.01 radian rotational displacement [37]. Hereafter, we shall refer to

the combination of global mean signal outliers and motion artifacts as artifacts.

The number of motor trials available for analysis for each participant, before artifact rejec-

tion, was at least 120 (60 for wrist flexion and 60 for wrist extension) except for one participant

who had 90 trials (45 for wrist flexion and 45 for wrist extension) due to a corrupted data file

during one run.

Spatial normalization was performed to bring the functional images into Montreal Neuro-

logical Institute (MNI; voxel-size 3mm x 3mm x 3mm) space for group analysis. A Gaussian

filter of 6mm full-width half maximum was used for spatial smoothing [38] to mitigate

remaining individual variations. Wrist extension-flexion onsets were convolved with SPM’s

canonical HRF basis set to create regressors for the two conditions. Confound regressors

included six head motion parameters generated from the rigid-body transformation of the

realignment procedure and the confound matrix generated by the Artifact Detection Tool,

which includes separate regressors for each timepoint that is considered an artifact. A high-

pass filter was implemented using the discrete cosine transform (DCT) with a default cut-off

of 128 seconds. Based on the general linear model (GLM), we derived t-statistic maps for the

following contrasts: wrist flexion versus rest, wrist extension versus rest, and wrist extension

versus wrist flexion. Group-level images were assessed for cluster-wise significance using a

forming threshold of p< 0.001 uncorrected and p< 0.05 family-wise-error (FWE) corrected

critical cluster size.

Multivariate classification analysis; Support Vector Machine (SVM) classification; sec-

ond type of analysis used. In contrast to the GLM univariate approach, multi-voxel pattern

analysis considers data from multiple voxels, considering spatial patterns of activity. We used

both the PRoNTo software package [39] and the MANAS (v4) software toolbox [40,41] for

performing offline classification of fMRI signals. We report only the findings from the

MANAS software analysis because Pronto results were similar. Support Vector Machine

(SVM) was used as the classifier [42], as it has been shown to be a robust method of classifica-

tion when applied to fMRI data [43].

We report classification results using acquisition-space (realigned and slice-time corrected)

as well as spatially normalized (realigned, slice-time corrected, normalized to MNI coordi-

nates) BOLD fMRI timeseries. We accounted for the delay and dispersion of the hemodynamic

response. We specified a parameter to delay signal onsets to account for the time-to-peak of

the hemodynamic response after stimulus presentation. This delay was set to 6s [39]. Prepro-

cessing consisted of artifact rejection as described for the univariate analysis as well as high-

pass filtering to remove signal drift and low frequency noise from the fMRI time series before

subsequent feature selection and classification steps. High-pass filtering was performed using a

non-linear filter as proposed by Marchini and Ripley [44] and implemented in FSL [45]. This

approach fits and removes a linear regression (Gaussian-weighted line of fixed width) and has
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been found robust in trend removal [46]. Given the randomized SOA, we set the width of this

Gaussian (full-width half-maximum) as 80 TRs, which corresponds roughly to 1.5 times the

length of one motor action block. Trend removal using the same DCT approach as with uni-

variate analysis above was not available in the MANAS software package. However, the periods

of the two detrending methods are similar (128-s cut-off DCT for univariate and 240-s (80

TRs, 3-s TR) full half-height width Gaussian filter for multivariate), and both attenuate fre-

quencies (drifts) below about 0.01 Hz. Neuronal activation (BOLD) frequencies are an order

of magnitude higher, theoretically centered around the reciprocal of the average interval (8 s)

between consecutive motor cues, or about 0.125 Hz. Thus, the small differences in detrending

method cut-offs are inconsequential to BOLD signal detection;

The selection of features, i.e. dependent variables, consisted of (1) inclusive masking of vox-

els in the region(s) of interest followed by (2) extracting features (BOLD signal values) corre-

sponding to wrist extension or wrist flexion and (3) ranking of features determined by mutual

information. A threshold based on the maximum number of features was then applied to

return the most relevant subset of voxels for classification. The maximum number of features

was chosen to be 2000.

Model specification and evaluation was performed within participant. Performance of clas-

sification models was evaluated using 10-fold cross-validation to determine accuracy, sensitiv-

ity and specificity. Ten-fold cross-validation is a technique to evaluate a classification model by

partitioning the data into a training set to train the model, and an independent test set to eval-

uate the model.

Functional maps of wrist action preference. “Winner take all” based on t-statistic; third
type of analysis used. To identify the voxel-wise dominance for either wrist extension or flex-

ion, we employed a “winner take all” approach [47]. Only if a given voxel survived a threshold

of p< 0.001 (uncorrected) in the ‘wrist flexion versus rest’ or ‘wrist extension versus rest’ con-

trast was it considered for WTA analysis such that for each suprathreshold activated voxel the

winning movement corresponded to the movement with the larger t statistic. Using this crite-

rion, even if flexion and extension returned similar t values, one was always larger than the

other, and a winning movement could be defined. Each voxel was assigned a label based on

the winning movement. Label maps were created in MNI coordinate for both extension and

flexion actions for each participant.

