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Abstract

Recurrent neural networks with memory and attention mechanisms are widely used in natu-

ral language processing because they can capture short and long term sequential informa-

tion for diverse tasks. We propose an integrated deep learning model for microbial DNA

sequence data, which exploits convolutional neural networks, recurrent neural networks,

and attention mechanisms to predict taxonomic classifications and sample-associated attri-

butes, such as the relationship between the microbiome and host phenotype, on the read/

sequence level. In this paper, we develop this novel deep learning approach and evaluate

its application to amplicon sequences. We apply our approach to short DNA reads and full

sequences of 16S ribosomal RNA (rRNA) marker genes, which identify the heterogeneity of

a microbial community sample. We demonstrate that our implementation of a novel atten-

tion-based deep network architecture, Read2Pheno, achieves read-level phenotypic

prediction. Training Read2Pheno models will encode sequences (reads) into dense, mean-

ingful representations: learned embedded vectors output from the intermediate layer of the

network model, which can provide biological insight when visualized. The attention layer of

Read2Phenomodels can also automatically identify nucleotide regions in reads/sequences

which are particularly informative for classification. As such, this novel approach can avoid

pre/post-processing and manual interpretation required with conventional approaches to

microbiome sequence classification. We further show, as proof-of-concept, that aggregating

read-level information can robustly predict microbial community properties, host phenotype,

and taxonomic classification, with performance at least comparable to conventional

approaches. An implementation of the attention-based deep learning network is available at

https://github.com/EESI/sequence_attention (a python package) and https://github.com/

EESI/seq2att (a command line tool).
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Author summary

Microbiomes are communities of microscopic organisms found everywhere, including

on and in the human body. For example, the gut microbiome plays an important role in

digestion, and changes in composition are associated with changes in health or disease,

e.g., inflammatory bowel disease (IBD). Today, microbiome composition is often

obtained from high-throughput sequencing, which generates many short DNA reads

from multiple organisms in a sample. In this paper, we present a novel deep learning

framework, Read2Pheno, to predict phenotype from all the reads in a set of biological

samples. An attention mechanism allows visualization of specific subregions (sets of

bases) which are important in classifying the reads according to phenotype or taxon

labels. We evaluate the framework on sequencing data for 16S rRNA genes, genetic

markers used to identify microbial taxonomy. We show that Read2Pheno performs

comparably as conventional methods on three distinct data sets from the American Gut

Project, IBD patients and controls, and a comprehensive taxonomic database. Moreover,

Read2Pheno results can be readily interpreted—e.g., to identify regions of the 16S

rRNA gene to target for PCR diagnostics—without additional pre/post-processing steps

that can introduce complexity and error.

This is a PLOS Computational BiologyMethods paper.

Introduction

Advances in DNA sequencing are rapidly producing complex microbiome data sets in fields

ranging from human health to environmental studies [1]. Large-scale microbial projects pro-

vide rich information, enabling prediction of sample-level traits (i.e., phenotypes), aiding bio-

logical discovery, and supporting medical diagnosis. A typical microbiome study may contain

hundreds to thousands of samples. Each sample, in turn, contains thousands of reads depend-

ing on the sequencing depth. These reads are fragments of DNA/RNA material extracted from

microbes residing in the environment where the sample was collected. For example, an envi-

ronmental sample can be sequenced via 16S ribosomal RNA amplicon technology, to provide

a comprehensive taxonomic survey of an environment’s or subject’s microbial community

[2, 3].

A major focus of microbiome research has been, and continues to be, the use of 16S rRNA

amplicon sequencing surveys to determine “Who is there?” in a host or environmental sample.

The answer to “Who is there?” may, in turn, be used to predict host phenotype for clinical

diagnoses or infer taxa-phenotype association for basic biology research [4–8]. In the context

of our work, we define “phenoytpe” as an overall trait at the environmental level or habitat that

the microbiome sample is isolated from [9, 10], thereby incorporating the emergent function

of the microbiome (a.k.a. microbiome phenotypes) [11–16]. For example, the expansive defini-

tion of “phenotype” in the microbiome context can include the preference of a certain micro-

bial community for a particular environmental niche or body site [17]. Thus, the microbiome

may be shaped by the environment.

While shotgun metagenomic sequencing technology may be used instead [3, 18, 19], many

use cases depend on 16S rRNA amplicon sequencing as an affordable, rapid, and readily field-

deployable solution to find out “Who is there?”. However, phenotype prediction from rRNA

sequence is a major challenge. Ribosomal sequence does not itself contain functional
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information, unlike, e.g., more costly and complex metagenomic shotgun sequencing data [7,

20]). Building machine learning phenotype classifiers usually starts with constructing a micro-

bial abundance table, such as an Operational Taxonomic Unit (OTU) table, an Amplicon

Sequence Variant (ASV) table, or a k-mer frequency table (i.e., table of the frequencies of k-

length nucleotide strings within the collection of reads in a sample) [6, 7]. Researchers then

train a classifier to distinguish phenotypes by learning from the taxon abundance of sequenced

samples in a training data set. For example, a classifier may be constructed to identify a sample

as being from a patient’s gut who was diagnosed with a disease.

By analyzing the OTU/ASV abundance table, therefore, researchers can discover underly-

ing associations between certain taxa or groups of taxa and phenotype. For example, in Gevers

et al. [5], samples were collected from a) patients with Crohn’s disease and b) control groups,

and some taxa were found to only be abundant in the disease group, and some were eliminated

in disease group. In another study, 16S rRNA sequences were transformed to OTU tables to

evaluate 18 classification methods and 5 feature selection methods, and feature selection was

shown to often improve classification performance [21]. Another classifier method based on

RoDEO (Robust Differential Expression Operator) normalization was shown to sometimes

perform better when a small subset of OTUs were used [6].

The construction of OTU/ASV tables, however, often involves denoising, sequence align-

ment, and taxonomic classification, and thus can lead to information loss from the true infor-

mation contained in the raw nucleotide reads. And, as shown above, it can require additional

steps of processing, for example feature selection or OTU table reduction. By grouping

sequences to limited taxonomic labels, it becomes difficult to quantify the genotype-to-pheno-

type relationship. Of particular concern is the omission of nucleotide structural information

from OTU mapping, where the 97% identity threshold conventionally used for OTU mapping

smooths over valuable nucleotide variation. This is better addressed through the more exact

ASV identification—but rarely is the nucleotide level information examined past the mapping

step. Alternatively, a k-mer representation of amplicon sequences has been proposed to predict

phenotype, which is shown can outperform traditional OTU representation [7]. Since a k-
mer-based method is alignment free and reference free, it would cost less computationally

than OTU-based methods if relative small k-mer size is used (e.g., k-mer values of 3� k� 8

are typically used in MicroPheno [7]). Because k-mer representations cut reads into smaller

pieces, methods based on k-mers will lose sequential information. As such, k-mer analysis is

subject to the length of the k-mers and does not preserve the nucleotide context/sequential-

order. Some local nucleotide variation may be able to be identified; however, the long-range

nucleotide sequential information is completely lost. In sum, currently available methods are

unable to easily and robustly connect nucleotide changes on the read level back to the pheno-

type prediction and thereby reveal which nucleotide features are specifically relevant to the

classification.

Deep neural networks and their application in bioinformatics

Recent advances in supervised deep learning are further able to leverage a huge volume of dif-

ferent kinds of data. Convolutional neural networks (CNNs), which may be interpreted by

saliency maps [22], have been vital to image recognition. Model interpretability has been a

research direction of particular interest in the deep learning field [23–25]. Deep learning has

been applied to bioinformatics too [26]. Deep learning approaches have been shown to be able

to learn hierarchical representations of metagenomic data that standard classification methods

do not allow [27]. Both CNNs and RNNs have been applied to areas such as transcription fac-

tor binding site classification [28, 29], SNP calling [30, 31], microbial taxonomic classification
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[32] and DNA sequence function prediction and gene inference [33, 34]. Other work has used

deep learning approaches to predict environments and host phenotype using k-mer-based

representation of shallow subsamples [7]. Lo et al. proposed deep learning approaches to

learn microbial count data (e.g., OTU table) for host phenotype prediction [35], and another

approach formats microbial count data as an “image” to be processed by a CNN model [36].

CNN models were used to learn phylogenetic structure of a metagenomic sample to predict

the host phenotype [37]. A 2D matrix is used to represent the phylogenetic tree of microbial

taxa (with relative abundance) in a sample, and a CNN model is designed to learn from such

data. Woloszynek et al. proposed an unsupervised method to embed 16S rRNA sequences to

meaningful numerical vectors to facilitate the down-stream analysis and visualization [38].

Many models rely on extracting “features” (for instance, taxonomic composition or functional

profiles) from the sequence data [39].

In addition to making predictions, machine learning models can reveal knowledge about

domain relationships contained in data, often referred to as interpretations [40]. In the context

of sequence classification tasks, i.e., microbial survey data based phenotype prediction, once a

predictive model is built, the researchers can further identify sequence features relevant to clas-

sifications, i.e., occurring taxa and gnomic content related to a certain disease. There are sub-

stantial research attempts to identify label associated genetic content. A complementary

approach is supervised computational method, as a means of associating genetic content with

known labels, i.e., taxa. “Oligotyping” has been proposed as a way to identify subtypes of 16S

rRNA sequence variation, based on distinguishing sequence variants by subsets of several

nucleotides within the sequence, i.e., oligomers. Specifically, Oligotyping is a supervised

computational method that identifies those nucleotide positions that represent information-

rich variation [41]. Oligotyping requires information about the taxonomic classification of the

sequence via OTU clustering or supervised methods. Then, the method is applied to taxonom-

ical/OTU groups of interest. Oligotyping can be an efficient way to identify informative nucleo-

tides and discriminate between closely related but distinct taxa [41]. However, preprocessing

steps are still needed (e.g., OTU clustering or multiple sequence alignment) to find closely

related sequences.

Another proposed method, “PhenotypeSeeker” [42], is a statistics-based framework to find

genotype-phenotype associations by identifying predictive k-mers by a regression model and

quantifying their relative importance. This was designed, however, to learn a closely related

group of bacterial isolates and their associated phenotypes. Furthermore, “PhenotypeSeeker’’

and other k-mer frequency tables based methods cannot capture the sequential order informa-

tion of k-mer, and thus they fail to provide sequence-level interpretability. Visualization meth-

ods are developed for DNA/RNA binding sites prediction models as mentioned in Section

Deep neural networks and their application in bioinformatics [28, 29, 43, 44] to reveal predic-

tive genomic content. Alipanahi et al. propose to interpret the model and visualize informative

single nucleotide polymorphisms (SNPs) by manually altering nucleotides in the input reads

and comparing the resulting new prediction with the original prediction of the unaltered input

[43]. In Deep Motif, the authors use Saliency Maps [22, 25] to interpret the model and visualize

informative genomic content [28].

