
proceedings
in Intensive Care

Cardiovascular Anesthesia

Endorsed by

proceedings

109

HSR Proceedings in Intensive Care and Cardiovascular Anesthesia 2011, Vol. 3

REVIEW ARTICLE

Corresponding author:
Jahan Porhomayon MD, FCCP
VA Medical Center, Rm 203C
3495 Bailey Ave,
Buffalo, NY 14215
e.mail: jahanpor@buffalo.edu

Alteration in respiratory 
physiology in obesity for  
anesthesia-critical care physician 
J. Porhomayon1, P. Papadakos2, A. Singh1, N.D. Nader1

1VA Western New York Healthcare System, Division of Critical Care and Pain Medicine, Department of Anesthesiology 
and Cardio-Thoracic Anesthesia, State University of New York at Buffalo School of Medicine and Biomedical Sciences; 
2Department of Anesthesiology, Strong Memorial Hospital, University at Rochester, Rochester, New York

HSR Proceedings in Intensive Care and Cardiovascular Anesthesia 2011; 3(2): 109-118

HSR Proceedings in Intensive Care and Cardiovascular Anesthesia 2011; 3(2): 109-118

ABSTRACT

Obesity is known to be a major risk factor of a whole range of cardiovascular, metabolic and respiratory dis-
orders. The pattern of regional fat distribution plays an important role in the pre-disposition of obese subjects 
to respiratory complications. Obesity is responsible for important changes in respiratory function both during 
spontaneous breathing as well as during general anesthesia and mechanical ventilation. The most character-
istic abnormalities consist of decreased functional residual capacity, reduced expiratory reserve volume, de-
creased compliance and increased resistance of the respiratory system. Breathing at low lung volume promotes 
airway closure in the dependent lung zones with consequent gas exchange abnormalities even though lung 
carbon monoxide-diffusing capacity is normal or increased. Weight loss can reduce many of the alterations in 
pulmonary function related to obesity.

Keywords: lung volumes, compliance, oxygen consumption, obesity, airway resistance, diffusion capacity, ventila-
tion, perfusion, oxygenation, pulmonary physiology

tion of individuals with a body mass index 
(BMI) greater than 50 kg/m2. This review 
describes the mechanisms whereby obesity 
brings about the functional abnormalities 
on resting and exercise related respiratory 
physiology.

Lung mechanics
Obesity decreases total respiratory compli-
ance by as much as two-thirds of the nor-
mal value measured in non-obese individu-
als (4). The decrease in compliance was 
thought to result primarily from a reduced 
chest wall compliance associated with the 
deposition of fat in and around the ribs, the 
diaphragm and the abdomen. Subsequent 
investigations in healthy obese subjects 
revealed higher total respiratory system 
and chest wall elastance during voluntary 

INTRODUCTION

For several decades, the global prevalence of 
obesity has been rising dramatically (1, 2). 
The greatest increase has been noted in the 
United States. Compared with some Euro-
pean countries, the prevalence of obesity in 
the United States is three times higher than 
in France, and one and a half times higher 
than in the United Kingdom (3). Between 
1980 and 2004, the prevalence of obesity 
in the US more than doubled in adults and 
more than tripled in children. The greatest 
relative increase has been in the propor-
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muscle relaxation than during paralysis 
(5), suggestingthat incomplete relaxation 
may have contributed to lower chest wall 
compliance reported in earlier studies. Ac-
tually, the chest wall compliance is usually 
normal in obese subjects and the decrease 
in total respiratory compliance is that of 
the lung. The reduction in lung compli-
ance in obese individuals is exponentially 
related to BMI (6). This decrement is the 
result of increased pulmonary blood vol-
ume, closure of dependent airways (10), 
and increased alveolar surface tension due 
to the reduction in functional residual ca-
pacity (FRC) (7-9). 

