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Comparing gene expression data from
formalin-fixed, paraffin embedded tissues
and qPCR with that from snap-frozen tissue
and microarrays for modeling outcomes of
patients with ovarian carcinoma
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Abstract

Background: Previously, we have used clinical and gene expression data from The Cancer Genome Atlas (TCGA) to
model a pathway-based index predicting outcomes in ovarian carcinoma. This data were obtained from snap-frozen
tissue measured with the Affymetrix U133 platform. In the current study, we correlate the data used to model with
data derived from TaqMan qPCR both snap frozen and paraffin embedded (FFPE) samples.

Methods: To compare the effect of preservation methods on gene expression measured by qPCR, we assessed 18
patient and tumor sample matched snap-frozen and FFPE ovarian carcinoma samples. To compare gene measurement
technologies, we correlated qPCR data from 10 patients with tumor sample matched snap-frozen ovarian carcinoma
samples with the microarray data from TCGA. We normalized results to the average expression of three housekeeping
genes. We scaled and centered the data for comparison to the Affymetrix output.

Results: For the 18 specimens, gene expression data obtained from snap-frozen tissue correlated highly with that from
FFPE samples in our TaqMan assay (r > 0.82). For the 10 duplicate TCGA specimens, the reported microarray data
correlated well (r = 0.6) with our qPCR data, and ranges of expression along pathways were similar.

Conclusions: Gene expression data obtained by qPCR from FFPE serous ovarian carcinoma samples can be used to
assess in the pathway-based predictive model. The normalization procedures described control variations in expression,
and the range calculated along a specific pathway can be interpreted for a patient’s risk profile.

Background
Using gene expression and clinical data from The Can-
cer Genome Atlas (TCGA), we previously developed a
model that predicts variations in response of high-grade
serous ovarian cancer to cytotoxic chemotherapies. In
that publication [1], we described a method for reducing
the list of genes needed to predict clinical outcomes to
fewer than 100. We selected those genes from more than
10,000 possibilities by identifying genes within a core
group of 12 cancer pathways [2, 3] whose variation in

expression had the greatest effect on disease progression.
Predictions of response to specific chemotherapeutic
agents were suggested by the cumulative levels of gene
expression among the 91 genes selected from the 12
pathways. Three of the pathways did not have genes
identified, leaving 9 core pathways informative. We de-
fined the predictions made by gene expression within
these pathways as the Patient-Specific Risk Profile
(PSRP).
Gene expression levels reported by Affymetrix micro-

arrays and qPCR may differ significantly, creating poten-
tial difficulties for models developed on one platform
and utilized in the other [4]. For example, measurements
of reference RNAs from commercial sets of ~1000 genes
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from human brain, liver, and lung showed correlations
(r) ranging from 0.45 to 0.75 when TaqMan measure-
ments were compared with Applied Biosystems and Agi-
lent microarray technologies [5]. The MicroArray
Quality Control (MAQC) project showed correlations of
r = ≥0.9 between Affymetrix and TaqMan data [6], but
those measurements and correlations were made with
reference RNA from a large gene set, undirected by
model building or clinical practice. Moreover, the tech-
nology used to measure expression may have a greater
or lesser influence on output, depending on how the
genes of interest are selected. A predictive model that
features only highly differentially expressed genes may
more easily translate from microarray to qPCR than a
model not based on large changes in expression [7]. A
requirement of highly differentiated genes may not repre-
sent the biology of the disease, and the modeling we have
done includes lower expressed genes in the set.
TCGA derives gene expression by placing RNA from

snap-frozen tissue on an Affymetrix U133 Array plat-
form [8]. To migrate to a more clinically functional plat-
form, we evaluated the reliability of gene expression
inputs derived by using qPCR to analyze formalin-fixed,
paraffin-embedded tumor samples. Because FFPE blocks
are readily available from primary debulking surgery,
whereas snap-frozen tissue is not, this modified approach
increases the number of patients who can potentially
benefit from this profiling technique.
Two factors could significantly affect the clinical utility