Spatial probability maps for both extension and flexion were based on a voxel-wise sum of

the WTA label across subjects. Frequency estimates of the between-subjects probability that

each voxel was dominant for a given condition were constructed in the MNI coordinate sys-

tem by counting the number of times that a label occurred at a given voxel in this common

space across all participants. Therefore, each activated voxel was assigned a value ranging from

1 to 10 (the total number of participants), which represents the between-subject probability

that the voxel was dominant for a given condition. In addition to these spatial probability

maps, the Jaccard similarity coefficient, which represents the degree of overlap of label sets,

was used to assess the similarity of maps across participants. Jaccard similarity is the ratio of

intersection to union.

Relative dominance based on percent signal change; fourth type of analysis used. In a study by

Huber et. al., the difference in percent signal change between experimental conditions was

used to determine each voxel’s relative dominance for one condition versus the other [48].

After all images were realigned and slice-time corrected using SPM12, linear de-trending was

performed and the difference in percent signal change between flexion and extension was cal-

culated on a per voxel basis. Baseline values were calculated using median values of the preced-

ing and the subsequent rest periods, which medians were then averaged. This was done to
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minimize effects of residual drift. Within-session averages were calculated voxel-wise for each

participant.

Run-to-run reproducibility within sessions was assessed using a technique similar to the

WTA approach. Each voxel was assigned a label based on the sign of the difference between

extension and flexion in terms of percent signal change. Those voxels exhibiting greater per-

cent signal change during the extension condition were assigned a value of 1, and 0 was

assigned otherwise. Voxel-wise sums across runs were compared to binomial distributions

representing the null hypothesis of random assignment.

Results

Summary of results from the four selected analysis models

The Univariate analysis, General Linear Model was the first group-level analysis model we

applied to the problem. We selected this method as the first model because of its demonstrated

sensitivity for identifying fMRI activations in a wide breadth of other applications.

This model did not prove useful in differentiating wrist extension from wrist flexion with

our data. The disadvantages of this model included a lack of specialization for differentially

classifying wrist extension from wrist flexion according to features of spatial and temporal pat-

terns of brain activity. These features were not known in advance, and thus, for this model,

they could not be specified.

Multivariate classification analysis, Support Vector Machine was the second model we

applied to the problem. We selected this machine learning method because of its relatively

greater sophistication for classifying activations by considering initially unknown spatial-tem-

poral patterns of activity, the predictive features of which were estimated from training on sub-

sets of the data.

Discriminant analysis with support vectors has different strengths and weaknesses com-

pared to the initial GLM analysis, but this second model did not inform us as desired with our

data. This method is traditionally used for group-level analysis. Group level analysis often has

the disadvantage that it blurs rather than sharpens fine patterns evident within the individual

subjects’ data.

The Winner Take All based on equivalent t statistic, was the third model that we applied to

the problem. We selected this model because of its capability to select, voxel-wise, the domi-

nance of activation for either wrist extension or wrist flexion, applied to observation of indi-

vidual subject spatial activation patterns. Winner Take All is a non-linear figure of merit

representing the larger of extension-related and flexion-related equivalent t statistics for each

voxel.

This model did not uncover a consistent spatial pattern across subjects to differentiate sim-

ple wrist extension from wrist flexion with our data. Given the lack of desired result with this

model and its statistical operations that were applied to the data, we determined that a more

direct approach may have merit. It was reasonable to consider the potential of using simply the

acquired BOLD percent signal change as the brain signal measure, without any modification

by any further statistical considerations.

The Percent Signal Change for Action Preference was the fourth model that we applied to

the problem. We selected this model next because it is a direct approach using percent signal

change to generate voxel-wise figures of merit representing action preference (wrist extension

or flexion). This model also did not uncover a consistent spatial pattern across subjects to dif-

ferentiate simple wrist extension from wrist flexion with our data.
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Univariate analysis results; first type of analysis

In preparation for group level analysis, we generated and visually inspected activation maps

for each participant during wrist extension and wrist flexion. We observed high individual var-

iability in brain activation patterns for both wrist extension and wrist flexion. In individual

data, voxels could readily be identified in motor cortices which behaved significantly differ-

ently during wrist extension versus rest or during wrist flexion versus rest. On average, flex-

ion-related activation volumes exceeded extension-related activation volumes, but a greater

number of voxels were common between these wrist actions. In brain maps for any given indi-

vidual, these unique voxels were closely adjacent to voxels that were common to wrist exten-

sion and flexion, and the uniquely active voxels appeared to be of lesser volume versus the

common voxels.

Fig 2 shows group univariate GLM results for all active voxels during either wrist extension

or wrist flexion. Fig 2 illustrates the spatial patterns of activation (cluster-wise significance of

p< 0.001, FWE p< 0.05). Fig 2 Panels A/B show, for wrist extension, all brain spatial pattern

activations. Panels C/D show, for wrist flexion, all activation patterns.