Lung volumes and spirometry
The most common and consistent char-
acteristic of obesity on lung function is a 
reduction in FRC (Figure 1). This derange-
ment reflects the mass load of adipose tis-
sue around the rib cage and abdomen (11). 
In contrast, residual volume (RV) is usu-
ally well preserved, and the RV-to-total 
lung capacity (TLC) ratio remains normal 
or slightly increased (12). As a result, ERV 
decreases exponentially with increasing 
BMI, even in mild obesity or overweight 
due to displacement of the diaphragm into 

the thorax and increased chest wall mass. 
ERV reduction is greatest in the supine po-
sition. The reduction is often so marked 
that FRC approaches RV. At that point, re-
gional thoracic gas trapping may take place 
causing an elevated RV/TLC ratio (13).
Total lung capacity (TLC) and vital capac-
ity (VC) decrease linearly with a rising 
body mass index, however, the changes are 
small, and TLC is usually maintained above 
the lower limit of normal. A marked abnor-
mality of lung volumes in mild to moderate 
obesity should raise suspicion of an under-
lying intrinsic lung disease or neuromuscu-
lar pathology except in those with morbid 
obesity or those with excessive central adi-
posity (waist-to-hip ratio ≥ 0.95) (14).
Spirometry is normal in mild obesity. As 
BMI increases, there is a reduction in ex-
piratory flow and a decrease in FEV1 and 
FVC (15). The ratio of FEV1 to FVC is pre-
served and even increased, which is attrib-
uted to peripheral airway closure and gas 
trapping, hence reducing the VC. However, 
the reduction in FEV1 and FVC is strongly 
correlated with abdominal obesity. FVC, 
FEV1, and TLC were found to be signifi-
cantly lower in subjects with upper body 
fat distribution or central obesity (16). 

Figure 1 - Impact of obesity on lung vol-
umes.
IC = Inspiratory capacity, IRV = In-
spiratory reserve volume, TV = Tidal 
volume, ERV = Expiratory reserve vol-
ume, RV = Residual volume, FRC = 
Functional residual capacity, VC = Vi-
tal capacity.
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Abdominal obesity is responsible for a re-
duced FEV1/FVC ratio suggesting an effect 
of obesity on large airway caliber as well. 
In addition to these spirometric derange-
ments, tidal volume is reduced in severe 
obesity, and breathing follows a rapid, shal-
low pattern (17). This functional change is 
typically due to the elastic load which can 
be replicated in normal weight subjects 
with elastic strapping of the chest (18). As 
FRC becomes less than the closing volume, 
airway closure occurs during tidal breath-
ing. Together with alveolar collapse, this 
leads to decreased ventilation of the lung 
bases, ventilation-perfusion mismatch, and 
hypoxemia. For these reasons, both the 
PaO2 and the alveolar-arterial gradient are 
related to FRC. The improvement of lung 
function with weight loss supports the 
causative effects of obesity on respiratory 
physiology. Following bariatric surgery, re-
strictive pulmonary mechanics improves 
significantly with corresponding increase 
in FEV1, FVC, and in FEV25–75%. 
Additionally, the obstructive lung pattern 
(FEV1/FVC ratio less than 0.8) tends to 
normalize (19). In one program, weight 
loss was accompanied by an improvement 
of 73 ml in FEV1 and 92 ml in FVC for 
every 10% relative loss of pretreatment 
weight (20). 
The effect of obesity on lung volumes and 
chest compliance can be worsened by an-
esthesia and muscular paralysis, which is 
manifested by decreased lung volumes, and 
higher lung and respiratory system elas-
tance. This deterioration in lung function 
is more pronounced with abdominal sur-
geries (21), but it also seen in other types 
of non abdominal procedures. Although 
the post-operative spirometry of obese pa-
tients shows a decrease in FEV1, FVC and 
PEF, the reduction in vital capacity is the 
most prominent in both abdominal and 
non-abdominal surgery, and is greater with 
increasing BMI.

