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ABSTRACT Lipids are biologically active molecules involved in a variety of cellular
processes and immunological functions, including inflammation. It was recently shown
that phospholipids and their derivatives, lysophospholipids, can reactivate latent (dor-
mant) tumor cells, causing cancer recurrence. However, the potential link between lip-
ids and HIV latency, persistence, and viral rebound after cessation of antiretroviral ther-
apy (ART) has never been investigated. We explored the links between plasma lipids
and the burden of HIV during ART. We profiled the circulating lipidome from plasma
samples from 24 chronically HIV-infected individuals on suppressive ART who subse-
quently underwent an analytic treatment interruption (ATI) without concurrent immu-
notherapies. The pre-ATI viral burden was estimated as time-to-viral-rebound and viral
load set points post-ATI. We found that higher pre-ATI levels of lysophospholipids,
including the proinflammatory lysophosphatidylcholine, were associated with faster
time-to-viral-rebound and higher viral set points upon ART cessation. Furthermore,
higher pre-ATI levels of the proinflammatory by-product of intestinal lysophosphatidyl-
choline metabolism, trimethylamine-N-oxide (TMAO), were also linked to faster viral
rebound post-ART. Finally, pre-ATI levels of several phosphatidylcholine species (lyso-
phosphatidylcholine precursors) correlated strongly with higher pre-ATI levels of HIV
DNA in peripheral CD41 T cells. Our proof-of-concept data point to phospholipids and
lysophospholipids as plausible proinflammatory contributors to HIV persistence and
rapid post-ART HIV rebound. The potential interplay between phospholipid metabo-
lism and both the establishment and maintenance of HIV latent reservoirs during and
after ART warrants further investigation.

IMPORTANCE The likelihood of HIV rebound after stopping antiretroviral therapy (ART)
is a combination of the size of HIV reservoirs that persist despite ART and the host
immunological and inflammatory factors that control these reservoirs. Therefore, there is
a need to comprehensively understand these host factors to develop a strategy to cure
HIV infection and prevent viral rebound post-ART. Lipids are important biologically
active molecules that are known to mediate several cellular functions, including reacti-
vating latent tumor cells; however, their role in HIV latency, persistence, and post-ART
rebound has never been investigated. We observed significant links between higher lev-
els of the proinflammatory lysophosphatidylcholine and its intestinal metabolic by-prod-
uct, trimethylamine-N-oxide, and both faster time-to-viral-rebound and higher viral load
set point post-ART. These data highlight the need for further studies to understand the
potential contribution of phosphatidylcholine and lysophosphatidylcholine metabolism
in shaping host immunological and inflammatory milieu during and after ART.
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Acomprehensive understanding of the host factors modulating HIV persistence is
imperative for developing effective strategies to eradicate the latent HIV reservoir,

which persists despite antiretroviral therapy (ART) and causes viral rebound upon ART
discontinuation (1). Lipids are biologically active molecules involved in a broad range
of cellular processes and immunological functions, including inflammation (2, 3). It was
recently shown that phospholipids and their derivatives, lysophospholipids, can reacti-
vate latent (dormant) tumor cells, causing cancer recurrence (4). While the interplay
between lipids and both HIV and ART has been studied in the context of the develop-
ment of inflammation-associated comorbidities, particularly subclinical atherosclerosis
(5–9), the potential impact of lipids on HIV latency, persistence, and post-ART rebound
has never been investigated.

There is currently no standard method to measure the total body burden of the rep-
lication-competent HIV reservoir (1, 10). However, a possible way to estimate both the
overall size of the HIV reservoir and the degree of viral control is by assessing time-to-
viral-rebound and/or viral load set points upon cessation of ART. In this study, we
profiled the circulating lipidome from plasma samples from 24 chronically HIV-infected
individuals on suppressive ART who subsequently underwent an analytic treatment
interruption (ATI) (11, 12). All 24 individuals underwent ATI without concurrent
immunomodulatory agents that might confound our analysis. Lipidomic analysis was
performed using liquid chromatography-mass spectrometry (LC-MS), as described pre-
viously (13), on plasma samples collected immediately before ATI. Both time-to-viral-
rebound and viral load set points were measured during ATI. This cohort had a wide
distribution of viral rebound times (14 to 119 days; median = 28) and viral load set
points (median = 13,675 copies/ml; see Table S1 in the supplemental material). Using
these data, we investigated whether there is a link between pre-ATI lipid profiles and
the body burden of HIV during ART (estimated as post-ATI time-to-viral-rebound and
viral load set points).