Towards better interpretability: Attention mechanisms

Attention mechanisms have become more widely applied in the natural language processing

(NLP) and image recognition fields to improve the interpretability of deep learning models

[45–48]. For example, it has been shown that an attention-based Bi-LSTM (Bi-directional long

short term memory) RNN model can successfully capture the most important semantic

PLOS COMPUTATIONAL BIOLOGY Learning, visualizing and exploring 16S rRNA structure using attention

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009345 September 22, 2021 4 / 36

https://doi.org/10.1371/journal.pcbi.1009345


information in a sentence and outperform most existing competing approaches [47]. A hierar-

chical attention network can also improve document level classification [46] by selecting quali-

tatively informative words and sentences. Informative content may be visualized by looking at

the output of the attention layers of the network model. The use of deep learning with atten-

tion mechanisms has also been suggested for the field of bioinformatics. Deming et al. [29]

proposed a method for simultaneously learning general genomic patterns and identifies the

sequence motifs that contribute most to predicting functional genomic outcomes, e.g., tran-

scription factor binding site (TFBS) classification and lineage-specific gene expression predic-

tion. While they found a marked gain in performance over previous architectures, their model

was not used for phenotype prediction.

In this paper, we exploit CNNs, RNNs, and attention mechanisms for phenotype/taxo-

nomic prediction and propose a Read2Pheno classifier to predict phenotype from 16S

rRNA reads and, thereby, explore and visualize informative nucleotide structure and taxa.

This method can be considered as a supervised read-level embedding method compared with

our previous work in word2vec embedding methods for 16S rRNA reads [38]. Although the

model focuses on read-level resolution, the sample-to-phenotype prediction can still be

inferred by a sample-level predictor which aggregates the abstraction of all reads from the

Read2Pheno model. A python implementation of the proposed model is available at https://

github.com/EESI/sequence_attention. A command line tool of the proposed model is avaiable

at https://github.com/EESI/seq2att. We show that the model trained with read-level informa-

tion can achieve similar sample-to-phenotype predictions compared with conventional meth-

ods. Our proof-of-concept results demonstrate the potential of our proposed read-level

training procedure to provide the basis for more accurate and comprehensive sample-level

classification, as compared to OTU tables, and substantially more interpretable results than k-
mer-based methods. We further provide a visualization of the embedded vectors, which is a

representation of the information that the network is learning. We use attention weights to

identify and visualize the nucleotides associated with phenotype and/or taxonomy, and com-

pare the highlighted informative regions against a base-line entropy method and Oligotyping
[41].

We show the efficacy of our model with the American Gut microbiome data set [49]

(http://americangut.org/), Gevers et al.’s Crohn’s disease data set [5] and SILVA 16S rRNA

data set [50, 51] and explore interesting visualizations and features generated by the model.

The experimental results show that the performance of our model is comparable to current

methods and our models can provide further interpretation and visualization.

Materials and methods

Our proposed model consists of two parts: 1) the Read2Pheno read-level classifier, which is

the focus of our paper, and 2) several sample-level predictors based on the Read2Pheno
model, primarily used here to demonstrate the evaluation of the Read2Pheno model. We

first train a read-level classifier using an attention-based deep neural network to predict DNA/

RNA reads to the sample-level labels the reads associated with. For example, if the samples are

labeled with collected body sites, the model will be trained to learn the original body site from

which the samples’ reads were collected. Then, a sample-level prediction can be made by three

different ways: 1) tally a majority vote of all the read prediction scores in the sample of interest

to obtain a final prediction; 2) use the output of the intermediate layer to obtain a read embed-

ding (see Fig 1 for details) and average read embeddings from a sample to gain an overall sam-

ple-level embedding that a classifier can train on to predict a sample-level label; 3) apply

clustering on read embeddings of training data and assign reads per sample to those clusters to
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form a “Pseudo OTU” table [38]. Then, a sample-level classifier can be trained for phenotype

prediction, which allows validation of the read-level model, i.e., by showing that it can produce

accurate and relevant phenotype predictions.

Read2Pheno classifier

The Read2Pheno classifier is a hybrid convolutional and recurrent deep neural network

with attention. Fig 1 shows a diagram of the classifier. Sequencing data are one-hot coded

according to the map shown in S1 Appendix. Then the array representation of a read is fed

into several initial layers of convolutional blocks (inspired by the scheme in [29]). The result is

an embedding of the read, a T × Nc dimensional matrix, by learning local k-mer patterns,

where Nc is the number of output channels in convolutional blocks and T is the length of input

DNA reads. A Bi-directional Long Short Term Memory (Bi-LSTM) model is then applied to

the data to learn the longitude dependency of the output of the convolutional layers. The

returned sequence is then processed and normalized by an attention layer to get an attention

vector using the soft attention mechanism, as described in [47, 52]. The output of Bi-LSTM

layer in our model is a T × Nh dimensional matrix where Nh is the number of hidden nodes in

Bi-LSTM layer and T is the length of input DNA reads. Each base position (time-step) in the

input corresponds to an Nh dimensional vector (hidden states at this position). The dense

attention layer applies to the hidden states of every base position (time-step). The dense layer

thereby learns the importance of hidden states at each position and return a small value if the

hidden states of this position do not make an important contribution to the model’s final pre-

diction, and, conversely, a large value if the model relies on the hidden states at this position in

making the final prediction. The output of the dense layer is a vector of length T. Then, the

Fig 1. Read2Pheno classifier architecture: The input is a one-hot coded 16S rRNA sequence with length T. The input is fed to a few 1-dimensional

convolutional blocks with window size ofW and the number of output channels ofNc. The resultant output is a T × Nc dimensional matrix which is

then fed to a Bidirectional LSTM layer with the number of hidden nodes ofNh. Na is the number of hidden nodes used to compute attention weights

and Ny is the total number of phenotypes (number of classes) to be predicted. There are two informative intermediate layer outputs (attention weights

and read embedding vectors) which are labeled by speech balloons. They are used in the analysis described in this paper.

https://doi.org/10.1371/journal.pcbi.1009345.g001
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output is normalized by a softmax function to produce the attention vector [52]. The output

of this layer naturally indicates the regions in the sequence that the model pays attention to.

While the attention weights are not learned from specific nucleotides but from high level fea-

tures from 9-mers and their sequential information, as shown in Fig 1, the attention interpre-

tation may be considered to be an approximation of the informative nucleotides of the 16S

rRNA gene. The final embedding of the read is a weighted sum of all the embeddings across

the sequence, where the weights are the elements of the attention vector. The goal of this layer

is to suppress the regions that are less relevant to prediction and focus on informative regions.

Finally, a dense layer with softmax activation function is applied to the read embedding vec-

tor to classify it into one of Ny labels. The hyperparameter selection process is described in Sec-

tion Model selection and hyperparameter search.

Sample-level predictor

In this paper, we perform sample-level prediction in three different ways. The simplest of

the three is majority vote. The sample-level predictor counts all the votes, i.e., the resulting

Read2Pheno classifications, from all the reads in a query sample and labels the sample with

the overall majority vote. The majority vote is a baseline method intended to illustrate that

the Read2Pheno model is learning the sample-associated phenotypic labels for each read.

We compare the majority vote baseline to proposed embedding-based approaches further

described below.

The intermediate layer of our model provides a concise numerical representation of the

input reads, which we can exploit in sample-level prediction. We propose to use two embed-

ding based approaches: sample-level embedding method and “Pseudo OTU” method [38].

The sample-level embedding method forms a sample-level vector representation by averaging

all read-level embeddings in a query sample. Then, a classifier, such as Random Forest, can be

trained to learn the sample-phenotype association. For the Pseudo OTU method, as described

by Woloszynek et al. [38], firstly read-level embedding vectors are clustered via an unsuper-

vised algorithm such as k-means to form k clusters that are Pseudo OTUs (groupings of related

reads). Then, we can assign each query sample’s reads to those Pseudo OTUs based on dis-

tance. A classifier, such as Random Forest, can then be trained to make sample-level predic-

tions on a Pseudo OTU table made up of the Pseudo OTU abundance, as defined above, in all

samples. Both embedding-based methods learn the sample phenotype by training on each

individual read (“read-level”) and on all reads (“sample-level”) rather than read-level-only

learning, as for baseline majority vote.

Majority vote. The Read2Pheno classifier produces a vector of likelihood scores which,

given a read, sum to one across all phenotype classes. To get the sample-level prediction, all

reads from a sample of interest are classified by Read2Pheno model, and the resultant scores

are then aggregated by the sample-level predictor. Using body site prediction as an example,

there are 5 different body site classes: feces, tongue, skin of hand, skin of head and nostril. We

show the diagram of our sample-level predictor in S2 Appendix. Given a sample of interest,

the reads associated with this sample are first predicted by Read2Pheno classifier. Some spe-

cies can be found in multiple body sites. Therefore, performing a hard call on which body sites

a read originates from can be misleading. To alleviate this problem, if needed, the sample-level

predictor contains a read caller function that can assign one read to multiple body sites by

applying a threshold to the output of Read2Pheno for the read. In our implementation, if

the likelihood score of the read from a body site is greater than chance (1

N, where N is the num-

ber of body sites in the training data), the vote count of that particular body site will increment

by 1 (see the “Read Abundance” block in S2 Appendix). For example, suppose there are three
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target body sites: skin (i.e., dermal samples), gut (i.e., fecal samples), and tongue (i.e., oral sam-

ples). If a read were predicted to be from gut, skin and oral samples with scores of 0.51, 0.43

and 0.06 respectively, both the vote counts of feces class and skin class would increment by 1

(since the likelihood of these two body sites are greater than 1

3
). Finally, once all reads have

been counted, the argmax of vote count vector is taken to predict the sample-level body site.

Embedding-based method. The attention layer of the Read2Pheno classifier produces

an Nh-dimensional embedded vector (see Fig 1), which is a meaningful numerical representa-

tion of each 16S rRNA read. For sample-level classification, we first use the trained Read2-
Pheno model to encode all reads per sample into the Nh-dimensional vectors. We describe

two methods to produce sample-level features using the read embeddings: the averaged sam-

ple-level embedding and Pseudo OTU table.

Averaged sample-level embedding: To obtain a sample-level embedding, we first use the

trained Read2Pheno model to encode all reads per sample into the Nh-dimensional vectors.

Then, we average the read vectors to form a sample-level embedding.

Pseudo OTU table: Instead of taking the average of the trained read embeddings, we use a

k-means algorithm with the default Euclidean distance metric to cluster the read embeddings

of training data into 1000 clusters [38]. Then, all reads in each query sample can be assigned to

those clusters. Effectively, the clusters represent related sequences, which are called Pseudo

OTUs. We compute the number of reads assigned to each Pseudo OTU for each sample to cre-

ate a Pseudo OTU table: a matrix of Pseudo OTUs versus samples.

We can then train a classifier (e.g. Random Forest) on the sample-level features to predict

phenotype. We show the training and testing process of averaged sample-level embedding and

Pseudo OTU table based sample-level prediction in S3 and S4 Appendices respectively.

Traditional sample-level classifiers. We also train and evaluate Random Forest classifiers

using 1) k-mer frequency tables, 2) OTU abundance tables and 3) ASV tables generated by

Dada2 [53] to show that our proposed model can extract meaningful features on the read level,

which can then be used to achieve comparable performance at the sample level. In our experi-

ments, all the tables are first normalized by the row sum to create relative abundance table

which are used as the input to the random forest classifiers. We use the scikit-learn implemen-

tation of Random Forest classifier with default parameters (number of estimators = 100).

Pretrained word2vec embedding based sample-level classifiers. Woloszynek et al. pub-

lished a pretrained Skip-Gram word2vec model that was trained on 2,262,986 full-length 16S

rRNA amplicon sequences from the GreenGenes reference database for 10-mers [38]. Since

each k-mer is mapped to a numerical vector, the read-level embedding is obtained by averag-

ing all numerical vectors that corresponds to 10-mers in a read. The sample-level embeddings

can then be obtained using the same methods described in Embedding-based method. Down-

stream Random Forest classifiers trained on the embeddings may serve as additional baselines.