of our profiles when FFPE tissue samples are used: (i)
differences in tissue preservation techniques altering the
RNA quality and expression detection between snap-
frozen and FFPE and (ii) gene expression levels differing
due to alterations in technology between Affymetrix
Microarray and TaqMan qPCR. Although either or both
changes could have a major effect on predictive capability,
the effect might be modified depending on the number of
genes measured or the ways the data are analyzed for
prediction. For example, the impact of variance in
expression measurements could be ameliorated by
aggregating multiple data points when using multiple
genes for prediction [9].
In this study, we compared gene expression measure-

ments for individual genes selected by our PSRP 91 gene
assay (gene by gene) and for those same genes aggregated
into the pathways of our model (pathway by pathway). We
derived correlations between snap-frozen and FFPE tissue
preparations and between Affymetrix U133 Microarrays
and TaqMan qPCR. In addition, we used techniques for
normalizing qPCR gene expression that allows us to dir-
ectly compare qPCR assays with the TCGA microarray
data. The result is that our PSRP 91 model developed
from snap-frozen tissue on an Affymetrix platform can be
tested using a qPCR outputs and FFPE specimens.

Methods
Study subjects
To compare tissue preservation methods, we measured
gene expression from 18 patients who had both snap-
frozen ovarian carcinoma samples in the Medical College
of Wisconsin (MCW) gynecologic tissue bank and a case-
matched FFPE sample archived by the Department of
Pathology. All samples were taken during debulking
surgery of patients diagnosed with Stage IIIC or IV,
grade 3 serous ovarian carcinoma. Tissue samples were
taken to pathology immediately after extirpation. Once
assessed by a pathologist, the portion acquired for tissue
banking was excised, and snap frozen in the pathology lab.
The remainder was fixed in formalin and processed per
standard pathology protocol. Prior to analysis, the tissues
had been stored as FFPE blocks or snap frozen sections
for up to 3 years. The pathology for each MCW patient
was reviewed with hematoxylin and eosin (H&E) to
confirm both the diagnosis and a tumor content of at least
75 % [8]. Approval from the Institutional Review Board
(IRB) of the Human Research Protection Office and
Medical College of Wisconsin was obtained, and all pa-
tients signed an informed consent for tissue banking.
To compare two methods of assaying gene expression,

we used TCGA identification numbers to identify 10
snap-frozen tumor samples submitted to the TCGA from
the tissue bank at Washington University in St. Louis. Ap-
proval from the institutional Human Research Protection
Office was obtained. For each patient’s sample, TCGA had
reported gene expression and annotated pathology. All of
these samples were from patients with Stage IIIC, grade 3
serous ovarian carcinoma, and microarray analysis had
been performed by TCGA. A qPCR expression level of the
91 genes was measured in the 10 snap frozen samples.

Gene list
The genes whose expression we assayed were selected
from a gene set constituting the 9 core pathways described
previously [1]. 91 genes were chosen from our previously
published PSRP results. Analysis was performed according
to the 9 core pathways as well as a revised six-gene set
representing the neurotrophin pathway, making a total of
10 pathways available for analysis (Additional file 1: Table
S1). The subsets of genes used to define a pathway’s
expression are listed in the Supplement as well (Additional
file 1: Table S2). We used the housekeeping genes
glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
hypoxanthine phosphoribosyltransferase 1 (HPRT1),
and beta-D-glucuronidase (GUSB) to normalize gene
expression.