Various methods have been tried to com-
pensate for the effects of obesity on lung 
function, and they range from positional 
changes, to adopting altered intra-oper-
ative ventilation strategies, to the use of 
prophylactic BiPAP post operatively (22).
The reverse Trendelenburg (RT) position 
is one measure that seems to improve the 
respiratory compliance and gas exchange 
in morbidly obese patients during bariatric 
surgery. 
However, it is not clear yet if the beneficial 
effect of this position can be replicated to 
all abdominal and non-abdominal surger-
ies in obese patients. Similarly, in intubat-
ed patients with large abdomen (obesity, 
distended abdomen or large ascites), a 45° 
RT position is associated with larger tidal 
volume and lower respiratory rate com-
pared with 90° position. These results sug-
gest that the reverse Trendelenburg could 
be the optimal position to be used in obese 
patients, particularly in intubated ICU pa-
tients, or those undergoing or recovering 
from anesthesia and surgery (21-23).
In addition to body positioning, different 
ventilation strategies are used to improve 
respiratory function in obese patients. 
Increasing PEEP to 10 cm H2O in anesthe-
tized or paralyzed patients significantly re-
duces elastance of the respiratory system, 
lung, and chest wall, and improves oxygen-
ation. 
In one study that used computed tomogra-
phy to assess atelectasis in morbidly obese 
anesthetized patients undergoing gastro-
plasty, recruitment maneuver with 55 cm 
H2O inspiratory pressure for 10 seconds, 
followed by 10 cm of PEEP reduced atel-
ectasis and improved oxygenation, while 
recruiting maneuver alone without PEEP 
yielded only a transient reduction of atel-
ectasis that was not sustained 20 minutes 
later. In addition, 10 cm of PEEP alone 
did not affect atelectasis. Repeating the re-
cruitment maneuver every 10 minutes, in 
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addition to PEEP of 10 cm H2, had better 
results in terms of improving respiratory 
compliance and oxygenation.
Whether such ventilation strategies can be 
applied to medical obese patients in the in-
tensive care unit is to be determined (24-26). 
The use of BiPAP as a prophylactic mea-
sure to improve pulmonary function after 
surgery has been studied in obese patients 
after undergoing gastroplasty. The pro-
phylactic use of BiPAP System 12/4 (but 
not 8/4), during the first 24 hours postop-
eratively reduces pulmonary dysfunction 
after gastroplasty, and accelerates reestab-
lishment of preoperative pulmonary func-
tion, which is reflected in improved FVC 
and FEV1, as well as SpO2. The BiPAP acts 
through enhancing the alveolar recruit-
ment during inspiration, while preventing 
the expiratory alveolar collapse, and thus 
reducing the postoperative restrictive syn-
drome (27). 

Respiratory muscles/work of breathing
Studies on the respiratory muscles of obese 
individuals are scarce. Overall, obese sub-
jects demonstrate inefficiency of respira-
tory muscles, most notably the diaphragm. 
The maximum inspiratory and expiratory 
pressures at all lung volumes are lower in 
obese patients compared to controls, with-
out reaching statistical significance howev-
er, except in patients with obesity hypoven-
tilation syndrome (OHS). 
The maximal voluntary ventilation, a mea-
surement of respiratory muscle endurance, 
is reduced by 20% in healthy obese indi-
viduals and by 45% in patients with OHS 
(28). It is suggested that the additional load 
causes a length-tension disadvantage for 
the diaphragm due to fiber overstretching 
placing the diaphragmatic fibers at subop-
timal length. 
Furthermore, analysis of the diaphragmatic 
electromyogram revealeda persistence of 
activity into early expiration, the length of 

which alsodepended on the degree of obe-
sity. These findings indicate that thedia-
phragm’s volume-generating function in the 
obese is reduced, andfurthermore the per-
sistence of its activity in expiration serves 
toattenuate the rate of expiratory flow (28-
30). 
On a cellular level, obesity with high in-
take-associated lipid accumulation in mus-
cle interferes with cellular mitochondrial 
function through the generation of reactive 
oxygen species (31).
These compounds lead to lipid membrane 
peroxidative injury and disruption of mito-
chondrial-dependent enzymes resulting in 
decrease oxidative metabolism. A reduced 
ability to oxidize fatty acids has also been 
reported in skeletal muscle of obese indi-
viduals both before and after weight loss, 
which would support an intrinsic abnor-
mality of fatty acid oxidation (32).
After weight loss, there is a significant in-
crease and return to normal reference val-
ues, with regard to both the strength and 
endurance of respiratory muscles, with 
the latter showing greater increases. This 
improvement in respiratory muscle endur-
ance is related to increased chest wall com-
pliance and pulmonary volumes, as a con-
sequence of weight reduction (33). 