Levels of plasma lysophospholipids measured pre-ATI associate with time to
viral rebound post-ATI. We identified a total of 967 lipids, belonging to 21 lipid
classes (described in Table S2), in the plasma samples. Using the Cox proportional-haz-
ards model, we found that pre-ATI levels of several of these lipids significantly associ-
ated with a faster time to viral rebound (Fig. 1A; lipids with a hazard ratio [HR] of .5
and P , 0.01 are labeled). We next examined whether these lipids belong to particular
lipidomic pathways or classes. Pathway analysis of all lipids whose pre-ATI levels asso-
ciated with time to viral rebound with P , 0.05 showed that the pathway most associ-
ated with viral rebound was glycerophospholipid metabolism (Fig. 1B). The pre-ART
levels of three lipid classes were significantly (false-discovery rate [FDR] of,0.05) asso-
ciated with faster time to viral rebound (Fig. 1C and Table S3): lysophosphatidylcholine
(LPC), lysophosphatidylethanolamine (LPE), and lysophospholipid acid (LPA). All three
classes belong to the lysophospholipid group, which is a subgroup of the glycerophos-
pholipid family shown in Fig. 1B. Lysophospholipids are small bioactive lipid molecules
known to play important roles in regulating several biological functions, including pro-
moting inflammation (8, 14–19). The significant associations between these lysophos-
pholipid classes and faster time to viral rebound were confirmed using two additional,
independent analyses: Mantel-Cox survival test, after separating participants into low
or high groups based on the median level of each of these lipid classes (Fig. 1D); and
Spearman’s rank correlation between the levels of these lipid classes and time to viral
rebound (Table S3). These data point, for the first time, to plausible links between phos-
pholipid and lysophospholipid metabolism and HIV rebound post-ART. Intriguingly, similar
phospholipids and lysophospholipids were recently shown to reactivate latent (dormant)
cancer cells (4). Our exploratory findings, that are consistent with the reported functions of
these lysophospholipids, raise the question of whether these lysophospholipids condition
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the host environment with higher levels of inflammation that might impact viral reactiva-
tion, cellular processes, and immunological functions during and/or after ATI.

Levels of plasma trimethylamine-N-oxide measured pre-ATI associate with
post-ATI time to viral rebound. The proinflammatory lipid class LPC can be hydro-
lyzed in the intestine to LPA and choline; choline can be metabolized into trimethyl-
amine, which is converted to trimethylamine-N-oxide (TMAO) in the liver (20). TMAO
induces several proinflammatory mediators and has been implicated in several inflam-
mation-associated diseases (20–23). Given that LPC and LPA lipids were among the lip-
ids whose pre-ATI levels associated with faster viral rebound upon ART cessation
(Fig. 1A to D), we sought to examine whether levels of TMAO associated with post-ATI
time to viral rebound. We performed metabolomic analysis, using LC-MS, as described
previously (24), on the same pre-ATI plasma samples. Indeed, pre-ATI levels of TMAO
were higher in individuals with lower than the median days to viral rebound (fast
rebounders) compared to individuals with higher than the median days to rebound
(delayed rebounders) (Fig. 1E). Furthermore, pre-ATI TMAO levels correlated negatively
with post-ATI time to viral rebound (Fig. 1F). Our observations that the proinflamma-
tory by-products of intestinal LPC metabolism (LPA and TMAO) are also associated

FIG 1 Higher pre-ATI lysophospholipid metabolism and its bioactive by-products associate with faster post-ATI time to viral rebound. (A) Lipids whose pre-
ATI levels associate with post-ATI time to viral rebound, as determined by the Cox proportional-hazards model. Lipids with P , 0.01 and hazard ratio
(HR). 5 are shown in red and labeled. (B) Lipid pathway analysis of plasma lipids whose pre-ATI levels associated with time to viral rebound with P , 0.05
using LIPEA (Lipid Pathway Enrichment Analysis; https://lipea.biotec.tu-dresden.de/home). The graph shows all implicated pathways with FDR, 0.05.
Numbers beside each pathway represent the number of dysregulated lipids within the particular pathway. GPI, glycosylphosphatidylinositol. (C) Lipid classes
whose pre-ATI levels associate with post-ATI time to viral rebound, as determined by the Cox proportional-hazards model. FDR was calculated using the
Benjamini-Hochberg approach. (D) Confirmatory analysis of the three lysophospholipid classes using the Mantel-Cox test. Low pre-ATI levels are levels lower than
the group median; high pre-ATI levels are levels higher than the group median. (E) Participants were separated into shorter or longer time-to-viral-rebound
groups by the median of days to viral rebound; the levels of TMAO were higher in individuals who rebounded faster than in individuals who rebounded slower.
Mann-Whitney U test was used for statistical analysis. (F) Spearman’s rank correlation between pre-ATI TMAO and post-ATI time to viral rebound. Statistical
analyses were performed in R and Prism 7.0 (GraphPad).