RNA isolation, cDNA, and qPCR
RNA from the snap-frozen tissue samples was extracted
using an RNAqueous Kit from Life Technologies
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(Carlsbad, CA, USA). RNA from FFPE blocks was ex-
tracted using a RecoverAll™ Total Nucleic Acid Isolation
Kit, also from Life Technologies. All RNAs were treated
with Ambion TURBO DNase. RNA concentrations were
determined with a Qubit™ RNA Assay Kit (Carlsbad,
CA, USA), and integrity was checked on an Experion
Automated Electrophoresis Station (Hercules, CA,
USA).
All reagents used in cDNA synthesis and qPCR were

obtained from Applied Biosystems (Carlsbad, CA, USA).
RNA concentration was adjusted to 40 ng/μl for the re-
verse transcription reaction. cDNA synthesis was carried
out with a High-Capacity cDNA Reverse Transcription
Kit. About 200 ng of RNA was used in a final 10-μl RT
reaction. The TaqMan® Array Plates 96 Plus were
custom-made to include TaqMan Gene Expression As-
says of 91 target genes and the three endogenous control
genes. Best Coverage probes from Applied Biosystems
were used to target the genes of interest. The assays of
91 target genes and 3 housekeeping genes were pooled
at 0.2X concentration for the PreAmp reaction. cDNAs
(2 μl) were preamplified in a 20-μl reaction for 10 cycles,
using TaqMan PreAmp Master Mix and pooled assays.
The reaction products were diluted 5-fold with 1X TE
and mixed with 500 μl of TaqMan Fast Advanced Mas-
ter Mix. Water was added to give a final mixture volume
of 1 ml. A 10 μl aliquot of the assay mixture was added
to each well of the TaqMan Gene Expression Assay
Plate, and amplification was carried out on a 7500 Fast
Real Time PCR System. Genes that were not detected
within 34 cycles (Ct > 34) were considered unexpressed
for the purpose of our evaluation.

Normalization of affymetrix and TaqMan data
TCGA derives gene expression by extracting RNA from
snap-frozen tissue and aggregating data from three dif-
ferent array platforms (Affymetrix U133a 2.0, Digital
Gene Expression from Illumina, and a custom high-
density Agilent array). We evaluated the Affymetrix re-
sults only as these were the most complete reported and
had fully accessible probe information.
To compare gene expression across the two technolo-

gies (Affymetrix Microarray and TaqMan qPCR) we used
the following normalization techniques for data output.
For the Affymetrix data, we took the Robust Multi-array
Average (RMA; Affymetrix) for each gene, and then nor-
malized to the average of the endogenous housekeeping
genes GAPDH, HPRT1 and GUSB.
For TaqMan qPCR, we used two techniques to

normalize gene measurements. First, we used the
average of the cycles from the same three housekeeping
genes as the control within the array. We then
subtracted the number of cycles of a target gene from the
average of the housekeeping genes. Reported Ct values of

34 or greater were considered to be unidentified or unex-
pressed genes. This method is demonstrated in Fig. 1
was used to correlate gene expression levels for each of
the 91 genes measured by the two different technolo-
gies – Affymetrix and TaqMan.
TaqMan qPCR-based expression levels passed through

a quality control step and were normalized using house-
keeping genes. Reported Ct values of 34 or greater were
considered to be unexpressed and therefore were not
considered in the analysis of a given pathway on a
subject-by-subject basis. The average of the housekeep-
ing genes GAPDH, HPRT1 and GUSB served as an en-
dogenous control for the assay. Noting that large Ct
values imply less gene sample expression, we subtracted
each probe’s ΔCt value from the control to obtain a Ct
score that rises with expression consistent with the
array-based expression measurement.

Calibration and PSRP 91 gene computation
Each TaqMan qPCR assay is normalized so it requires
no control outside of its own assay. However there are
technology-specific differences between the Affymetrix
and TaqMan probes. We accounted for this in a calibra-
tion step: In deriving the array-based measurements we
relied on mean zero, standard deviation one (scaled and
centered) values for constructing the risk indexes that
comprise the Patient-Specific Risk Profile (PSRP)1. We
also normalized the TaqMan qPCR expression values by
scaling and centering using the observed probe average
and standard deviation (Additional file 1: Table S3).
Thus a new sample can be normalized and calibrated
and the PSRP 91 gene indexes can be computed.