Airway resistance
Obese subjects have an increased total re-
spiratory resistance due to a predominantly 
increased airway resistance rather than 
chest wall resistance. However, when air-
way resistance is adjusted for the lung vol-
ume at which the measurements are made, 
specific airway resistance is in the normal 
range indicating that the apparent reduc-
tion in airway caliber in the obese is at-
tributable to the reduction in lung volumes 
rather than to airway obstruction (34). 
However, recent investigations have sug-
gested that the increase in resistant may not 
be entirely due to reduction of FRC since 
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differences between obese and non-obese 
may persist after lung volume adjustment 
(35, 36). The mechanism by which obesity 
could cause increased airway resistance is 
not well understood. The possible hypothe-
ses include increased atopic reaction related 
to an enhanced inflammatory state second-
ary to obesity (38). Some in vitro studies, 
as well as human studies suggest that lower 
lung volumes secondary to obesity, lead to 
a reduction in peripheralairway diameter, 
which over time causes smoothmuscle dys-
function, and causes both airways obstruc-
tion and hyper-responsiveness. In addition, 
leptin has been suggested to be involved 
in the airway dysfunction associated with 
obesity, through its pro-inflammatory prop-
erties and/or via a direct effect on airways 
smooth muscles (37). However, the data ad-
dressing this question have been inconclu-
sive so far and further studies are needed 
to understand the mechanism of increased 
airway resistance and responsiveness in 
obesity (38-45). 
The effect of obesity on airway hyper-re-
sponsiveness (AHR) has been inconsistent-
ly demonstrated. Investigators simulated 
obesity-related lung volume reductions in 
non-asthmatic subjects by externally mass 
loading the chest wall and abdomen and 
documented an augmentation of airway 
responsiveness to metacholine relative to 
that of control (46). The relation between 
BMI and AHR has also been reported in 
The European Community Respiratory 
Health Survey (47). However, the associa-
tion between asthma and obesity in adults 
and children so far has failed to show a 
consistent increase in AHR (38). In addi-
tion, weight loss programs did not result in 
substantial change in AHR despite docu-
mented improvements in lung function. 
Therefore, there is a plausible mechanism 
to explain how obesity is implicated in 
AHR but is not consistently reproducible 
in clinical studies. 

Control of breathing
Although some studies investigating ven-
tilatory drive in simple obesity have dem-
onstrated that the ventilatory responses 
to inhalation of carbon dioxide (DVE/
DPCO2) are normal, others have indicated 
a reduced response particularly in patients 
with obesity hypoventilation syndrome 
(OHS)(48-49). These abnormalities were 
initially attributed to the mechanical limi-
tations and decreased chest compliance 
preventing adequate ventilation. However 
the anticipated response to CO2 did not 
improve in OHS patients following weight 
loss. Further, Vd/Vt did not correlate with 
subjects’ resting PCO2(50).One theory pro-
claims that the diminished responsiveness 
may represent an adaptive process sparing 
O2 for non-ventilatory demands. Yet there 
is an inherent problem with using ventila-
tory responses as a marker of respiratory 
drive because minute ventilation response 
to a stimulus may also be influenced by re-
spiratory muscle function and respiratory 
system mechanics. The mouth occlusion 
pressure (P0.1) believed to reflect neuro-
genic drive is twice the normal value in 
mild obesity and increases normally with 
CO2 inhalation. In contrast, the P0.1 re-
sponse to CO2 in patients with OHS is half 
that of subjects with simple obesity (49). 
The fact that OHS subjects can normalize 
their PaCO2 by hyperventilation provides 
supportive evidence that ventilatory con-
trol is abnormal in OHS (51). Hence, the 
cumulative data indicates that subjects 
with simple obesity have an enhanced re-
spiratory drive while the respiratory drive 
of subjects with OHS is either depressed or 
inappropriately suppressed.