Fig 3 shows group results of uniquely active brain signal for either extension or flexion as

well as the brain signal common during both extension and flexion. Group-level t-statistic

images were created in MNI coordinates for the following contrasts: wrist extension versus

rest, wrist flexion versus rest, and wrist flexion versus wrist extension. Panels A/B show one

Fig 2. Group-level GLM activation maps for the wrist extension movement and for the wrist flexion movement. Panels A/B show spatial

brain activation for wrist extension (extension movement–rest). Panels C/D show spatial brain activation for wrist flexion (flexion movement–

rest). Images were assessed for cluster-wise significance using a forming threshold of p< 0.001 uncorrected (p< 0.05 FWE-corrected). Critical

cluster sizes were 702 mm3 and 945 mm3 for wrist extension and wrist flexion, respectively. Color bar for the t-statistics shows the gradient from

the lowest to the highest values.

https://doi.org/10.1371/journal.pone.0254338.g002
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statistical map containing unique brain activations during extension only (red) and unique

brain activations during flexion only (blue), as well as the brain activations common during

extension and flexion (purple). Panels C/D illustrate the lack of results from calculating the sta-

tistically significant difference of greater brain activation during extension than during flexion.

Fig 3, Panels C/D shows that no regions (no red or no blue regions) survived the statistical sig-

nificance test.

These contrasts show a high degree of spatial overlap, as illustrated in Fig 3 Panels A/B.

Additionally, wrist extension and wrist flexion were directly compared at the group-level

(shown in Fig 3 Panels C/D). The group average reveals no significant difference between

wrist extension and wrist flexion in either direction: wrist extension > wrist flexion or wrist

flexion > wrist extension.

Shown in Table 1, we identified the total volume of activation within each region of interest.

The greatest volumes of activation were found within the left primary motor cortex (M1) and

primary somatosensory cortex (S1) regions, consistent with actions of the right wrist. The

mean volume of activation across participants was greater in the left hemisphere (contralateral

to the moving arm) than the ipsilateral hemisphere for most regions with two exceptions: (1)

Fig 3. Group-level GLM activation maps showing unique brain activation spatial patterns during the wrist extension movement (red),

unique activation during wrist flexion movement (blue), and shared activation patterns during extension and flexion. Group-level t-

statistic images were created in MNI coordinates for the following contrasts: Wrist extension versus rest, wrist flexion versus rest, and wrist

flexion versus wrist extension. Panels A and B show one statistical map containing unique brain activations during wrist extension only

(red) and unique activations during wrist flexion only (blue), as well as brain activations shared in common during extension and flexion. t-

statistic images were assessed for cluster-wise significance using a forming threshold corresponding to p< 0.001. Critical cluster sizes were

702 mm3 and 945 mm3 for wrist extension and wrist flexion, respectively. Panels C and D illustrate the lack of results from calculating the

statistically significant difference of greater brain activation during extension versus that during flexion. Fig 3, Panels C/D shows that no

regions (no red or no blue regions) survived the statistical significance test.

https://doi.org/10.1371/journal.pone.0254338.g003
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pre-SMA cortex, and (2) ventral premotor cortex evaluated with the wrist flexion versus rest

contrast. Regional activation volumes were not compared statistically. We noticed substantial

volume variation across participants for both contrasts.

We found that there is a wide variability across healthy adults in terms of their patterns of

brain activation, even during the simple tasks of active wrist extension movement and active

wrist flexion movement (no resistance, except gravity). Some participants exhibited quite dif-

ferent brain activation patterns during wrist extension versus wrist flexion, with different tis-

sue volumes activated exclusively by one but not the other movement. Thus, in the left

primary motor hand knob region, 6/10 participants exhibited volume of activation that was

exclusively activated by either extension or flexion; that is, these volumes of activation were

not shared across extension and flexion movements. Further, 30% of those subjects had no

shared volume of activation at all. In contrast, three participants (3/10) exhibited in the left,

hand knob region only ‘shared’ volume of activation during flexion and extension, that is, no

unique activations. In the left pre-motor cortex, exclusively activated volume of activation for

the extension movement were found in 7/10 participants; and for the flexion movement, exclu-

sive activations were found in 8/10 participants.

Multivariate classification analysis results; second type of analysis

Spatially normalized fMRI input. We report classification accuracy, sensitivity, and specific-

ity associated with discriminating wrist extension and wrist flexion using images realigned,

slice-time corrected, and normalized to MNI coordinates. One potential benefit of using spa-

tially normalized images is it enables a participant-independent classifier [41].

Classification performance was calculated per participant using 10-fold cross validation.

Accuracy, sensitivity, and specificity were used to assess the performance of classification

between wrist flexion and extension. Instances (trials) of wrist flexion and wrist extension

Table 1. Volumes (mm3) of activated voxels calculated from within-participant univariate analysis in MNI coor-

dinates, averaged across participants.

Brain Regions Extension (mm3) Flexion (mm3)

Mean SD Mean SD

M1 R 473 977 1726 3327

M1 L 5859 3980 6888 4717

S1 R 862 1491 1205 1833

S1 L 4909 3606 5025 3715

SMA R 1421 1513 1812 1640

SMA L 2841 2299 3238 2238

preSMA R 1523 1742 1410 1032

preSMA L 1072 1240 1194 1056

PMd R 897 1694 1477 2182

PMd L 2163 1954 2476 1741

PMv R 1129 1724 1637 2108

PMv L 1191 982 1450 1740

Activations were assessed using a cluster forming threshold of p < 0.001 uncorrected, FWE p < 0.05 cluster size

correction for wrist extension> rest and wrist flexion > rest contrasts. Brain ROIs are from the Human Motor Area

Template. In all ROIs except preSMA in right hemisphere, mean activation volumes for flexion exceeded

corresponding mean activation volumes for extension. Transformation to MNI coordinates can distort voxel

volumes; however, such distortions are unlikely to differentially affect extension-related versus flexion-related voxels

due to their close proximities.

https://doi.org/10.1371/journal.pone.0254338.t001
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executions were randomly partitioned into 10 folds. Training the classifier was conducted on 9

folds, followed by testing (prediction), which was conducted on the remaining 10th fold. Each

fold was then evaluated. One advantage of the k-fold cross-validation is that it can account for

variability between runs by permitting time series collected in the same run to be split such

that one subset of instances is incorporated in the training folds, while a different subset of

instances is included in the test fold.