Phospholipids and HIV Persistence ®

January/February 2021 Volume 12 Issue 1 e03444-20 mbio.asm.org 3

https://lipea.biotec.tu-dresden.de/home
https://mbio.asm.org


with faster HIV rebound demand a greater understanding of the interaction between
glycerophospholipid or choline metabolism by intestinal microbiota and viral persist-
ence during ART or rebound post-ART. Such understanding may inform therapeutic
approaches targeting the gut microbiota-lipid metabolism interface to reduce inflam-
mation and facilitate the clearance of HIV reservoirs.

Pre-ATI plasma lysophospholipids associate with post-ATI viral load set point.
In addition to time to viral rebound, post-ART viral load set point can reflect the body
burden of HIV during ART. Therefore, we asked whether pre-ATI lipid profiles are asso-
ciated with post-ATI viral load set point. Pre-ATI levels of several lipids associated with
post-ATI viral load set point with P , 0.01 and Spearman rho. 0.5 (Fig. 2A).
Furthermore, pre-ATI LPC and LPE class levels correlated with post-ATI viral load set
point (Fig. 2B and C, respectively). Finally, the pre-ATI levels of the LPC (24:0) lipid spe-
cies, which was one of the individual lipids whose pre-ATI level correlated with time to
viral rebound (Fig. 1A), also associated with post-ATI viral load set points (Fig. 2D).
Notably, levels of LPC (20:4) during HIV infection have been shown to associate with
the progression of carotid artery atherosclerosis, even after ART suppression (6). These
data indicate that pre-ATI phospholipid metabolism is linked to viral load set point
upon ART cessation.

Pre-ATI phosphatidylcholines associate with pre-ATI HIV DNA in the periphery.
Finally, we examined the links between pre-ATI plasma lipidome and pre-ATI total HIV
DNA measured in periphery CD41 T by droplet digital PCR (ddPCR), as described previously
(11). Levels of several phosphatidylcholine species (precursors of lysophosphatidylcholine)
significantly correlated (FDR ,10%) with CD41 T cell-associated HIV DNA (Fig. 2E to H).
These data further highlight the potential links between phospholipid metabolism and HIV
persistence.

Our exploratory study has limitations, including small sample size and sampling of

FIG 2 Pre-ATI phospholipid metabolism associates with post-ATI viral load set point and pre-ATI HIV DNA. (A) Spearman’s rank correlations between pre-
ATI lipids and post-ATI viral load set point. Lipids with P , 0.01 and Spearman rho. 0.5 are shown in dark blue and are labeled. (B to D) Correlations
between pre-ATI levels of LPC class (B), LPE class (C), or LPC (20:4) lipid species (D) and post-ATI viral load set point. Each symbol shows the value for one
HIV-positive individual. (E) Spearman’s rank correlations between pre-ATI lipids and pre-ATI total HIV DNA measured in peripheral CD41 T cells. Lipids with
FDR, 0.1 and Spearman rho. 0.5 are shown in dark blue and are labeled. (F to H) Correlations between pre-ATI levels of several phosphatidylcholine species
and pre-ATI levels of HIV DNA in peripheral CD41 T cells. All correlations were evaluated using Spearman’s rank correlation coefficient tests. Statistical analyses
were performed in R and Prism 7.0 (GraphPad).
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blood. The sample size did not allow for addressing the confounding effects of age,
gender, ethnicity, weight, diet, duration of infection, duration on ART, ART regimen, or
comorbidities on lipidomic signatures. Addressing the impact of these confounders
and validating our data using larger cohorts should be the subject of future studies. In
addition, it will be important, in future studies, to examine the links between phospho-
lipid levels, viral rebound, and established clinical measurements of total cholesterol,
high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TG).
Finally, analyzing lipids and HIV burden in different tissues, including adipose tissue,
and mechanistic studies in vitro and in animal models of HIV infection will be needed
to examine the precise interplay between phospholipid metabolism and viral persist-
ence. Such studies might identify lipid-based interactions that can be targeted to
decrease the size of HIV reservoirs and/or delay viral rebound after stopping ART.

Despite these limitations, our study provides the first proof-of-concept evidence
that phospholipid metabolism might be involved in a host milieu that facilitates a
faster HIV rebound after ART cessation. The potential interactions between phospho-
lipid/lysophospholipid metabolism and both the establishment and maintenance of
HIV latency warrant further investigation.
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