Statistical methods
For each sample, we used Pearson and Spearman’s rank
correlation to compare measurements. The curves for
each patient’s 91 gene expression measurements are pro-
vided in Fig. 1. We used a locally weighted scatterplot
smoothing (LOWESS) to obtain a summary of the rela-
tionship between gene expression derived by one tech-
nology and that derived by the other.

Results
RNA quality metrics and dropped genes
The quality of the RNA derived from the snap-frozen
tissues was uniformly high with a RNA quality indicator
(RQI) of >7 for 20 of the 28 specimens. The remaining 8
specimens were all 6.2 or greater, except a single outlier
with a RQI of 2.9. The FFPE samples had predictably
low RQI levels ranging from 1.9 to 3.1. The range of
storage time of the tissue samples did not correla
te with RQI for the FFPE samples. TaqMan probes for
WNT16, WNT3, and DNTT had ΔCt of >34 and were
considered unexpressed in most assays (84 %
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unexpressed, 94 % unexpressed, and 100 % unexpressed
respectively); PLA2G2D and CACNG1 were not
expressed in 37 % and 46 % of assays respectively, and
15 other probes were not expressed at least once in 68
total TaqMan assays (Additional file 1: Table S4). These
findings are consistent with the data showing that these
were among the lowest expressing genes in TCGA samples.
Samples with low RQI levels still exhibited reportable gene
expression levels. Probes considered unexpressed (Ct >34)
were removed from samples on a per-assay basis and were
not included in the denominator for the index calculation.

Gene-to-gene comparison of expression levels measured
by Affymetrix microarrays and TaqMan qPCR
From TCGA, we obtained gene expression levels in
snap-frozen ovarian cancer samples from patients
treated at Washington University (St. Louis, MO). To
evaluate the concordance of expression measured by
array-based probes and qPCR-based probes we acquired
ovarian carcinoma samples extracted from the same pa-
tient and case, using TCGA numbers for identification.
When the microarray and qPCR outputs were plotted
against each other and matched gene for gene across the
patients, the overall correlation was r = 0.60 (Fig. 1). The
plotted slope confirms that the two techniques gave
equivalent expression levels and that higher expression of
a target gene resulted in a higher number (arbitrary value)
on the y-axis. Taking the 10 specimens individually and
performing a per-patient smooth estimate of the output
(Fig. 1) showed a consistent correlation across the various
genes measured. Using housekeeping genes to normalize
expression of both technologies also demonstrated that
the expression levels of the 91 genes of interest were
similar across the two measurement platforms.

Validating TaqMan assay profiles between matched
paraffin-embedded and snap frozen samples
To gauge whether our PSRP 91 gene TaqMan qPCR
assay provides equivalent expression measurements
from both snap-frozen and paraffin-embedded samples,
we measured gene expression in the tumor-matched
samples of the 18 patients at the Medical College of
Wisconsin who had tumor tissue preserved by both
snap- freezing and the standard FFPE. The expression
outputs were correlated for each gene between the two
preservation techniques for each patient. Intra-patient
gene expression was higher than any inter-patient gene
expression (Fig. 2). Eight of the patients are highlighted
in Fig. 2, and the degree of correlation across genes is
noted. The correlation between preservation techniques
was excellent: > = 0.82 per pair of matched samples. The
range of correlation among the 18 sample sets was from
0.82 to 0.96 when comparing snap frozen to FFPE sam-
ples. A qPCR was repeated on a second cut from the
snap frozen specimens, and the correlation ranged from
0.84 to 0.97 for the 18 samples demonstrating a high
level of reproducibility.