We evaluated all regions incorporated by the Human Motor Area Template (HMAT)

including a union of all region masks into a large single mask. Table 2 incorporates the top 3

HMAT regions based on mean accuracy across participants. These regions are the left S1, left

ventral premotor cortex (PMv), and left M1 with accuracies of 65.9%, 62.5%, and 61.7%,

respectively.

Fig 4 reports the multivariate classification accuracy, sensitivity, and specificity across all

HMAT regions, including the union of HMAT regions. Accuracy, sensitivity, and specificity

track closely across the regions of interest.

Native acquisition image fMRI input. To investigate whether multivariate classifier

model performance could be improved by using a participant-dependent classifier, we per-

formed the same multivariate analysis above in each participant’s native image acquisition

space. We created participant-specific region masks based on BA3, BA4, and BA6 utilizing

FreeSurfer. The participant-specific BA4 masks were further subdivided into participant- and

hemisphere-specific BA4 “hand knob” masks using the criteria of Yousry, et al [35]. These

masks were intended to provide more precise and anatomically accurate representations of the

regions of interest than the Human Motor Area Template applied to brain images transformed

into MNI common coordinates. By forgoing this spatial normalization step, a further benefit is

less interpolation applied to the fMRI data.

Classification accuracy, sensitivity, and specificity were calculated per participant using

10-fold cross validation (Table 3 and Fig 5). The top 3 regions based on mean accuracy were

the right BA6, left BA6, and left “hand knob” with mean accuracies of 61.5%, 59.3%, and

59.2%, respectively. Similar to the spatially normalized images, the accuracy, sensitivity, and

specificity track closely across the regions of interest.

Table 2. Top 3 regional accuracies within the Human Motor Area Template (HMAT) and accuracy when using all

regions (HMAT union).

Subject Accuracy (%)

Left S1 Left PMv Left M1 HMAT Union

01 66.0 44.1 43.4 44.9

02 44.3 47.2 53.1 46.8

03 75.7 69.9 73.8 75.3

04 68.3 75.3 71.9 76.7

05 59.3 64.6 70.0 69.4

06 76.4 75.8 70.7 79.8

08 60.2 58.3 48.7 62.3

09 60.3 62.5 58.9 62.8

10 67.4 61.4 62.2 59.9

11 80.8 66.2 64.6 73.9

Mean (SD) 65.9 (10.6) 62.5 (10.6) 61.7 (10.5) 65.2 (12.2)

An SVM was trained to differentiate wrist extension and flexion using spatially normalized images (realigned, slice-

time corrected, transformed to MNI space) evaluated using 10-fold cross validation.

https://doi.org/10.1371/journal.pone.0254338.t002
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Fig 4. MNI-space images: Regional classifier performance in terms of accuracy, sensitivity, and specificity. We evaluated all regions incorporated by the Human

Motor Area Template (HMAT). ROI’s for both hemispheres included the following: Primary motor area (M1), primary somatosensory area (S1), dorsal premotor cortex

(PMd), ventral premotor cortex (PMv), supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA). An additional ROI was the union of all

HMAT masks into a single large mask (union HMAT). Table 2. Report of the top 3 regional accuracies within the Human Motor Area Template (HMAT), as well as

from a union of all HMAT regions, for an SVM trained to differentiate wrist extension and flexion using spatially normalized images (realigned, slice-time corrected,

and transformed to MNI coordinates) evaluated using 10-fold cross validation.

https://doi.org/10.1371/journal.pone.0254338.g004

Table 3. Report of the top 3 regional accuracies from participant-specific hemisphere-specific Brodmann’s areas

masks, as well as a union of masks consisting of bilateral BA 3, 4, and 6.

Subject Accuracy (%)

R BA6 L BA6 L HB BA Union

01 46.6 52.4 55.0 47.0

02 46.7 39.0 50.6 43.0

03 67.7 64.2 70.2 68.6

04 64.5 53.0 57.3 71.0

05 66.6 69.5 57.9 66.0

06 80.6 73.2 57.0 78.2

08 46.1 56.4 56.2 53.0

09 61.2 54.4 60.2 60.2

10 63.3 64.6 58.1 61.8

11 72.1 66.4 69.5 68.1

Mean (SD) 61.5 (11.7) 59.3 (10.2) 59.2 (6.15) 61.7 (11.1)

The SVM was trained to differentiate wrist extension and flexion using acquisition-space images (realigned, slice-

time corrected) evaluated using 10-fold cross validation.