Oxygen cost of breathing
In non-obese individuals, the percentage of 
cardiac output and total body oxygen con-
sumption (VO2) dedicated to respiratory 
muscle work during quiet breathingis very 
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small (less than 3%). In contrast, the oxy-
gen cost of breathing is 4 to 10 fold higher 
than normal among subjects with eucapne-
ic obesity (Figure 2). In one study of obese 
patients undergoing bariatric surgery, a 
16% reduction in mean VO2 in obese pa-
tients was observed compared to less than 
1% reduction in the non-obese during the 
transitionfrom spontaneous breathing to 
positive pressure ventilation. This suggests 
that morbidly obese patients dedicate a dis-
proportionate high percentage of total VO2 
for respiratory work. 
Of interest, the obese patients demonstrate 
a significantly lower VO2 when standard-
ized by BMI that has been attributed to 
the lower blood flow andmetabolic rate of 
adipose tissue compared with lean body 
tissue. Nevertheless, the lower VO2 stan-
dardized to body size does notameliorate 
the detrimental impact of morbid obesity 
on oxygen consumption. 
This respiratory inefficiency results in al-
imited ventilatory reserve that predisposes 
these patientsto respiratory failure in the 
setting of acute pulmonary or systemicil-
lnesses (52,53). 

Ventilation/Perfusion (V/Q)
Ventilation in non-obese patients is great-
est in dependent lung zones and decreases 
toward the upper zones; however, this dis-
tribution may be reversed in obesity. When 
lungs ventilation and perfusion were ex-
amined in obese subjects with ERV at 21% 
of predicted, the normal tidal breath pre-
dominantly distributed to the upper zones, 
while perfusion was predominant in the 
lower lung zones.
In contrast, subjects who had an average 
ERV of 49% of predicted value had normal 
ventilation distribution (54). Thus, impair-
ment of the V/Q relationships depends on 
the location of the excess body weight. Indi-
viduals with central obesity seem the most 
affected. Similar results were reproduced in 
lateral decubitus position (55). This venti-
lation/perfusion mismatch results from air-
way closure in the lungs’ dependent areas 
of obese patients. 

Diffusing capacity and gas exchange
The diffusing capacity of obese subjects is 
usually preserved although studies have 
reported increased and decreased values 

Figure 2 -Interplay of respiratory mechan-
ics on oxygen consumption in obese patients.
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(56). An increased DLCO in obese patients 
is probably related to increased pulmonary 
blood volume and flow while a decreased 
DLCO may result from structural changes 
in the interstitium from lipid deposition or 
decreased alveolar surface area. In either 
scenario, weight loss appears to have little 
effect on diffusing capacity as DLCO val-
ues remained unchanged following surgi-
cal or medical treatment (57, 58).
Morbid obesity is associated with low ar-
terial pressure of oxygen (PaO2) and in-
creased alveolar-to-arterial oxygen partial 
pressure difference (58). These changes 
are usually more prominent in men than in 
women secondary to gender differences in 
waist-to-hip ratio. Arterial pressure of car-
bon dioxide (PaCO2) is usually normal in 
obese patients who do not have obesity hy-
poventilation syndrome. While the gas ex-
changes improve with peak exercise, obese 
subjects have a poor compensatory hyper-
ventilation, resulting in low exercise toler-
ance and premature termination of exercise 
(59). 
The mechanism by which obesity impairs 
blood gas exchange and oxygenation is re-
lated to lower lung volumes and basilar atel-
ectasis secondary to airway closure and al-
veolar collapse. Increased airway resistance 
has little role in impaired gas exchange at 
rest (normal PaCO2); it may however play a 
role in the poor exercise tolerance through 
increased expiratory airflow limitation and 
dynamic hyperinflation.
Therapeutic measures that are used to im-
prove lung volumes and decrease atelecta-
sis are also associated with improvement 
of oxygenation and blood gas exchange. In 
fact, both PaO2 and alveolar-arterial oxygen 
difference were ameliorated when PEEP of 
10 cm H2O was applied to paralyzed and 
anesthetized postoperative obese patients 
after abdominal surgery, compared to PEEP 
of zero. Similarly, the alveolar-arterial oxy-
gen difference was significantly reduced 