Distribution of pathway expression from 18 FFPE samples
measured with qPCR and mapped to the TCGA cohort
Plotting the distribution of Affymetrix pathway ex-
pression for patients from the TCGA gave a normal
curve. Samples measured by qPCR (noted with red
ticks in Fig. 3) centered under these normal curves.
Figure 3 shows the TCGA-generated expression distri-
bution for each pathway. The distribution of each of
the 18 samples we measured by qPCR falls within the
normal curves, and does not appear biased when we
observe their position under the Affymetrix-generated

Fig. 1 Correlation of gene expression of 91 genes from 10 snap-frozen TCGA samples measured with Affymetrix U133 microarray (X-axis) and, in
the current study, with TaqMan qPCR (Y-axis). The 91 probes from the 10 samples were each normalized to the average of three housekeeping
genes (GUSB, GAPDH, and HPRT1). a The scatterplot shows that gene-to-gene expression has similar ranges across both technologies when
normalized to the same three-gene average (r = 0.60). b Lowess smoothing curves. Red dots signify Ct values >34 which are not included in
final index measurements
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curves for each of the 10 pathways. The PSRP 91
gene assay utilizes gene expression aggregated within
a pathway to stratify outcomes. Distribution of these
aggregations is not biased by changes in technology
or preservation.

Discussion
This manuscript demonstrates the feasibility of compar-
ing measurements of gene expression used to model
clinical outcomes in ovarian cancers from alternative
technology and tissue preservation. We demonstrated

Fig. 2 Correlation of gene expression from 18 matched serous ovarian cancer samples. F-labeled samples represent snap-frozen tissue; S represents each patient’s
matched FFPE tissue block. All samples were obtained from an initial surgical procedure, and gene outputs were measured with qPCR. Blue represents lower
correlation, red higher. An expansion of samples 001 through 008 with absolute level of correlation is provided. Levels of correlation <0.79 are not displayed

Fig. 3 Range of gene expression measured from the selected pathways. The bell curve represents the distribution of expression across the entire
TCGA cohort, using Affymetrix array. The red ticks on the x-axis represent gene expression levels aggregated within a pathway from the 18
patients whose FFPE samples were measured using qPCR. The range of expression can be normalized across the Affymetrix and TaqMan qPCR
platforms. Patient samples measured with qPCR have a range of expression that does not appear biased within the normal curve

Bradley et al. BMC Clinical Pathology  (2015) 15:17 Page 5 of 7



that qPCR outputs of high-grade serous ovarian carcin-
oma specimens were nearly identical whether tissue was
preserved by snap freezing or fixed with formalin and
embedded in a paraffin block. This work was driven by
the discovery of a gene panel that is predictive of ovarian
cancer patient survival and response to therapy. The
correlations described here will enable us to better test
our modeling in archived FFPE tissue samples.
A similar correlation between fresh-freezing and

FFPE has been observed with breast cancer samples,
but a cDNA-mediated annealing, selection, extension,
and ligation (DASL) platform was used for gene
measurement [10]. That correlation was observed
across an unselected whole genome assay when the
data was median centered, a technique similar to
ours. Interestingly, these authors noted a high level of
concordance between tissue types when they applied
a selected predictive model that used 291 genes.
When ovarian tissue gene expression in 240 FFPE
samples was measured using DASL, the correlation
was 0.618 to gene signatures described by Tothill and
a TCGA working group [9], a high enough level to
allow for preservation of the predictive value of the
gene sets. Our predictive technique relies less on dir-
ect gene-to-gene comparison, as a group of genes is
evaluated within a pathway. However, we observed a
similar gene-to-gene correlation for our selected set
(r = 0.60). A second qPCR run of the snap frozen
samples against the FFPE demonstrated that the mea-
surements were stable.
Large variations in expression have been noted to pro-