https://doi.org/10.1371/journal.pone.0254338.t003
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Functional maps of wrist action preference

“Winner take all” based on t-statistic, results; third type of analysis. Results of the

“winner take all” (WTA) rule for relative magnitude of the t-statistics contrasting action to rest

are shown in Figs 6 and 7. This analysis does not directly contrast extension versus flexion for

significant differences in activation levels. Fig 6 shows histograms comparing relative frequen-

cies of WTA for wrist extension and WTA for flexion presented in separate panels for each left

hemisphere region of interest (ROI). Ordinate height of each bar plots how many activated

voxels (p< 0 .001 uncorrected) in MNI common space possess the same label across partici-

pants, as a function of how many participants shared that label as shown on the abscissa. For

ease of comparison across ROIs, the ordinate heights across the six panels of Fig 6 are scaled as

proportions of the total number of voxels in each respective ROI. In all six panels, moderate

percentages of ROI voxels (19%– 29%) were labeled as extension WTA or as flexion WTA for

only 1 out of the possible 10 participants (not the same individual for all voxels). These acti-

vated voxels were located inconsistently between subjects, and in five ROIs (not left S1) more

such inconsistently located voxels preferred extension than preferred flexion. No voxel in any

panel had complete consistency in sharing the same label across all 10 participants. However,

the left M1 ROI (upper left panel) exhibited percentages of voxels preferring flexion in 3 to 8

out of the 10 participants which exceeded the percentages of voxels preferring extension. This

Fig 5. Acquisition-space images: Regional classifier performance in terms of accuracy, sensitivity, and specificity. Brodmann’s areas ROI masks were derived from

participant-specific cortical parcellations of native acquisition images, ROIs were investigated in both hemispheres for primary somatosensory cortex (BA3), primary

motor cortex (BA4), and pre-motor and supplementary motor areas (BA6). The participant-specific BA4 masks were further subdivided into participant- and

hemisphere-specific “hand knob” masks (BA4-HB).

https://doi.org/10.1371/journal.pone.0254338.g005
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pattern also exists in the other five ROIs shown, and it indicates a moderately consistent loca-

tion preference for flexion wrist action.

Fig 7 illustrates box plots of the spatial similarity of both the extension and flexion WTA

labels as estimated by the Jaccard similarity coefficient, which is based on the degree of overlap

calculated as the ratio of intersection to union of the label sets. Each plotted point in Fig 7 rep-

resents the similarity coefficient of two label maps in MNI common space derived for the same

wrist action but from different participants. The higher the similarity, the closer the Jaccard

coefficient is to 1. Regions with relatively high similarity coefficients include the left M1 (flex-

ion), left S1 (flexion and extension), and left SMA (flexion). Fig 7 compliments the histograms

presented in Fig 6 by providing information about the spatial arrangement of different partici-

pants’ maps for both the extension and flexion conditions. By revealing a relatively high degree

of similarity for the spatial arrangement of flexion labels in the left M1, Fig 7 supports the

notion that left M1 location preferentially codes for wrist flexion. In addition, the left S1 region

appears to have location consistency (up to 6 out of 10 participants) preferentially coding for

flexion and for extension.

Action preference (wrist extension vs flexion) based on percent signal change (move-

ment—rest), results; fourth type of analysis. Huber et. al., used the difference in brain sig-

nal for two different movement actions to determine a region’s preference for one condition

relative to the other [48]. The variable that they used was percent signal change (movement–

rest) for each of the movement tasks. We performed similar calculations.

Fig 6. Histograms comparing wrist extension (black bars) and wrist flexion (white bars) for how many activated voxels (p< 0.001, uncorrected) shared

the indicated “winner-take-all” action preference as a function of the number of participants sharing that voxel. Ordinate height of each bar represents a

count of activated voxels (scaled as percentage of all voxels in the selected ROI) that share the same action preference across a given number of participants.

Voxels were counted across all participants, using the MNI coordinate system as a common space. The “winner take all” criterion for action preference

evaluated which action produced the larger t-statistic in each activated voxel. Different panels present results for the six left hemisphere ROIs from the Human

Motor Area Template (top row: left M1, left S1, left SMA; bottom row: left dorsal premotor, left ventral premotor, left pre-SMA).

https://doi.org/10.1371/journal.pone.0254338.g006
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For a given participant, the average of the difference between extension and flexion was cal-

culated, according to the variable of percent signal change during extension (extension–rest)

or flexion (flexion minus rest). Fig 8 displays an example, for Subject 1, in the form of a heat

map for activated voxels, t-statistic threshold p< 0.001 (uncorrected) (Data for the remaining

subjects are located in the S1 File, Fig 8). The heat map is projected onto the left hemisphere

cortical surface for the BA4 (primary motor) and BA3 (primary somatosensory) ROIs. For ref-

erence, we included a black outline of each participant’s primary motor “hand knob” to help

orient the reader to the cortical surface view. Although we cannot pinpoint a unifying feature

across participants, moderately non-random patterns of warm and cool colors in each partici-

pant’s heat map may suggest spatial organization oriented to extension- or flexion-related acti-

vations, respectively. Both the motor and somatosensory ROIs generally co-localize for wrist

flexion preference (cool colors of blue/aqua). Somatosensory ROIs seem to co-localize for

wrist extension preference (warm colors yellow/red) in participants C02, C04, C05, C08, and

C09; motor ROIs apparently do so in participants C01 and C03.