The pretrained word2vec method can in general be classified as a k-mer based methods as

well, since the word2vec model is trained to predict neighbor k-mers given a k-mer input.

However, this method can leverage the information from millions of 16S rRNA reference

sequences. As such, the pretrained word2vec method provides a good baseline to show

how well embedded vectors obtained using this paper’s attention-based method can encode

information.

Data preparation for model evaluation

American Gut Project (AGP) data set. The AGP data set used for model evaluation in

this paper is a subset of data from the American Gut Project [49]. As of May 2017, American

Gut project reported that AGP included microbial sequence data from in total 15,096 samples
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from 11,336 human participants (subjects) and that number continues to grow as the project is

ongoing [49]. We focus on samples from five major body sites (Ny = 5): feces, tongue, skin of

hand, skin of head and nostril. As mentioned in American Gut Project’s documentation, some

bloomed organisms were contained in samples analyzed early in the American Gut Project

because of increased shipping time and delay between when samples were collected and when

they were put on ice. As a result, bloom sequences have been removed in preprocessing pro-

cess by American Gut Project. In this study, we use the latest filtered sequences and OTU table

deposited in ftp://ftp.microbio.me/AmericanGut/latest as of 2018/12. All reads have been

trimmed to 100 base pairs by American Gut Project, so that T = 100 in Fig 1.

Gevers data set. The Gevers data set used for model evaluation in this paper is a subset of

an inflammatory bowel disease (IBD) data set [5] (NCBI SRA index: PRJNA237362 in NBCI).

Sample metadata label them as being IBD or Non-IBD (Ny = 2). Here, we refer to IBD samples

as “CD” (Crohn’s Disease), and the Non-IBD ones as “Not IBD” (disease-negative). We merge

paired reads using QIIME [54] and trim them to 160 base pairs (i.e., with the first 10 removed,

the following 160 base pairs kept and the rest discarded), so that T = 160 in Fig 1. To confirm

that the Read2Pheno model would be robust to a longer read, we also evaluated reads

trimmed to 250 bp (see S16 Appendix).

Experimental setup for American Gut Project data set and Gevers data set. First, we fil-

ter out samples with less than 10,000 reads. Then, we randomly select 161 samples from Amer-

ican Gut Project data set and 221 samples for Gevers data set per class as our experimental

data set to balance the class distribution (resulting in total 805 samples in AGP experimental

data set and 442 samples in the Gevers experimental data set). The number of samples are

selected based on the least number of sample per class after filtering for each data set. Next, we

randomly select a certain number of samples per class for training and leave out the rest for

testing. For the AGP data set, 10, 80 and 150 samples per class are randomly selected for train-

ing (resulting in 50, 400 and 750 samples total respectively). For the Gevers data set, 20, 80 and

200 samples per class are randomly selected as training data (resulting in 40, 160 and 400 sam-

ples total respectively).

For the AGP data set-based experiment used for attention interpretation, we randomly

select 10 samples per class for training, resulting, in total, 50 samples and 1,503,639 reads for

training. The rest of the samples form the testing data set. Metadata for this experimental data

set are available in S5 Appendix, where we provide additional information about the hosts

such as the race, sex and health status. We randomly select 10 samples per class as the candi-

date visualization set. For the Gevers data set-based experiment used for attention interpreta-

tion, we select 40 samples (20 from the IBD class and 20 from non-IBD) by random and

collect 1,678,464 reads for training (around 42,000 reads per sample). The remaining samples

(442—#_of_training) are used for testing. We again randomly select 10 samples per class from

the testing data set as the candidate visualization set. After we select the candidate visualization

set for both attention interpretation experiments, we use the QIIME [54] implementation of

the Ribosomal Database Project (RDP) [55] taxonomic classification with GreenGenes v13.8

database to assign the genus-level labels to reads in the candidate visualization set. Then,

reads with less than a 80% RDP confidence score on genus level are removed from the visuali-

zation set.

Finally, in order to efficiently extract intermediate layer outputs and generate visualizations,

an arbitrary subset, 100,000 reads from the qualified visualization set, are randomly sampled

for the final visualization and interpretation. All reads in the final visualization set have a

genus-level label and phenotype (i.e., body site or disease diagnosis) label. For the AGP visuali-

zation set, we further merge the skin-associated label, namely, skin of head, skin of hand and

nostril into one single skin class to simplify the visualization. As a result, the visualization set
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reflects 3 body site classifications instead of 5. We use the experimental setup for the AGP data

set as an example to show the overall training and testing experiment in S6 Appendix.

SILVA data set and experimental setup. The SILVA 16S taxonomic QIIME-compatible

data set is used to construct our experimental data set [50, 51]. There are 369,953 sequences

total in the original data set. Among those sequences, there are 268,225 which have a genus-

level label, and those sequences come from 6,618 genera. We select the genera that have over

100 representative sequences and collected all sequences from these genera to form our experi-

mental data set. We thereby include in total 204,789 sequences from Ny = 495 genera in our

experimental data set where Ny is the number of target classes in taxonomic prediction. Our

data set covers around 76.35% sequences and 7.48% of the genera in original data set. Sequences

are first one-hot coded according to the map shown in S1 Appendix. Then, we right-pad the

sequences with zero vectors to the nearest hundred and group sequences based on the padded

length (resulting 11 groups that have 100bp increment size in the range of T = 900! 1900).

For example, a sequence of length 1001 will be padded with 99 zero vectors to a total length of

1100bp. Then, those sequences are stored in the same matrix per length group. In this way,

model can be trained by sequences with similar length at a time to improve the training effi-

ciency. We then randomly split the data set into 80% sequences as training and 20% as testing.

The Read2Pheno training process

We train the Read2Pheno model with reads from training data set, preprocessed and

selected as described above, labeling reads by sample phenotype. Since the Read2Pheno
model should be trained and optimized for read-level prediction, sample-level predictors are

trained separately after the Read2Pheno model training is completed. For each testing sam-

ple, all reads are classified by the Read2Pheno model. We then aggregate the read-level

information encoded by the Read2Pheno model using methods described in Section Sam-

ple-level predictor to make sample-level predictions. We show a schematic of the training pro-

cess in S7 Appendix.

We randomly sample an equal number of samples from each class to form the training set.

Then, we label all reads associated with those samples by their sample-level label and shuffled.

All reads are one-hot coded according to the coding map in S1 Appendix. Then, the data are

fed to the Read2Pheno model for training. The reason we train our neural network on the

read level instead of sample level is two-fold: 1) our read-level model can highlight informative

regions in each input sequence; 2) there are relative less number of examples to train a complex

neural network model on the sample level than the read level. As discussed in Section Model

selection and hyperparameter search, we further show that the read-level model trained with a

dozen of samples performs comparably to read-level model trained with hundreds of samples.

Our deep learning model is implemented in Keras (version 2.2.2) with Tensorflow (version

1.9.0) backend. If the number of classes is greater than 2, then categorical cross-entropy can be

used as the loss function. Otherwise, binary cross-entropy is the recommended loss function.

Adam optimization with default setting and a learning rate of 0.001 is used to train the model.

The model was trained and evaluated on the Extreme Science and Engineering Discovery

Environment (XSEDE) [56] for 10 epochs. We also made the proposed Read2Pheno model

available in Github at https://github.com/EESI/sequence_attention (a python package) and

https://github.com/EESI/seq2att (a command line tool).

Model interpretation and read visualization

The Read2Pheno model has an LSTM layer; consequently, sequential information are

encoded and circulated in hidden states. The intermediate output, labeled as “Read embedding”
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in Fig 1 is anNh-dimensional vector. This read embedding vector is an average of hidden states

across all bases weighted by the attention weights, labeled as “Attention Weights” in Fig 1. The

Nh-dimensional embedding vector can be considered as a numerical representation of the

input DNA/RNA read. Therefore, similar reads from the same taxonomic group should be

embedded to vectors that are close to each other in Nh-dimensional space, whereas differing

reads should be embedded far away from each other. This type of relationship may be shown by

plotting theNh-dimensional vector representations of the reads in a 2-dimensional space.

Accordingly, we use Principal Component Analysis (PCA) to reduce the dimensionality of all

reads in visualization set to 2-dimension by projecting them onto the top 2 principal compo-

nents that explain the most variation. In this study, we use the QIIME [54] implementation of

the RDP [55] taxonomic classification method to predict the genus level label for our visualiza-

tion reads.

Inspired by “WebLogo” [57, 58], we also use a “sequence logo” to visualize significant fea-

tures contained by the sequence. The reads from same genus are similar to each other, with

mutations at certain positions. We thus group the visualization reads from the same genus

together for further exploratory visualization.

We calculate the overall Shannon Entropy of a group of reads (reads from a genus) by:

HðlÞ ¼ � Sbpðb; lÞ � log2ðpðb; lÞÞ ð1Þ

where b is the nucleotide base, b 2 {A, T, G, C}, l is the position of the sequence, l 2 (0,length

(seq)]. p(b, l) can be estimated by f(b, l), the normalized nucleotide frequency of base b at posi-

tion l. For our phenotype prediction models, the sequence logo for a given phenotype can be

calculated by Eq 2 where c is the phenotype label and fc(b, l) is the normalized nucleotide fre-

quency of base b at position l among reads from phenotype c.

Scðb; lÞ ¼ fcðb; lÞ � HðlÞ ð2Þ

Positions with high nucleotide variance will have high entropy and therefore the sequence

logo is a good measure of “importance” (variation) of nucleotides, which we use as our baseline

importance measure.

As presented in Fig 1, a dense attention layer learns to predict the importance of bases by

hidden states output from Bi-LSTM layer. The output of the attention layer, “Attention

Weights”, is a vector of input read length, T, wherein each value represents the importance of

the hidden state corresponding to said position. This vector will indicate what region of the

input sequence the model has been found to be most informative. Therefore, we use the atten-

tion weights for the input reads as the model’s predicted importance measure. Among reads

from the same genus, the attention weights for reads from the same phenotype are averaged.

The mean attention weight vector highlights the informative sequence regions for a phenotype

for this genus. The attention measure is thus defined by Eq 3.

Aðc; lÞ ¼ attmeanðc; lÞ ð3Þ

where attmean(c, l) is the mean attention weight of reads from a phenotype c at position l. Note

that the same read can be extracted from samples with different phenotype labels, but the

model is forced to classify the read to one of the phenotype labels. In order to understand

which regions are considered “important” by the model when making a particular prediction,

we use the predicted class label as the phenotype label when calculating the mean attention

weights in Eq 3 for both AGP and Gevers dataset. For genus classification model trained on

SILVA data set, we use the true genus label as the class label to group sequences to compute

the mean attention weights because one sequence is associate with only one genus label.
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Results

As described in detail below, we analyzed three distinct 16S rRNA amplicon sequence data

sets: 1) data provided by the American Gut Project (AGP), in which samples are labeled by

body site origin and thereby reflect microbiome phenotype (i.e., properties of a microbial com-

munity); 2) data published by Gevers et al. (Gevers), which is labeled by disease diagnosis, i.e.,

host phenotype; and 3) the SILVA rRNA database, a large corpus of comprehensive and qual-

ity checked 16S rRNA sequences with taxonomic labels. Our goals for each data set were to

evaluate 1) the performance of attention-based deep learning models at predicting phenotype

and taxonomy as compared to existing baseline methods, and 2) interpretability gains afforded

by intermediate layer outputs of attention-based deep neural networks through visualizing the

ordination of sequence embedding vectors and informative regions of sequences highlighted

by attention weights.