vide confidence in cross-technological measurements.
Fedorowicz found correlation between fresh- frozen and
FFPE ovarian cancer samples, but that study was con-
fined to the top 100 differentially expressed genes [7]. In
contrast, our PSRP 91 gene TaqMan assay did not re-
quire genes to have high levels of differential. Although
we observed lower expression genes drop out occasion-
ally (e.g., 16 % of the WNT16 assays), this did not seem
to offer significant changes at the level of pathway ex-
pression. The degree this drop out effects the overall
prediction capacity of the model needs further
clarification.
We used a combination of two techniques to normalize

gene expression across the two technological platforms.
First, we averaged housekeeping genes and simply sub-
tracted the result from the target gene in both technolo-
gies. Second, we used the scale and center technique that
is commonly used in Affymetrix analyses. To ensure the
expression levels of the TaqMan data were on the
same scale as those from the TCGA Affymetrix data,
TaqMan qPCR outputs were centered and scaled. After
that normalization they showed comparable ranges of
expression.

Variations in expression levels reported from this study
are within previously described tolerances [11–14], and
the range of differences over an entire pathways appears
to have a potentially small or negligible effect on predict-
ive power. Thus, our method for applying the Patient-
Specific Risk Profile that was derived with snap-frozen
tissue and large-scale Affymetrix microarrays can be ef-
fectively applied to a limited gene set measured by qPCR,
using RNA extracted from FFPE tissues. Our PSRP 91
gene assay uses measurements aggregated within a
cellular pathway, with unbiased selection techniques.
This allows poorly expressed genes to be weighted as
much as highly expressed genes in the predictive model.
Our work was limited by the small sample size of the

snap-frozen tissues we obtained to compare to outputs
provided by TCGA. Moreover, we did not measure
gene expression in samples preserved for more than
3 years when we compared the FFPE blocks to the
snap-frozen samples. The inability to detect expression
changes as FFPE blocks age has been a concern in prior
reports, but improved techniques and choices in house-
keeping genes appear to have reduced its potential im-
pact [15]. Variations in pathologic processing and the
ischemia in the tissue sample may be a source of noise
in the FFPE gene measurements. Thus far, our assess-
ment of RQI showed lower quality for these specimens,
which is expected. This did not seem to effect the qual-
ity of measurement for a plurality of the genes assayed.
Fixation for snap frozen and FFPE samples occurred
simultaneously after surgical removal. Another concern is
intra-tumor heterogeneity in duplicate patient samples.
Variation in a single patient’s tumor profiling has been iden-
tified by groups measuring expression arrays from multiple
tumor sites. Our comparisons were from the same tumor
excised at the same time, but variation in location may
affect the correlation of the two tumor sites [16]. The loss
of detection of some lower expressing genes in the qPCR
(e.g., WNT16) is a concern for future modeling. Alternative
technologies may need to be considered depending on the
weighted importance of specific genes.
In summary, this study validated the use of FFPE tis-

sue and qPCR—instead of snap-frozen tissue and micro-
arrays—to obtain gene expression data for core cellular
pathways. This supports the use these tissue samples
when predictive modeling of ovarian cancer was done in
larger data sets such as the TCGA. The variation in ex-
pression noted between our different samples does not
appear to significantly distort expected outputs, leading
us to believe that a model derived from expression re-
ported using one approach could be used with a more
convenient and “real world” approach when evaluating
clinical samples. Our assay will be tested in a recurrent
disease setting to more definitively evaluate predictive
capacity prospectively.
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Conclusion
This study offers evidence that a predictor model based
on a large data set generated from Affymetrix micro-
array and snap frozen ovarian carcinoma samples can be
applied to paraffin embedded clinical samples from a
local pathology lab. Our predictive model used a “path-
way” approach, and we observed that these local samples
had pathway measurements across 10 separate pathways
that fell within expected ranges. Normalization with
scaling and centering was used for this in the qPCR data
generated.

Additional file

Additional file 1: Table S1. Gene list. Table S2. Pathway list and
genes in the pathway. Table S3. Scale and center data used for qPCR.
Table S4. Genes unexpressed in at least one TaqMan assay.
(DOCX 54 kb)
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