when morbidly obese patients undergoing 
bariatric surgery were placed in reverse 
Trendelenburg position. In addition, the 
application of BiPAP 12/4 improved oxy-
gen saturation when used prophylactically 
in obese patients for 24 hours after under-
going gastroplasty (56, 60). 

Altered exercise respiratory physiology
At rest, the baseline VO2 is approximately 
25% greater than the VO2 for non-obese in-
dividuals. Because adipose tissue has a low-
er metabolic rate than other tissues, peak 
VO2 uptake adjusted for true body weight is 
reduced, however peak VO2 is usually nor-
mal or increased when adjusted for ideal 
body weight (61). Interestingly, the slope 
of the VO2 work-rate relationship is un-
changed but it is shifted upward by approx-
imately 6 ml/min/kg of extra body weight 
for a cycle ergometer. This means that an 
appropriate peak VO2 standard reference 
for an obese subject can be predicted by 
increasing the standard peak VO2 from the 
reference body weight by 6 ml/min for each 
kilogram greater than the reference weight. 
Other responses may vary depending on the 
exercise protocol and severity of obesity. 
Parameters including peak O2 pulse (VO2/
heart rate (HR)), and anaerobic threshold 
are usually normal in mild to moderate obe-
sity (62).
The resting HR is usually elevated, reflect-
ing an increase in cardiac output at rest. 
With exercise, there is a normal HR-VO2 
relationship reflected by a normal HR-VO2 
slope and attainment of the predicted HR 
with no HR reserve.
It is unusual for obese individuals to dem-
onstrate ventilatory limitation despite the 
abnormalities imposed on the respiratory 
system at rest. Because ventilation perfu-
sion relationship normalizes during ex-
ercise, dead space ventilation usually re-
sponds normally with a decrease toward 
the normal range with exercise (63).
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Pulmonary vasculature
Pulmonary artery systolic pressure (PASP) 
correlates echocardiographically with BMI 
independently of age, gender, or comorbid 
diseases. Using echocardiography, PASP 
≥ 30 mm Hg and ≥ 35 mmHg occurred in 
up to 66% and 36% of obese subjects, re-
spectively. For each unit increase in BMI, 
the PASP increases by 0.1 to 0.4 mm Hg. 
The exact mechanism of increased PASP 
in obesity is not clear, likely related how-
ever to increased blood volume. Obstruc-
tive sleep apnea and pulmonary capillary 
spasm secondary to nocturnal hypoxia are 
other possible contributing factors. How-
ever in the absence of right heart catheter-
ization, echocardiographic findings should 
be interpreted with caution (64).

CONCLUSIONS

Obesity affects respiratory physiology in 
many ways, with significant clinical impli-
cations. There are few measures that are 
shown to improve respiratory function in 
obese patients undergoing medical or sur-
gical treatment (Table 1).
They include reverse Trendelenburg posi-
tion, higher PEEP with recruitment ma-
neuvers or pressure control mode in ven-
tilated patients, and prophylactic use of 
BiPAP after surgery/sedation. Increasing 
positive end expiratory pressure (PEEP) to 
10 cm H2O significantly reduced elastance 
of the respiratory system, lung, and chest 
wall in obese patients.
Additionally,application bi-level positive 
airway pressure of (BiPAP) 12/4 improves 
oxygen saturation in obese patients for 24 
hours after surgery.
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