Microbiome phenotype (body site) prediction based on American Gut

Project (AGP) data

We evaluated our proposed Read2Pheno attention model on a subset of American Gut Proj-

ect (AGP) data, which contains sequencing data from the largest crowd-sourced citizen science

project to date [49]. The subset contains 805 samples obtained from five body sites: feces, ton-

gue, skin of hand, skin of head, and nostril.

Model selection and hyperparameter search. To evaluate model architectures and fine

tune hyperparameters, we use the training data for 50 samples to perform a 5-fold cross valida-

tion to fine tune the hyperparameters of our model. The reads from 50 randomly selected

samples are split into 5 folds. The model is trained with 4 folds and then validated by the

remaining fold. The validation accuracy is used to find the best set of parameter and model

architecture. The hyperparameter search space can be found in S8 Appendix. The 5-fold cross

validation yielded Nc = 256 filters in CNN layers, Nh = 64 units in LSTM layer, dropout rate of

0, and learning rate of 0.001 as the hyperparameters as producing the best read-level classifica-

tion accuracy on the training data set, and we incorporated them in our model. We also per-

formed the same hyperparameter sweep on other models with related architectures: the Bi-

LSTM model, Attention-based Bi-LSTM model, CNN model, Attention-based CNN model,

CNN-Bi-LSTM model and Attention-based CNN-Bi-LSTM model. We use the same architec-

ture for CNN and Bi-LSTM layers in the models described in Fig 1. Table 1 shows the best set

of hyperparameters for all 6 models. As Table 1 shows, classifiers constructed with only a Bi-

LSTM layer or a CNN layer have suboptimal accuracy compared to more complex models.

Table 1. Comparison of optimal hyperparameters and maximum validation accuracy for different model designs. The optimal hyperparameters and validation accu-

racy when using those hyperparameters were calculated, based on 5-fold cross validation, for alternative classifier models, i.e., Bi-LSTM alone, Bi-LSTM with an attention

(ATT) layer, CNN alone, etc. Hyperparameter search space is described in S8 Appendix. The #Param column shows the number of parameters of the models. The CNN

column shows the optimal number of convolutional filters, Nc. The RNN column shows the optimal number of hidden nodes in Bi-LSTM,Nh. DP refers to the dropout

rate (probability of training to a particular hidden node in the layer) and LR is the learning rate (amount weights are updated in each step) used in Adam optimizer. From

this table, we observe only small differences in validation accuracy for the different combinations of parameters in S8 Appendix.

Model #Param CNN (Nc) RNN (Nh) DP LR Acc (± Std)

Bi-LSTM 136,837 - 128 0.25 0.005 0.734 (±0.002)

Bi-LSTM+ATT 138,918 - 128 0.25 0.005 0.732 (±0.003)

CNN 513,541 128 - 0.25 0.001 0.738 (±0.001)

CNN+ATT 1,789,222 256 - 0.25 0.001 0.740 (±0.001)

CNN+Bi-LSTM 2,178,693 256 128 0.25 0.001 0.742 (±0.001)

CNN+Bi-LSTM+ATT 1,949,542 256 64 0 0.001 0.742 (±0.001)

https://doi.org/10.1371/journal.pcbi.1009345.t001
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With the help of an attention mechanism, the CNN model achieves better accuracy, but the

Bi-LSTM model does not benefit from the attention layer. The classifier which combines CNN

layers, a Bi-LSTM layer and an attention layer results in the best accuracy classification follow-

ing 5-fold cross-validation. Although the model without an attention layer achieves similar

accuracy, the interpretability of the attention-based model is superior, as shown in the results

below for sample-level prediction. S9 Appendix shows the training and validation loss of the

model with the best hyperparameters.

To evaluate the influence of the training size for Read2Pheno classifier training, we

designed an independent experiment: we first hold out 55 samples for testing, then we train

the Read2Pheno model with reads from 5, 25, 50, 100, 500 and 750 samples from the rest of

samples and evaluate the sample-level performance of those models by the 55 samples in the

held-out testing set. (Here, we use the sample-level embedding method for sample prediction).

To determine how much sample-level prediction quality depends on the size of the Read2-
Pheno training set as compared to the size of the downstream sample-level training (i.e. Ran-

dom Forest) set, we measure test set prediction accuracy where sample-level Random Forest is

trained 1) on the same samples used to train the Read2Pheno classifier, and 2) on all 750

samples irrespective of the number of samples used to train Read2Pheno. The results are

plotted in S10 Appendix. We found that, as more samples are used to train the sample-level

(Random Forest) classifier, performance improves. However, increasing the number of sam-

ples used to train the Read2Pheno classifier does not generally improve the accuracy of sam-

ple-level classification. This suggests that the Read2Pheno classifier can learn a meaningful

embedding with only a small number of samples. Indeed, there are usually a great number of

reads in a few samples. For example, in the AGP data set, there are over 1 million reads in 50

training samples. Therefore, for further downstream analysis, including visualizations of the

embedding and attention weights, we use a Read2Pheno model trained with 50 samples.

Sample-level attribute prediction. Sample-level attributes, here the “phenotype” of the

host-microbiome interaction, i.e., body site of the microbiome, on the read/sequence level are

predicted by sample-level predictors as described in the Methods section (see Sample-level

predictor). Table 2 compares the accuracy of our deep learning approaches (a Read2Pheno
model trained for 10 epochs with various sample-level classification strategies) against Ran-

dom Forest baseline approaches, which are trained on four different types of features: Random

Forest trained on (1) k-mers frequency tables, (2) OTU tables, (3) amplicon sequence variants

Table 2. Comparison of sample-level classification accuracy on AGP data. Unlike sample-level classification methods that use OTU/ASV tables and k-mers (e.g.

9-mers) as features, our proposed model is trained on reads. Then, read-level results are fused by the sample-level predictor using three methods as described in this paper.

By increasing the number of samples in the training data, we compare the read-level classifier’s ability to learn sample-level predictive taxa/information from limited data

sizes. The training set size refers to the number of samples used for training. For each training set size, we train 5 different models on 5 sets of randomly selected training

samples and the accuracies are averaged and standard deviation is measured over 5 different experiments. We show sample-level prediction for the proposed methods are

competitive with prediction from OTU tables and will allow interpretable representations shown in subsequent sections.

Training Set Size (samples)

Category Method 50 400 750

Traditional 9-mer table 0.808 (± 0.039) 0.887 (± 0.009) 0.903 (± 0.024)

OTU table 0.731 (± 0.021) 0.816 (± 0.010) 0.831 (± 0.030)

ASV table 0.769 (± 0.034) 0.840 (± 0.014) 0.866 (± 0.024)

Pretrained Embedding [38] Sample embedding 0.661 (± 0.028) 0.751 (± 0.017) 0.760 (± 0.020)

Pseudo OTU 0.800 (± 0.018) 0.872 (± 0.012) 0.892 (± 0.019)

Proposed Majority vote 0.730 (± 0.040) 0.794 (± 0.012) 0.795 (± 0.030)

Sample embedding 0.751 (± 0.012) 0.816 (± 0.010) 0.821 (± 0.025)

Pseudo OTU 0.784 (± 0.039) 0.858 (± 0.013) 0.881 (± 0.026)

https://doi.org/10.1371/journal.pcbi.1009345.t002
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(via Dada2) tables [53], and (4) pretrained word2vec model-based data [38]. In Table 2, we

compare the training data set size’s effect on the models’ accuracies (all Read2Pheno models

are trained for 10 epochs and followed by various sample-level classification strategies for sam-

ple-level predictions). For example, for the training set of size of 50 samples, our method was

trained for 10 epochs with 50 samples and tested by 755 samples, whereas a Random Forest

classifier with 100 estimators was trained by the same 50 training samples and tested by 755

samples using the 9-mer frequency feature table, OTU table and ASV table respectively. We

use a 9-mer frequency feature table because the filter window size of our convolutional block is

9. As expected, adding more training data increases performance. While training an Random

Forest model on raw 9-mers performs very well for all training sizes, our sample embedding

and Pseudo OTU methods outperform the 97% identity OTU tables. Moreover, prediction

accuracies obtained using the Pseudo OTU approach are competitive with using raw 9-mer

features. Finally, the pretrained word2vec model-based method performs comparably to our

proposed methods suggesting that our proposed model can learn meaningful embeddings

from the experimental data.

We also explore a potential way to qualitatively explore how the Pseudo OTU behaves com-

pared with a sequence similarity based clustering method, CD-HIT. We use CD-HIT [59] with

97% similarity threshold to cluster all the training reads of American Gut data set (50 samples).

We then compare Pseudo OTU cluster assignment with the CD-HIT cluster assignment

results using clustering metrics, homogeneity and completeness [60]. In our experimental

setup, a Pseudo OTU clustering result is determined to satisfy homogeneity if all of its clusters

contain only data points which are members of a single CD-HIT cluster. A Pseudo OTU clus-

tering result satisfies completeness if all the data points that are members of a given CD-HIT

cluster are elements of the same Pseudo OTU cluster. We found that Pseudo OTU achieves

0.787 and 0.794 homogeneity and completeness when compared with CD-HIT’s clustering

results. The adjusted Rand index (ARI) [61] for the comparison was found to be 0.519 (values

may range from -1 to 1, with 0 being chance). Given that the aforementioned are strict metrics

for similarity, this result shows that the embedding vectors do encode read similarity informa-

tion and can help k-means to create meaningful clusters. In other words, we observe that each

read’s embedded vector will embed with similar sequences from the same OTU. As a result,

our procedure to validate Pseudo OTU clusters may be adapted to identify the optimal number

of clusters required to capture the underlying biological signal.

Read embedding visualization. To illustrate how the Read2Pheno model can learn tax-

onomic classes despite only having phenotype labels, we visualize the embedded vectors for

reads from six selected genera. Fig 2 shows the 2-D principal component analysis (PCA) pro-

jection of embedded vectors of 16S rRNA reads (the intermediate output vectors of the Multi-

plication Layer in Fig 1) of 6 genera from the American Gut data. Each point represents a read,

in which the color represents the genus label (determined by RDP [55]) and marker shape rep-

resents the original body site (as determined from the body site label). As mentioned in Section

Experimental setup for American Gut Project data set and Gevers data set, to produce a clear

visualization, we merge skin of hand, skin of head and nostril to one single skin class.

In Fig 2, reads from one body site are clustered closer together than to other body sites in

the embedding space. For example, as shown in Fig 2B, reads from the gut are embedded

together. In addition, most of the reads from particular genera are closely embedded together.

This illustrates that, even though the model is not optimized for taxonomic classification, the

neural network is still learning the 16S rRNA variable V4 region—which contains mutations

that indicate different taxa—of the input reads in the embedding space. Notably, within the

genus Prevotella, most fecal-associated reads separate from the oral-associated ones, demon-

strating that the model can discern sub-genera which likely prefer different body sites. This
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kind of intra-genus separation does not appear for genera in which some species/strains occur

in multiple body sites. In such cases, the same 16S rRNA read will be found in samples from

different body sites, and the model, which predicts a single body site, will fail to predict the

read correctly. However, for example in the case of Corynebacterium, some skin-associated

strains do separate out. Other Corynebacterium variants do not separate out, which may indi-

cate that they are associated with multiple body sites.