Run-to-run reproducibility of these heat maps was assessed using within-session runs in

each participant’s native image acquisition space. Each activated voxel (p< 0.001 uncorrected)

was assigned a label based on the sign of the difference between extension percent signal

change and flexion percent signal change. Voxels exhibiting a greater percent signal change

from rest during extension (versus change from rest during flexion) were assigned a label

value of 1, and 0 was assigned as label value otherwise (mutually exclusive outcomes). Fre-

quency estimates for the between-runs extension preference consistency of each voxel were

Fig 7. Box plots of the Jaccard index of similarity between pairs of participants’ sets of activated voxels preferring wrist extension or wrist flexion, as

evaluated by which action yielded the larger t-statistic. Each Jaccard index of similarity evaluates degree of overlap for two sets of voxel coordinates by

calculating the ratio of intersection to union of the sets. For total overlap of two sets, the intersection equals the union so the Jaccard index is 1. Each point

represents the index of similarity for voxel sets in MNI common coordinates, derived for the same wrist action, obtained from different participants. All

possible pairwise comparisons of the 10 participants are shown. Different panels present results for the six left hemisphere ROIs from the Human Motor Area

Template (top row: left M1, left S1, left SMA; bottom row: left dorsal premotor, left ventral premotor, left pre-SMA).

https://doi.org/10.1371/journal.pone.0254338.g007
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calculated as the voxel-wise sum across runs of its labels [0,1]. This sum ranged from 0, which

indicated consistent flexion preference throughout, to the total number of runs (which varied

by participant), which indicated consistent extension preference throughout.

Fig 8. Subject 1 example heat map of wrist action preference (remaining individual subject data are located in the S1 File). Surface projections

of native acquisition images show left primary motor (L BA4ap) and left primary somatosensory (L BA3ab) to illustrate co-localization of voxel

preferences for extension (yellow/red) and flexion (blue/aqua), as determined by the difference in percent signal change from rest. The cortical

surface of the hand knob is outlined in black. Functional percent signal change was calculated for all voxel time courses. The wrist extension

reference was calculated as 100 X (extension signal—baseline)/baseline; and the flexion reference was 100 X (flexion signal—baseline)/baseline.

The extension and flexion signals were calculated as the mean voxel time course over the movement condition (averaged across all trials). The

baseline values were calculated using the median value of the preceding and the subsequent rest periods, which were then averaged, to minimize

effects of residual drift. Difference between extension and flexion was calculated for each run. Voxels were filtered using a union of t-maps for

’wrist extension versus rest’ and ’wrist flexion versus rest’ (i.e., active voxels for wrist extension, wrist flexion, or both; t threshold, p< 0.001

uncorrected, such that only suprathreshold activated voxels were considered for further analysis. Session average was the mean of the derived

extension-flexion percent signal change across runs within the session.

https://doi.org/10.1371/journal.pone.0254338.g008
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An example histogram is, shown in Fig 9 for Subject 1 (all other individual subject data are

located in the S2 File, Fig 9). Fig 9 shows data for both the left primary motor cortex (L BA4ap)

and the left primary somatosensory cortex (BA3ab). Ordinate height of the white bars shows

the percentage of voxels in these two ROIs that showed greater activity during wrist extension

than during wrist flexion (p< 0 .001 uncorrected). This information is shown in Fig 9 for Sub-

ject 1, for each of the runs during data acquisition, with each run listed on the abscissa of Fig 9.

Black bars show for comparison the corresponding binomial distributions that would be

expected given randomly assigned mutually exclusive preference labels if no true preference

for extension or flexion existed (i.e., the null hypothesis). The observed data for participants

C01, C02, C03, C04, C09, C10, and C11 appear to have more voxels showing extension prefer-

ence in only a few runs (white bar taller than the associated black bar). Observed frequencies

differed significantly from binomial distributions (p< 0.05, Kolmogorov-Smirnov tests) for

C01, C02, C03, C04, and C11.

These within-subject action preferences for activations obtained from native image acquisi-

tions with percent signal change comparisons are congruent with the between-subjects

Fig 9. Histograms for left primary motor and somatosensory cortices combined. Ordinate height of the white bars

represents a count of activated voxels (p< 0 .001 uncorrected; scaled as percentage of all voxels in the selected ROIs)

that showed larger percent signal change during wrist extension than during wrist flexion. These counts are plotted as

a function of the number of within-session data collection runs for which extension action preference was exhibited.

Black bars show for comparison the corresponding binomial distributions that would be expected given randomly

assigned mutually exclusive preference labels if no true preference for extension or flexion existed (i.e., the null

hypothesis). Different panels present results for the 10 participants, ordered by participant ID left to right and top to

bottom. Note a trend for white bars to be taller than black bars in the left half of the plots, white bars to be shorter than

black bars in the right half of the plots. For five participants (C01, C02, C03, C04, C11), observed frequencies differed

significantly from binomial distributions (Kolmogorov-Smirnov tests, p< 0.05).

https://doi.org/10.1371/journal.pone.0254338.g009
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“winner take all” analysis based on MNI common coordinate transformations and t-statistic

comparisons. Both analyses show more consistent flexion preference than extension prefer-

ence. Color concentrations on the within-session heat maps (Fig 8) are qualitatively consistent

with the between-runs histograms of Fig 9 inasmuch as flexion preferences (cool colors) are

more evident on the cortical surface maps and more consistent across runs for most partici-

pants. Larger mean activation volumes across participants for flexion versus rest than for

extension versus rest were found (Table 2). Imbalances in these features of cortical activations

favor flexion over extension.