Prevotella case study. To understand which features facilitate class separation, we again

inspected the read embedded vectors for genera which separated well for the body site isola-

tion source. In Fig 2, reads from Prevotella formed two major clusters corresponding to two

body sites, namely, tongue and feces. (A 2-D PCA projection showing only Prevotella is shown

in S12 Appendix). Overall, Prevotella test reads were classified to the correct body site source

with 91.31% accuracy (balanced accuracy for three body sites is 75.74%). Therefore, we analyze

Prevotella as an exemplary demonstration of the interpretability of the attention learning

mechanism.

To visualize the regions that are most informative to this classification, Fig 3 shows which

high entropy positions also have high attention using the method described in sample-level

predictors section. Panel D of Fig 3 shows that the middle and end portions of the 100 bp

trimmed reads are most important for phenotype classification, with the former playing a

more important role in distinguishing fecal reads (panel B) while the latter is more important

for oral and skin reads (panels A and C). For visualization, the attention weights are smoothed

Fig 2. 2-D PCA projection of embedded read vectors from all body sites (A), gut (B), tongue (C) and skin (D). ‘□’s are reads from the skin, ‘4’s are

reads from the tongue and ‘˚’s are reads from the gut/stool (only a selected set of genera are plotted in the figure). The percentage of the variance

explained by the first 2 axes is 58.9%. The different body sites generally cluster closer together and genera/subgenera are more likely to cluster. However,

there is a Prevotella found in all three body sites, indicating Prevotella is found in these three areas (while attention analysis indicates different subgenera

are found in each body site). The neural network is learning the 16S rRNA gene association to taxonomy and body site without the access to taxonomy

label of the reads.

https://doi.org/10.1371/journal.pcbi.1009345.g002
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by a moving average of window size of 9 (i.e., the size used in the convolutional filter of the

model). A non-smoothed version of Fig 3 is available in S13 Appendix.

Fig 3 shows the output of the attention layer for Prevotella and indicates the areas of the 16S

rRNA V4 region to which the network is paying attention for classification (displayed here by

the brightness of the highlight). We can see that the end of the 16S V4 region is the most

important for identifying oral and skin reads, while the middle region is the most important

for gut/fecal reads. However, there are slight differences. For example, an area at the beginning

of the V4 region has some importance to also help identify the gut, and to some extent, oral

reads, as opposed to finding no attention weighting for skin reads. When comparing oral and

skin reads, the middle region is the second most important to identify skin reads. The middle

region may help resolve oral/skin body sites that have similar nucleotides at the end of the

reads.

Fig 3. Comparison between average Prevotella reads attention and nucleotide frequency entropy in form of nucleotide sequence logo. A: oral

reads; B: fecal reads; C: skin reads; D: overall attention. In each body site, nucleotide frequencies are scaled by the overall entropy for all Prevotella
testing reads and plotted as a sequence logo, with average attention weights represented by a color map where lighter background shading represents

larger values for attention weights, in contrast with darker background shading for smaller attention weights. Attention tends to be paid to locations

that have distinct sequential information that distinguish body sites. Sequence locations which differ but do not have attention may be important to

taxonomic or other information.

https://doi.org/10.1371/journal.pcbi.1009345.g003
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For comparison, the entropy of the sequences within the Prevotella body site combinations

are shown (with the whole general attention shown in Fig 3D). We can see that the attention

model generally learns areas of the variable region that have high entropy. However, the model

also learns slight differences between the signatures of these regions. For example, both gut/

skin reads tend to have C’s located at positions 54 and 65 while gut/oral reads tend to have

GAGA at 56! 59. Thus, the particular combination of C-GAGA—–C is unique to gut reads

and, in turn, a high attention weight is placed on this region to distinguish gut reads from

other body sites.

Comparison of attention-based modeling and Oligotyping analysis for Prevotella data.

To further show how the attention weights based model interpretation compares to other

related methods, we run the Oligotyping [41] software package on our Prevotella visualization

set used in Section Prevotella case study. Oligotyping uses Shannon entropy to analyze closely

related 16S rRNA sequences and find mutations that best explain sample variables (e.g. pheno-

types). S14 Appendix shows the oligotypes (highlighted in black) found by their software for

the Prevotella reads we derived from the AGP data set. As shown in S14 Appendix, in general,

the highlighted attention regions are slightly offset or in between high-entropy positions.

Regions at or near high-density high-entropy positions (i.e., regions that have many high-

entropy positions) are weighted with higher attention. Thus, we infer that there is an apparent

relationship between the attention that the neural network learns and the highest entropy posi-

tions that are identified. For each body site, there are multiple oligotypes per body site, making

it is hard to discern which high entropy position is most important to identifying which body

site.

Several factors contribute to the discrepancy between our model’s high attention nucleotide

positions and the highest entropy positions used for oligotyping. First, we smooth the attention

weights with a 9-mer moving average (because the convolutional filters are are in the window

size of 9). As a result, the attention weights are a regional approximation, i.e. not at precise

positions, and the weights taper off at the ends of the read, due to edge convolutional effects.

Second, Oligotyping only calculates the entropy of each position in Prevotella reads, while the

attention weights learn the weighting of attention of positions that are specifically important to

the classification task—in this case, body site prediction.

One contrast between Oligotyping and Read2Pheno in practice is that, when using Oligo-
typing, a user must plot the distribution of different oligotypes for each phenotype to see if

there is a common oligotype for that phenotype, e.g., as in S15 Appendix. From S15 Appendix,

the gut (fecal) oligotypes are evidently distinct from the other body sites, while the oral and

skin oligotype distributions are relatively similar. Therefore, gut sites could be distinguished

from other sites with oligotypes, but more nucleotides would be needed to discern oral/skin.

By contrast, using Read2Phone, we found that highlighted attention maps to 4 sequence

regions: nucleotide position ranges 12–18, 53–62, 74–81, and 90–98. Whereas region 4 (nt 90–

98) helps identify oral reads and skin reads as opposed to gut, regions 1, 2, and 3 are helpful in

distinguishing gut samples from other samples. Each body site may be identified by a combi-

nation of regions. For example, regions 2, 3, and 4 are useful to identify that a sample was

taken from skin, while regions 1 and 4 are most useful for identifying samples from the oral

cavity, and 1 and 3 are most useful for identifying gut samples.

Host phenotype (clinical diagnosis) prediction based on Gevers

inflammatory bowel disease data

We further evaluate Read2Pheno performance on a distinct set of sequence data, the Gevers

et al. data set, which is a subset of data from an inflammatory bowel disease (IBD) study in
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which samples were identified as being from patients who were diagnosed with inflammatory

bowel disease (IBD) and not [5] as described in Section Data preparation for model evaluation.

The Gevers et al. data set has shown to be consistently challenging to classify. For example, a

meta-analysis by Duvallet et al. showed that it was one of two IBD studies which fell under

70% AUC [62]. While the accuracy we obtain can range from the high 60%’s by training on

a fraction of the data, accuracy is not the ultimate objective of these phenotype prediction

experiments.

Sample-level attribute prediction. Sample-level attribute, in this case, host phenotype

(disease status), prediction is accomplished by 1) the sample-level predictors discussed in S2

Appendix with Read Caller threshold of 0.5 (1

N, where N = 2 for two classes); 2) sample-level

embedding based Random Forest; 3) a Pseudo OTU table based on a Random Forest trained

on 1000 Pseudo OTUs. Table 3 compares the accuracy of our model against three baseline

methods, a Random Forest classifier trained on 1) k-mers, 2) OTU tables, 3) amplicon

sequence variants (via Dada2), and (4) pretrained word2vec model-based data. We show the

testing accuracy for different training data sizes in Table 3. For example, for the training set

size of 40 samples, we trained our method for 10 epochs, and compared that to training a Ran-

dom Forest classifier with 100 estimators using the various baseline methods. We compare

against a Random Forest classifier trained on the 9-mer frequency feature table. K = 9 seems

like a reasonable choice because the filter window size of our convolutional block is 9. The tar-

get classes in this comparison are 2 states: IBD and Non-IBD. From the table, we can see the

performance of our Pseudo OTU based method is the comparable to competing methods.

When trained with 40 samples and tested on the rest, 9-mer table based model works the best

and our Pseudo OTU model is comparable to the OTU table based method. As more samples

are used for training, the performances of all models are improved. In general, among our pro-

posed models, the Pseudo OTU model consistently works the best. The Pseudo OTU model is

often comparable to OTU and ASV based model but slightly underperforms 9-mer table based

model. Similar to the results in Table 2, our embeddings can produce performance on the sam-

ple level comparable to the pretrained word2vec model-based method.

Read embedding visualization. To inspect how the read embeddings identified by

Read2Pheno perform, here we visualize the embedded vectors for reads from 4 selected gen-

era (Blautia, Roseburia, Ruminococcus, and Pseudomonas). Fig 4 shows the 2-D PCA projec-

tion of embedded vectors (the intermediate output vectors of the multiplication layer in Fig 1)

of a selection of 4 genera from 16S rRNA reads from the Gevers Crohn’s disease data set [5].

Table 3. Comparing sample-level prediction accuracy on Gevers et al. Data given increasing training sizes. Unlike OTU/k-mer based classifiers, which are trained at

sample-level, our proposed model is trained at the read level before read-level results are then fused by sample-level predictor. This comparison, over 40, 160, and 400 sam-

ples in the training data shows that the read-level classifier learns predictive taxa/information and the sample-level prediction for the proposed methods are competitive

with prediction from OTU tables and will allow interpretable representations shown in the subsequent sections. The obtained accuracy values are averaged, and the stan-

dard deviation is computed, over 5 experiments in which we randomly selected training-testing data splits with replacement.

Training Set Size (samples)

Category Method 40 160 400

Traditional 9-mer table 0.715 (± 0.029) 0.787 (± 0.030) 0.848 (± 0.055)

OTU table 0.684 (± 0.016) 0.768 (± 0.018) 0.843 (± 0.055)

ASV table 0.669 (± 0.019) 0.765 (± 0.022) 0.819 (± 0.078)

Pretrained Embedding [38] Sample embedding 0.648 (± 0.036) 0.685 (± 0.020) 0.733 (± 0.057)

Pseudo OTU 0.684 (± 0.019) 0.762 (± 0.017) 0.843 (± 0.080)

Proposed Majority vote 0.653 (± 0.043) 0.690 (± 0.023) 0.729 (± 0.062)

Sample embedding 0.650 (± 0.016) 0.726 (± 0.029) 0.762 (± 0.069)

Pseudo OTU 0.689 (± 0.031) 0.779 (± 0.014) 0.833 (± 0.058)

https://doi.org/10.1371/journal.pcbi.1009345.t003
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Each point represents a read, in which the color represents the genus label (determined by

RDP [55]) and marker shape represents the disease state (CD: Crohn’s disease; Not IBD: No

inflammatory bowel disease diagnosis).

In Fig 4, reads from one genus are closely embedded together most of the time. However,

the disease-negative (“Not IBD”) samples for the Roseburia and Ruminococcus genera have the

widest spread in PCA. In fact, we can see multiple clusters in most of the genera, suggesting

that different sub-genera cluster together and can be associated with different phenotypes. In

addition, reads identified as disease-positive (“CD”) are generally clustered at the lower right

of the figure, while reads labeled as disease-negative are clustered at the upper left. Even though

the model has not been trained to do taxonomic classification—only disease phenotype—it

can still reflect what it has learned from the sequence structure of the input reads in the embed-

ding space to reveal taxonomic structure.

Indeed, within Blautia and Ruminococcus genera, there are at least one cluster corresponding

to disease-positive and another cluster corresponding to disease-negative (see S17 Appendix).

Fig 4. 2-D PCA projection of embedded read vectors from all visualization samples (A), disease-positive samples

(B), and disease-negative samples (only a selected set of genera are plotted in the figure). ‘4’s are reads from the

control (health) samples and ‘˚’s are reads from the Crohn’s disease samples. The percentage of the variance explained

by the first 2 axes is 52.1%. Compared with Fig 2, the health status and taxonomy are not as tightly clustered

demonstrating that while the network is learning this information, it is not as clear (on the first two principal axes).

https://doi.org/10.1371/journal.pcbi.1009345.g004
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Finally, most Pseudomonas reads are disease-positive, and they are also embedded in lower

right corner in the figure, which shows that the Read2Pheno model has predicted that those

reads are disease-positive. This is consistent with the association between Pseudomonas species

and IBD, which has been described extensively in the literature [63–65].

Blautia case study. We further analyze the interpretability of our model by inspecting the

attention weights in Fig 5. The Blautia test reads were classified with 73.62% accuracy (with a

balanced accuracy of 39.52% because this model has high false positive rate on this genus). As

shown in the figure, the high attention weight region and the high nucleotide variance region

coincides well with each other. That is to say, the model pays attention to nucleotide variable

regions which are informative to distinguish Blautia reads founds in disease-positive and -neg-

ative samples.

Taxonomy prediction based on SILVA full length 16S rRNA sequence data

We further evaluate the capability of our proposed Read2Pheno model to analyze and learn

which regions of the full-length 16S ribosomal RNA sequence are useful for predicting the

genus level taxonomic label. The experimental data set in this section is constructed from the

SILVA 16S ribosomal RNA gene database [50] and their manually curated taxonomy [51] (i.e.,

Release 132 16S sequences with 99% identity criterion to remove highly identical sequences).

Full length 16S rRNA taxonomic classification. Unlike the other results presented

above, here, we train our proposed Read2Pheno model on taxonomic classification

Fig 5. Comparison between average Blautia reads attention and nucleotide frequency entropy in form of nucleotide sequence logo. A: “CD” reads;

B: “Not IBD” reads; C: overall attention. In each phenotype, nucleotide frequencies are scaled by the overall entropy for all Blautia testing reads and

plotted as sequence logo and averaged attention weights are represented by the color map (brighter colors represent larger attention weights). Two areas

have attention that differentiate Blautia in Crohn’s Disease from Blautia in Non-IBD, while a third site is important for identification of Blautia
subgenera associated with non-IBD.

https://doi.org/10.1371/journal.pcbi.1009345.g005
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specifically. In particular, we train the model on the SILVA training data set for 40 epochs. We

adopt the same set of parameters and NN model architecture used in the previous experiments

(256 filters in CNN layers, 64 units in LSTM layer, 0 dropout rate and 0.001 learning rate),

except for the number of neurons in output node, Ny, which must be set to 495 to accommo-

date all the genera classes. The same training data are used to train the QIIME [54] implemen-

tation of RDP [55] taxonomic classifier. Then, both the RDP classifier and our Read2Pheno
model are tested by the testing data set. Table 4 shows the results of both models.

Full length 16S rRNA sequence visualization. We visualize the embedded vectors for

full-length 16S rRNA sequences from 7 selected genera in the Bacillaceae family in Fig 6. A

2-D principal component analysis (PCA) projects the embedded vectors (the intermediate out-

put vectors of the Multiplication Layer in Fig 1) of the sequences from the selected 7 genera.

Each point represents a sequence, in which the color represents the genus label. In Fig 6, most

of the sequences from one genus are closely embedded together and sequences from different

Fig 6. 2-D PCA projection of embedded testing sequence vectors from 7 selected genera in the Bacillaceae family. The percentage of the variance

explained by the first 2 axes is 42.7%. The model can separate sequences with respect to their genus level label based on their genomic content.

https://doi.org/10.1371/journal.pcbi.1009345.g006

Table 4. Accuracy comparison on the SILVA data set over 5-fold cross-validation. The proposed model’s perfor-

mance is slightly below but still competitive to RDP’s accuracy.

Method Avg. Accuracy (std)

RDP implemented in QIIME 0.976 (± 0.001)

Proposed model 0.959 (± 0.006)

https://doi.org/10.1371/journal.pcbi.1009345.t004
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genera are embedded apart from each other. This illustrates that the model can learn taxo-

nomic information directly from labels. (Above, we showed the model learning taxonomic

information indirectly from phenotype labels in the AGP data set.) Although distorted from

the 2-D projection, we can also see that some Bacilli have 16S rRNA sequences which may be

similar to other types of Bacilli genera like Virgi- and Oceano-bacillus but be more distinct

from Geobacillus. This could indicate misclassifications of these sequences in the standard tax-

onomy (e.g. as found in Bergey’s Manual of Systematic Bacteriology) or simply evolutionary

relatedness between taxa.

Discovery and analysis of variable regions by attention weights in Pseudomonas and

Enterobacter. In Fig 7 and S18 Appendix, we visualize the average attention weights of test-

ing sequences from two selected genera. For Pseudomonas in Fig 7, the top figure shows the

averaged attention weights per all testing sequences without alignment. The variable regions

Fig 7. Top: Average attention weights for all strains of Pseudomonas without alignment; Bottom: Average of

attention weights for all strains with alignment. The color indicates the variable regions break points [66]. This

figure shows that our model can implicitly learn the multiple sequence alignment. In particular, the model learned to

pay attention to important regions. Before alignment, attention is paid to a wider region of positions. However, after

sequence alignment, attention weights are concentrated among a smaller range of positions (i.e., where the maximum

averaged attention weight is more than 10 times higher than the weight pre-alignment). This indicates that the model

can recognize certain nucleotide configurations and is robust to insertions and deletions that would be accounted for

by the sequence alignment.

https://doi.org/10.1371/journal.pcbi.1009345.g007
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are labeled according to [66]. Here, different colors correspond to different variable region

(from V1 to V9 as shown in the colorbar). As we can see, the attention weights highlight

nucleotides concentrated on V2 and V3 regions. There are insertion and deletions in differ-

ent Pseudomonas sequences. As a result, the location of a certain sequence context that gains

high attention weights can be shifted in different sequences. We applied multiple sequence

alignment to align the testing sequences for Pseudomonas using the MAFFT on XSEDE [67].

The attention weights are then aligned by the sequence alignment results. Then, the average

attention are computed based on these aligned attention vectors. From the bottom figure in

Fig 7, we observe that the attention sites narrow down to a few select nucleotide positions

despite insertions and deletions in the 16S rRNA evolution. This is evidence that our model

is learning specific 16S rRNA nucleotide contexts that are important to the distinction of

taxa and decides where to pay the attention based on the context. We further visualize the

attention weights of a real Pseudomonas aeruginosa 16s rRNA sequence found in [68] in S19

Appendix. We analyzed the positions that have an attention weight greater than the mean

attention weight across the whole sequence. The attention-highlighted regions coincide with

sub-regions of V2, V3, and V4 variable regions determined by [68]. Moreover, analysis of the

weights shows that the model pays attention to certain junctions in the rRNA secondary

structure. We conjecture that those junctions may be related to molecular interactions, and

that the nucleotides at those positions may contribute to the angle/structure of the arms asso-

ciated with the junction.

We also applied the same analysis on Enterobacter as a comparison (result shown in S18

Appendix). For Enterobacter, the attention weights are concentrated on V2 and V4. After mul-

tiple sequence alignment, we observe concentration of attention weights into mainly two sites

(similar narrowing trend as in Pseudomonas), which implies that the model can learn contex-

tual information and is robust to insertions/deletions/mutations. Full multiple sequence align-

ment results in FASTA format and the mean attention weights per position after alignment are

available in S20 Appendix. To offer insight into what the neural network is learning as the

most important variable regions for each genus, we calculated the sum of attention weights of

testing sequences per variable region (with variable region locations defined by [66]) for each

genus and can be found in S21 Appendix. There has been previous work that aimed to find

important/predictive variable regions that can inform taxonomic classification and V2, V3, V4

are considered as “informative” [69–72]. Our model, in most cases, pays most attention to the

V3 and V4 regions, which many studies now use as common targets. Genera such as Buchnera,
Erwinia, and Gemmata have higher attention weights on the V2 region.

Computational performance of Read2Pheno training

We used the GPU node on the Extreme Science and Engineering Discovery Environment

(XSEDE) computing resource [56] with one P100 GPU to train our model. It took approxi-

mately 0.89, 1.58, 9.15 hours to train the models for the American Gut (50 samples), the Gevers

et al. (40 samples) and the SILVA data sets respectively. The memory consumption is propor-

tional to the number of training samples. For example, 7.1 GB memory was used when train-

ing the model on the American Gut (50 samples) data set (Constructing an OTU table on the

same data set took 0.49 hours and 11.7 GB memory). When we trained the model on a 750

samples from American Gut data set, it required over 74 GB memory and took 13.83 hours to

complete the training process. However, as discussed above, the Read2Pheno model may be

effectively trained with smaller data sets. In particular, for the American Gut data set, robust

performance was found when trained on 50 samples representing over 1 million reads. We

further note that the use of smaller batch size and more efficient data structures than those
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utilized in our code can address additional memory demands, for example as the read length

increases.

Discussion

We have shown that our proposed attention-based deep neural network model for read-level

classification, namely Read2Pheno models, are capable of comparable accuracy prediction

performance while offering automated model interpretation on three distinct kinds of tasks:

(1) prediction of microbiome phenotype (i.e., the emergent property of a microbial commu-

nity), (2) prediction of host phenotype (i.e., clinical disease diagnosis), and (3) taxonomic clas-

sification of full length 16S rRNA sequences. The implications of our attention-based deep

learning methodology, as implemented and evaluated on these tasks as proof-of-concept, are

discussed in further detail below.

As proof-of-concept for microbiome and phenotype prediction, we have focused on two

large-scale microbiome data sets. First, we have analyzed data from the American Gut Project,

which provides a comprehensive open-source and open-access set of human microbiome 16S

rRNA samples for scientific use [49, 73]. The recent studies of microbiomes inhabiting sites on

the human body (particularly the large intestine) have revealed the complex nature of micro-

bial community interactions [73]. 16S ribosomal RNA is not only useful for identifying organ-

isms using the phylogenetic tree of life, but the phylogenetic branch distance shared between

samples serves as a comparative distance metric [74]. Utilizing the AGP’s large collection of

samples, where we can identify organisms via 16S rRNA, allows us to begin to understand

microbial community dynamics in hosts and the environment [75]. The AGP data set thus

provides real-world data to develop and validate phenotype prediction algorithms. Second, to

analyze host phenotype, we have further looked to gut data with clinical significance as well.

Crohn’s disease (CD), a chronic relapsing inflammatory bowel disease (IBD), is increasing in

prevalence worldwide [76]. Researchers have been exploring different methods to predict

Crohn’s disease based using microbiome data, for example to identify the microbial taxa that

associated with the disease using 16S rRNA survey data [5, 7, 77]. We have further evaluated

Read2Pheno and sample-level classification using a data set based on clinical evaluation pro-

vided by Gevers et al.Developing a better understanding of the IBD microbial signature will

present a critical step towards improved clinical diagnosis and discovery of a cure.