Discussion

These results contribute to the literature in three ways. First, to our knowledge, this is the first

study to directly investigate fMRI activations inferred from the hemodynamic response pat-

terns of cortical tissue while wrist flexion and wrist extension were being performed in an

active movement paradigm, i.e. an movement opposed only by gravity, changing muscle

length and joint angle. Second, this study is the first to report on the capability of Support Vec-

tor Machines (SVM) to discriminate patterns of brain activity associated with two functional

movements performed about the same joint, and to discuss its potential for use in a real-time

neurofeedback paradigm aimed at rehabilitation. Third, this study reports results and detailed

methods for several different signal processing methods for characterizing brain signals for

single joint wrist flexion and extension movements.

We explored the capability of four different signal processing methods to differentiate fMRI

signals during healthy adult wrist extension versus wrist flexion in the same limb, inasmuch as

such knowledge could provide an important step towards building a neurorehabilitation tool

for restoring coordinated wrist movements in stroke survivors who are unable to differentially

control those two movements. A number of findings reflect the difficulty in differentiating the

neural control for these two wrist movements. In healthy adults, we found high individual var-

iability in brain pattern activation for both wrist extension and wrist flexion. In brain maps for

any given individual, voxels could readily be identified in motor cortices which behaved signif-

icantly differently during wrist extension versus rest or during wrist flexion versus rest. In

most participants, we observed flexion-related activation volumes exceeded extension-related

activation volumes, but a greater number of voxels were common between these two wrist

actions. And to further complicate matters, the unique voxels were closely adjacent to voxels

that were common to both wrist movements, and further, the uniquely active voxels appeared

to be of much lesser volume versus the voxels that were common to both wrist and extension

movements. These findings may explain the difficulty in producing high accuracy and sensitiv-

ity in the group analyses and in the classification methods.

Univariate group-level analysis

We used the widely accepted methods of univariate analysis for fMRI activations, specifically,

application of the general linear model to generate statistical parametric maps reflecting hemo-

dynamic time courses. Voxels could readily be identified in motor cortices which behaved sig-

nificantly differently during wrist extension versus rest, or behaved significantly differently

during wrist flexion versus rest. On average, flexion-related activation volumes exceeded

extension-related activation volumes. For some participants, some voxels in some ROIs were

activated exclusively by extension but not by flexion (or vice versa). However, in group-level

analysis, our methods were not able to identify unique classes of voxels which behaved signifi-

cantly differently during wrist extension than during wrist flexion. We are confident that these

different wrist actions are mechanistically related to different neural activities of some kind
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but limitations on our ability to capture and analyze those activities, perhaps the relatively

large size of the present functional voxels, hinder identifying them fully.

Multivariate analysis

This study was able to classify fMRI activity associated with wrist extension and wrist flexion

using multivariate analysis via Support Vector Machine (SVM); however, the performance

metrics of accuracy, sensitivity, and specificity were modest. Modest classification accuracy

presents challenges to adopting multivariate SVM classification for use in a real-time neuro-

feedback rehabilitation paradigm.

Yoshimura et al. [31] studied fMRI activations during isometric wrist extensions or flexions

made from pronated or suppinated postures of the constrained forearm. The isometric con-

tractions did not change joint angle or muscle length whether directed up or down with

respect to gravity. The isometric task demands force production by the muscle. Activations in

their study could be classified using multivariate techniques into intrinsic versus extrinsic

motion coordinate frames. Our greater difficulty in classification of extension versus flexion

could be due to our isotonic movement task (simple active range of motion against no resis-

tance (small force production) except that of gravity). That is, the wrist was not constrained

kinematically, and the only possibly negligible force was gravity, during a simple, almost auto-

matically performed movement. Thus, the greater force production in the Yoshimura study

could have demanded greater unique volume of activation for their tasks.

Functional maps of wrist action preference

We saw preferential activation favoring extension more than flexion in some voxels, and vice

versa in other voxels. Heat maps showed evidence of moderate co-localization of those voxels

favoring flexion and to a lesser degree, co-localization of voxels favoring extension. Patterns of

co-localization differ between participants and appear to be temporally variable within partici-

pants, and thus seem challenging to adopt for use in a real-time neurofeedback rehabilitation

paradigm.

General considerations

No fMRI signature was identified as able to be reliably discriminated from comparison mea-

sures by any of the four different signal processing methods used. Therefore, the receiver oper-

ator characteristics (ROC) would each be expected to be along the line defined by lack of

discrimination. In such cases, the true positive rate (TPR) would equal the false positive rate

(FPR = TPR), and area under the curve (AUC) would be 0.5.