Overall, our results show that we can keep both local information (k-mers) and contextual

information (sequential order of k-mers) of 16S rRNA regions without having to preprocess

the data to create abundance tables, such as OTU or ASV tables, for phenotype prediction.

Doing so, we can still achieve comparable performance to phenotype classification based on

OTUs/ASVs. As we have demonstrated, the key advantage of this approach is that we can high-

light informative regions (i.e., regions that are material for classification) within sequences.

There are potentially other advantages as well of our read-level approach. Using aggregated

OTU or ASV tables, i.e., sample-level prediction, constrains the size of a training set for a com-

plex deep neural network to the number of samples–which will almost always be so relatively

small as to risk overfitting (especially when the variation in the data set is low) [78, 79]. For

example, there are over 1 million parameters in the proposed deep neural network model for

AGP experimental data, but there are only 805 samples (when perfectly balanced). By contrast,

to avoid overfitting the number of data points, n, should be no less than some multiple (say 5

or 10) of the number of adaptive parameters in the model [78, 79]. Indeed, even when we con-

sider all 15,096 samples in the American Gut Project data set as of May 2017, which mostly

were collected from feces, the number of training samples is still less than 1

100
of the total num-

ber of trainable parameters,m.

PLOS COMPUTATIONAL BIOLOGY Learning, visualizing and exploring 16S rRNA structure using attention

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009345 September 22, 2021 24 / 36

https://doi.org/10.1371/journal.pcbi.1009345


Given the limitations on sample collection, a read-level model like Read2Pheno advanta-

geously allows one to leverage up to millions of reads as training examples from only dozens of

samples. As shown in Table 2 and 3, the proposed models with different training sizes obtain

similar results to standard methods and that overfitting issue is not a concern. While there

will be redundant information in reads, and potentially more feature density, it provides a

path to avoid overfitting complex deep learning models. A caveat to our read-level prediction

approach is that we take a subset of samples in order to generate balanced classes for training.

Class imbalance in microbiome data has been recognized as a serious problem for machine

learning approaches [39]. In particular, our approach training on imbalanced classes at the

read-level can give rise to bias due to potential taxon overrepresentation in the majority class.

Notably, we have more than 1 million reads even by only considering a few dozen of samples,

which is very different from the scenario for sample-level classification in which researchers

look to data augmentation, for example, to create adequately large training sets for training

with class imbalances. Indeed, we found that we have ample training data to adequately train

the model with those reads as a proof-of-concept in our study, as shown, for example, by our

sample-level validation results for the Gevers data set (see, e.g., 3). Although it is outside the

scope of this paper, we are also considering experimenting with assigning a class weight to

reads in the optimization process.

Sample-level prediction has been used primarily here to validate read-level models. As a

result, there is substantial room to improve methods to predict sample-level attributes from

read-level models. In this paper, we have considered majority voting, weighted schemes, and

averaging embedding weights; there may be other approaches as well. However, as our results

for Pseudo OTU classification using random forests demonstrate, conducting sample-level

learning based on read-level embeddings may prove to be promising path to sample/commu-

nity-level prediction. Our experiments showed competitive or superior performance as com-

pared to OTU/ASV tables, which require an initial step of identifying taxonomic composition.

The Pseudo OTU approach did not perform significantly worse than k-mer table-based classi-

fication, which suffers from the difficulty of tying k-mer information back to taxonomy or the

larger sequence context. Additionally, using clustering based on sequence similarity with

CD-HIT for validation, we can show that k-means clustering based on the Pseudo OTU creates

meaningful and interpretable clusters.

Attention-based deep learning, such as Read2Pheno, for microbiome sample analysis

advantageously avoids preprocessing steps needed for conventional methods. For example,

unlike conventional OTU-based methods, sample prediction using Read2Pheno does not

require an alignment/OTU grouping step. Therefore, our proposed method lowers the risk of

introducing sources of error from preprocessing (e.g., due to lack of domain knowledge) and

user-dependent choices. Although hyperparameter tuning can play a more important role in

deep learning based methods, it can be done programmatically and human intervention can

be minimized. Furthermore, the intermediate layer outputs of our Read2Pheno method can

be used for ordination and highlight informative regions in the sequences. Visualizing inter-

mediate layer outputs thus supplants post-processing required to analyze the results of OTU-

based methods. Therefore, our model eliminates the need for pre- and post-processing associ-

ated with conventional OTU-based methods. Instead, our end-to-end model takes in raw 16S

rRNA reads as input, learns informative genetic content and label association, and outputs

classification results. And, the learned knowledge, i.e. explanation for the model, can be auto-

matically extracted by intermediate layer outputs, in particular the embedding vectors and

attention weights. Our model has also proven to be robust to deletions and insertions: as

shown in Fig 7, it can implicitly identify relevant genetic content across different unaligned

sequences from the same genus).
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Notably, the attention-based model highlights regions that greatly influence the model’s

decision. Therefore, the interpretation depends on a specific model—and can vary from model

to model, even when they are trained on the same task. For example, we show the attention

weights plots for body site prediction models (the counterpart of Fig 3) trained by AGP data-

sets with 400 samples in S22 Appendix and 750 samples in S23 Appendix, and the attention

weights plots for Crohn’s disease prediction models (the counterpart of Fig 5) trained by

Gevers dataset with 160 samples in S24 Appendix and 400 samples in S25 Appendix. The

attention weights depends on both the performance of the trained model and the reads chosen

for visualization. As shown in S25 Appendix, the Crohn’s disease prediction model trained on

400 samples achieves the highest classification accuracy on Blautia visualization reads. By con-

trast, the model trained on 160 samples produces the worst Crohn’s disease prediction accu-

racy on the corresponding Blautia visualization reads. When inspecting the attention weights

of these models, we can see that the worst-accuracy model pays less attention to the middle

variable region (around position 60 to 80) in S24 Appendix, whereas the other better-accuracy

models pay more attention to the middle variable region, as shown in both Fig 5 and S25

Appendix. From AGP experimental results in S22 and S23 Appendices, on the other hand, we

can see that the attention weights of different models highlight similar regions despite of some

variations. Accordingly, the classification accuracy of our model can provide confidence in the

importance of the high attention regions.

Because our experimental datasets are 16S rRNA reads/sequences, which are easily aligned,

we can also further link the attention weights with entropy to better aid human interpretation

of high attention regions. We offer this framework for researchers to gain insight from training

and interpreting models. One major contribution of this framework is that, instead of selecting

Oligotypes based on a trial-and-error approach, our model can find the most informative sites

that discriminate classes. Further, any required hyperparameter searches can be performed

systematically since our method employs supervised learning, i.e., the model is being opti-

mized to a defined objective. Oligotyping, on the other hand, is unsupervised, and tuning it

requires more human intervention.

The efficiency of our proposed model’s interpretability also contrasts favorably with Oligo-
typing. Again, an attention-based model like Read2Pheno avoids the need for user interven-

tion through pre-processing decisions. As noted above, with Oligotyping, one must choose the

number of nucleotides to examine—and this choice affects the outcome. To obtain the results

reported in this paper, for example, we chose 7 nucleotides, since those represented nucleotide

positions from all 4 regions in which we found attention. Moreover, there is no guarantee that

Oligotyping will be able to succeed at all desired classification/discrimination tasks. For exam-

ple, as S15 Appendix shows, while the gut has a more distinct pattern of oligotypes as opposed

to oral and skin samples, oral and skin samples show very little difference in oligotype patterns.

As such, it is practically difficult to perform this common classification task using only learned

oligotypes. By contrast, the attention-based Read2Pheno model in this paper are demon-

strated to be able to deliver accurate classification results, in addition to the ability to discover

sequence subregions which are significant in the determining the classification.

Ideally, we would like to go beyond the qualitative comparisons that we have made here

between the entropy logos generated by our attention-based model and Oligotyping. A more

rigorous comparison will require the generation of a “ground truth”, where particular strains

with certain mutations and their relation to host/environmental phenotype can be experimen-

tally verified. Such a data set would be generally useful for the development and benchmarking

of computational approaches [80, 81].

In addition to training and evaluating attention-based models on phenotype data, we have

further considered a comprehensive data set for taxonomic classification, the SILVA rRNA
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database. Applying Read2Pheno to SILVA data demonstrates that it can be used to explore

the structure of full length 16S sequences by using such full length sequences to train the

model for a taxonomic classification task. (In a sense, this can be thought of as a read2taxa
task, but it employs the same Read2Pheno model as used in phenotypic studies). Our model

achieves comparable performance to the superior k-mer based method and pays attention to

different regions for genus classification. This indicates that parts of the 16S rRNA gene, for a

given 16S rRNA sequence from a genus, are important for distinguishing one genus from

other genera. Notably, Salmonella has higher weights on the V2 and V4 regions of the

sequence. Identifying high-attention regions can inform future 16S rRNA study designs. For

example, because the V2 region is informative (i.e., has higher attention weights), investigators

could use that as a basis on focusing on the design and use of primers to target the V2 region

to augment more commonly used V3/V4 primers. Some genera, such as Pirellula, have atten-

tion within some regions (V2 and V4) but also have higher than normal attentions at other

sites, which demonstrates that more regions can be used to discern such a genus. The predic-

tions which Read2Pheno was used to make in this paper are consistent with evidence in the

experimental literature. In particular, previous studies have shown that the V1-V3 regions are

better at distinguishing Escherichia/Shigella [82], and we show high attention within the V2

and V3 regions for this group. The model also predicts thatMethanobacterium, Thermococcus,
and other Archaea have attention weighting at the V4-V5 regions. And, indeed, the V4-V5

regions have already been shown to have superior recognition of Archaea [83]. Accordingly,

the Read2Pheno model’s predictions can serve as a starting point for identifying which

primers may be optimally used to target various genera.

Conclusion

In this paper we have integrated CNNs, RNNs, and attention mechanisms, to develop a deep

learning model, Read2Pheno. The Read2Pheno model can perform alignment-free (and

robust to insertion and deletion) microbial DNA sequence analysis to achieve read- and sam-

ple-level environmental prediction and extract interesting sequence features. In particular, we

have shown in computational experiments that the Read2Pheno model can accomplish

diverse tasks, learning informative nucleotides to (i) predict the body sites from which human

microbiome samples are extracted, (ii) discriminate between samples from individuals with

positive and negative diagnoses for IBD, and (iii) identify the taxonomic labels of whole

sequence 16S rRNA data. Moreover, we have shown that because it exploits attention mecha-

nisms, the Read2Pheno model can not only predict, but can also be readily interpreted to

obtain further insight. We have also shown that we can interpret the intermediate outputs in

the neural network model and generate visualization of the read embedding vectors. We can

thus discover important taxa and regions of sequences that are highly associated with the sam-

ple phenotype/taxonomic label. We show that our deep learning model can be used to explore

the 16S rRNA nucleotide structure and its association with phenotype and taxonomy by learn-

ing the high-level features from k-mers and their sequential order.

Our paper further sets forth an alternative way to train deep neural networks for predicting

phenotype from microbiome samples when the number of samples are relatively small: first

training a read-level classifier, i.e., Read2Pheno, instead of a sample-level classifier—and still

producing comparable classification results. Moreover, even in cases where our proposed

attention-based neural network modeling framework fails to provide clearly superior classifi-

cation performance at the sample-level, we demonstrate that the results are nonetheless easy to

interpret, particularly when compared to conventional methods for predicting phenotype

based on microbiome sequence samples. The Read2Pheno model thus provides an
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exploratory tool for future microbiome studies, as it can be used to extract important biologi-

cally and clinically relevant information from complex sequence data from limited numbers of

patient or environmental samples.

Supporting information

S1 Appendix. One-hot coding map. The map is adapted from Nomenclature for Incompletely

Specified Bases in Nucleic Acid Sequences (http://www.sbcs.qmul.ac.uk/iubmb/misc/naseq.html).

(XLSX)

S2 Appendix. Sample-level predictor: Majority vote method. The read caller threshold is 1

N

where N is the number of classes.

(TIF)

S3 Appendix. Sample-level predictor: Sample-level embedding. Sample-level embedding is

calculated by averaging all the read-level embedding vectors per sample. Then, a random forest

classifier is trained based on the sample embedding matrix (an N by Nhmatrix where N is the

total number of samples in training set and Nh is the number of hidden nodes in Bi-LSTM

layer). Once the sample-level random forest classifier is trained, this model can be used to per-

form sample-level classification by taking the sample embedding vectors as input. The training

and testing process are labeled by red and blue arrows correspondingly.

(TIF)

S4 Appendix. Sample-level predictor: Pseudo OTU. Training reads are clustered into Nclusters
= 1000 clusters (Pseudo OTUs) by the read-level embedding clustering mod-
ule using a k −means algorithm. Then, all training reads per sample are mapped to the closest

Pseudo OTUs to form Pseudo OTUs abundance table. Similar to sample-level embedding

method, a random forest classifier can be trained to perform sample-level prediction using

such Pseudo OTUs table (The training and testing process are labeled by red and blue arrows

correspondingly).

(TIF)

S5 Appendix. American Gut Project (AGP) metadata. The 805 sample subset of AGP data

used for the experiments in this paper were obtained from 421 individuals. We have prepared

a supplementary file with the metadata of the AGP experimental data set used in the paper,

which provides the age, sex, race, BMI and health status, as well information about the split

between training and test data sets.

(CSV)

S6 Appendix. Overall training and testing experiment. Samples are split into train and test

set. Training set is used to train a Read2Pheno classifier and a sample-level predictor. The

testing set is used to evaluate the performance.

(TIF)

S7 Appendix. Read2Pheno training process. All reads in the training set are labeled by the

sample-level label (the body site the original sample was collected from). Then the reads are

grouped together and shuffled for training the Read2Pheno classifier.

(TIF)

S8 Appendix. Hyperparameter search space table. The best set of parameters is {number of

conv filters, Nc: 256, number of units in LSTM Nh: 64, dropout probability for Dropout Layer:

0, learning rate: 0.001} for read-level prediction on 5-fold cross validation of training data.

The window size of convolutional layers,W, is set to 9 and the number of hidden nodes in
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attention layer, Na, is set to 16 in the default setting. Cole et al. found that the Naïve Bayes clas-

sifier performs similarly when using 8-mer and 9-mer as features but slightly worse using

smaller k-mers [84] for the taxonomic classification of 16S rRNA reads. Therefore, we similarly

use a window size of 9 for convolutional filters. In S11 Appendix, we further show that sample-

level classification performance of the model is generally insensitive to the window size. In

future work, we will consider other consequences of altering window size, such as computa-

tional performance and interpretability.

(XLSX)

S9 Appendix. Training and validation loss as a function of epochs for the Read2Pheno
model on American Gut Project data. This figure shows the cross-entropy loss of our model

in training and validation as a function of epochs. From this figure, we can see that the valida-

tion loss stabilized after epoch number 7.

(TIF)

S10 Appendix. Training data size effect of Read2Pheno classifier. To evaluate the influ-

ence of the training size for Read2Pheno classifier training, we designed an independent

experiment: we first hold out 55 samples for testing, then we train the Read2Pheno model

with reads from 5, 25, 50, 100, 500 and 750 samples from the rest of samples and evaluate the

sample-level performance of those models by the 55 samples in the held-out testing set. (Here,

we use the sample-level embedding method for sample prediction). To determine how much

sample-level prediction quality depends on the size of the Read2Pheno training set as com-

pared to the size of the downstream sample-level training (i.e. Random Forest) set, we measure

test set prediction accuracy where sample-level Random Forest is trained 1) on the same train-

ing set as the Read2Pheno classifier, and 2) on all 750 samples irrespective of the number of

samples used to train Read2Pheno. The blue curve shows the training type 1 and the orange

line shows the training type 2. The blue curve shows that as more samples used for training,

the sample-level accuracy increases. The orange curve shows that although Read2Pheno
classifiers are trained with different samples, as long as the sample-level prediction model is

trained with more samples, the performance is generally stable.

(TIF)

S11 Appendix. Evaluation of sensitivity of Read2Pheno modeling to different window

sizes of convolutional layers. In this table, we compare the performance of sample phenotype

prediction on American Gut Project data as the window size of convolutional layers is varied

(i.e., varying the hyperparameter,W, in Fig 1). In this experiment, we evaluated the model

with 4 other window sizes, namely, 3, 6, 12 and 15, in addition to our default windows size, 9.

We train and evaluate all different models with the 50-sample experimental AGP data set used

in Table 2. Similarly, prediction accuracies are averaged and standard deviation is measured

over 5 randomly selected data with replacement experiments. The table shows that the sample-

level prediction accuracy is generally not sensitive to the window size parameter of the

Read2Pheno model.

(PDF)

S12 Appendix. 2-D projection of embedded Prevotella read vectors. Red markers represent

fecal reads, green markers represent oral reads and black markers represent skin reads. The

color of a ‘×’ represents the predicted body site. If the predicted body site is the same as the

true body site, then ‘×’s are not visible. The body site prediction accuracy for Prevotella visuali-

zation reads is 0.9131.

(TIF)
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S13 Appendix. Visualization of the attention weights without smoothing. Comparison

between average Prevotella reads attention weights and nucleotide frequency entropy in form

of nucleotide sequence logo. A: oral reads; B: fecal reads; C: skin reads; D: overall attention. In

each body site, nucleotide frequencies are scaled by the overall entropy for all Prevotella testing

reads and plotted as a sequence logo, with average attention weights represented by a color

map where lighter background shading represents larger values for attention weights, in con-

trast with darker background shading for smaller attention weights. Attention weights are not

smoothed by the moving average of window size of 9 as opposed to Fig 3.

(TIF)

S14 Appendix. Oligotypes for Prevotella reads. Top 7 Oligotypes found in Prevotella reads.

The number on the left hand side of the figure shows the number of reads having a certain

type of Oligotyping patterns (the nucleotide combination in black positions).

(TIF)

S15 Appendix. Oligotypes and body site association [41] of Prevotella reads. Different 7-oli-

gotypes configurations can be found in different body sites. Fecal samples have a distinctive

configuration as compared with oral and skin samples. Of note, Oligotyping for 7 positions

picks positions 13, 54, 65, 83, 91, 96, and 98. In our model, shown in Fig 3, nucleotide positions

13, 54, 91, 96, 98 within the 16S rRNA V4 region are in highlighted region, which represent

greater attention. Notably, position 13 is in a dim but still highlighted regions, 65 and 83 are

near highlighted regions, and in fact, 83 is near two more.

(TIF)

S16 Appendix. Gevers data set testing performance on different read length. To demon-

strate the scalability of the Read2Pheno model to longer read lengths, we determined the

sample-level classification accuracy of the Read2Pheno model trained on two different read

lengths, 160 bp and 250 bp. The analysis shown here is similar to that used to generate Table 3,

i.e., the obtained accuracy values are averaged and standard deviation computed over 5 experi-

ments, in which we randomly selected training-testing data splits with replacement. The simi-

larity in trend and values in the table demonstrate that even when trained on reads increased

to 250 bp length, Read2Pheno model show stable performance, as well as increased sample-

level classification accuracy. As the table showing values for 160 bp and demonstrates, our pro-

posed method can scale to a data set with longer-length reads length data set and can produce

better performance with more sequential information from longer read lengths.

(PDF)

S17 Appendix. 2-D projection of embedded read vectors from Ruminococcus (Left) and

Blautia (Right). Red markers represent “CD” reads, blue markers represent “Not IBD” reads.

The color of a ‘×’ represents the predicted phenotype. If the predicted phenotype is the same as

the true phenotype, then ‘×’s are not visible. The phenotype prediction accuracy for Rumino-
coccus and Blautia visualization reads are 0.84 and 0.74 respecitively.

(TIF)

S18 Appendix. Average attention weights of Enterobacter testing sequences. Top: Average

attention weights for all strains of Enterobacter without alignment; Bottom: Attention weights

with alignment. This figure shows that our model can implicitly perform alignment to the

sequence so that the attention was paid to similar position after alignment. In particular, the

model learned to pay attention to important regions. Before alignment, attention are paid to a

wider range of positions. However, after sequence alignment, attention weights are concen-

trated to a smaller range of positions (the maximum averaged attention weight is more than 13
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times higher than the weight pre-alignment). This indicates that the model recognizes certain

nucleotide configuration and is robust to insertions and deletions which would be accounted

for by the sequence alignment.

(TIF)

S19 Appendix. Secondary structure and attention weights of a Pseudomonas aeruginosa
sequence. The attention weights (top) on a real Pseudomonas aeruginosa sequence provided

by [68]. The positions that have an attention weight greater than the mean attention weight

across the whole sequence are highlighted on the secondary structure figure (bottom).

(PDF)

S20 Appendix. Mean attention weights and multiple sequence alignment results aligned

for Pseudomonas and Enterobacter.
(ZIP)

S21 Appendix. Attention weights on variable regions per genus. The csv file contains a table

for the attention weights on different variable regions per genus. The variable region indices

are determined by [66] (the start and end positions for E. Coli in Table 1 [66]).

(CSV)

S22 Appendix. Attention weights visualization of a body site classification model trained

by reads from 400 AGP samples. This figure compares the average Prevotella reads attention

and nucleotide frequency entropy in form of nucleotide sequence logo. A: oral reads; B: fecal

reads; C: skin reads; D: overall attention. The Prevotella visualization reads are classified to the

correct body site source with 68.46% accuracy (the balance accuracy is 66.45%).

(TIF)

S23 Appendix. Attention weights visualization of a body site classification model trained

by reads from 750 AGP samples. This figure compares the average Prevotella reads attention

and nucleotide frequency entropy in form of nucleotide sequence logo. A: oral reads; B: fecal

reads; C: skin reads; D: overall attention. The Prevotella visualization reads are classified to the

correct body site source with 91.49% accuracy (the balance accuracy is 67.86%).

(TIF)

S24 Appendix. Attention weights visualization of a Crohn’s disease classification model

trained by reads from 160 Gevers samples. This figure compares the average Blautia reads

attention and nucleotide frequency entropy in form of nucleotide sequence logo. A: “CD”

reads; B: “Not IBD” reads; C: overall attention. The Blautia visualization reads are classified to

the correct host health status with 6.49% accuracy (the balance accuracy is 22.41% due to high

false negative rate on this genus).

(TIF)

S25 Appendix. Attention weights visualization of a Crohn’s disease classification model

trained by reads from 400 Gevers samples. This figure compares the average Blautia reads

attention and nucleotide frequency entropy in form of nucleotide sequence logo. A: “CD”

reads; B: “Not IBD” reads; C: overall attention. The Blautia visualization reads are classified to

the correct host health status with 75.34% accuracy (the balance accuracy is 48.93%).

(TIF)
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