Even though good brain pattern differentiation has not been accomplished for such tasks as

wrist extension versus wrist flexion or other abnormally co-activated movements, there has

still been some success in developing and/or using neural feedback BCI systems to treatment

motor dysfunction after stroke [e.g., 10,21,49]. A more sophisticated BCI system with ability to

differentiate spatially uniquely activated voxels (with fMRI) might further improve BCI results,

but these new discoveries have yet to be solidified and documented. If these discoveries are

realized, the differentiated signal could be provided to the stroke survivor user the means to

mitigate the abnormally elevated antagonist muscle activity and elevate the abnormally mini-

mal agonist muscle activity. This current study on healthy adults is a cautionary step forward

in that it provides a description of four methods that did not prove useful in differentiation of

the needed motor tasks of wrist extension and wrist flexion. Nevertheless, differentiation and

generation of feedback signal would be very useful for stroke survivors; additionally, the cur-

rent results point to what may be necessary for future successful methods.
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Limitations and future directions

Neural activity is addressed indirectly by fMRI signals that capture hemodynamic responses

by way of blood oxygenation level magnetic contrast. One caveat is that the metabolic demand

evoking the hemodynamic response does not identify whether the underlying synaptic activity

creating that demand had exitatory or inhibitory neural effects. A second caveat is that the

fMRI signal is volume-averaged over the extent of each spatially encoded voxel containing a

large population of neurons, blurring out fine spatial details, and time-averaged between exci-

tation pulses, blurring out fine temporal details. With our 3T instrument we obtained fMRI

signals in voxels of 3x3x3 mm at TR = 3 sec and recognize those resolution limits. Limitations

of the study design were small sample size and limited reliability testing, insufficient resources

for deconvolution-based secondary fMRI analyses, plus the lack of kinematic measurements

characterizing the wrist movements. That is, we did not directly measure kinematic properties

of wrist flexion-extension, radial-ulnar deviation, or wrist rotation. There could have been

undetected variability among the movements executed despite identical instructions in terms

of movement path, speed, joint angle, and range of motion. These undetected differences may

have contributed to the observed variability. However, the movement was a simple movement

performed many times daily, without thought, which is the movement we wished to study.

That is, the purpose of the analysis was not to test a kinematically constrained movement of

some force, but to study the simple active wrist extension movement that is performed many

times daily in preparation for grasp. Sample size of 10 could have contributed to the result of

our group analyses showing no statistically significant flexion-extension differences. Given the

observed individual variability of activation maps (and the voxel size in the current study), it is

possible that adding more subjects to our data would not necessarily yield a more representa-

tive mean activation, and would not necessarily or substantially improve discrimination

between wrist movement types. This realization provided part of the rationale for including

the discriminatory analyses methods of Huber et al. [48] and Meier et al. [47]. Also, we can

note that this situation argues for the application of precision (that is, ‘custom’) medicine that

is individualized specifically for the individual. Precision medicine is a rapidly emerging con-

cept and should be considered in neurorehabilitation and neural feedback methods. Precision

neurorehabilitation (individually customized) and neural feedback of brain signal for a given

stroke survivor could include the use of a brain signal map generated from his/her own non-

lesioned hemisphere controlling the unimpaired limb; however, that concept inherently

includes the potential confounds of disruptions of neural networks in the non-lesioned hemi-

sphere caused by the stroke, as well as the normally occurring asymmetry of right and left,

brain hemispheres. Finally, we were able to conduct the four methods of analysis presented

here, with constraints on time and resources limiting further work. Other methods of data

acquisition and analyses could potentially yield a better differentiation of wrist extension ver-

sus wrist flexion. In contrast to the block design utilized in the current study, one possibility is

acquiring brain signal using an event-triggered design, in which each motor movement is

acquired separately, and analyzing the data from the event-triggered acquisition. Comparing

the brain signal for the two tasks in this manner could be a major advantage.

The results indicate that future directions of inquiry are required, if a viable brain neuro-

feedback system is to be developed for neurorehabilitation. These could include methods that

are currently emerging or yet to be developed. Some possibilities include the following: inva-

sive acquisition of brain signal; new non-invasive methods for acquiring brain signal; or more

precise existing methods of data acquisition including a 7T machine, smaller voxel size, and/or

single task, event-triggered data acquisition and analysis.
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Conclusions

We explored the capability of four different signal processing methods to differentiate fMRI

signals during healthy adult wrist flexion versus wrist extension in the same limb, inasmuch as

such knowledge could provide an important step towards building a neurorehabilitation tool

for restoring coordinated wrist movements in stroke survivors. We encountered a number of

obstacles to obtaining clear group results in healthy adults. These obstacles included the fol-

lowing: high variability across healthy adults in all measures studied; close proximity of

uniquely active voxels to voxels that were common to both the extension and flexion move-

ments; in general, higher magnitude of signal for the voxels common to both movements ver-

sus the magnitude of any given uniquely active voxel for one type of movement. Our results

indicate that greater precision in imaging will be required to develop a truly effective neural

feedback system. A future effective neurofeedback system will provide the individually-based

neurorehabilitation neural feedback signal that is necessary for recovery of motor control after

stroke, given the uniqueness of brain networks across individuals. It is not yet clear how or if a

more sophisticated neural feedback signal for such a system will be possible. Future studies

will answer that question.
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