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Abstract
Background  Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by atypical patterns 
of social functioning and repetitive/restricted behaviors. ASD commonly co-occurs with ADHD and, despite their 
clinical distinctiveness, the two share considerable genetic overlap. Given their shared genetic liability, it is unclear 
which genetic pathways increase the likelihood of ASD independently of ADHD.

Methods  We applied Genomic Structural Equation Modeling (SEM) to GWAS summary statistics for ASD and 
childhood-diagnosed ADHD, decomposing the genetic variance for ASD into that which is unique to ASD (uASD) and 
that which is shared with ADHD. We computed genetic correlations between uASD and 83 external traits to estimate 
genetic overlap between uASD and other clinically relevant phenotypes. We went on to apply Stratified Genomic SEM 
to identify classes of genes enriched for uASD. Finally, we implemented Transcriptome-Wide SEM (T-SEM) to explore 
patterns of gene-expression associated with uASD.

Results  We observed positive genetic correlations between uASD and several external traits, most notably those 
relating to cognitive/educational outcomes and internalizing psychiatric traits. Stratified Genomic SEM showed that 
heritability for uASD was significantly enriched in genes involved in evolutionarily conserved processes, as well as for 
a histone mark in the germinal matrix. T-SEM revealed 83 unique genes with expression associated with uASD, 34 of 
which were novel with respect to univariate analyses. These genes were overrepresented in skin-related pathologies.

Limitations  Our study was limited by summary statistics derived exclusively from individuals of European ancestry. 
Additionally, using data based on a general ASD diagnosis limits our ability to understand genetic factors contributing 
to the pronounced clinical heterogeneity in ASD.

Conclusions  Our findings delineate the unique genetic underpinnings of ASD that are independent of ADHD at the 
genome-wide, functional, and gene expression level of analysis. In addition, we identify novel associations previously 
masked by their diametric effects on ADHD. Collectively, these results provide insight into the processes that make 
ASD biologically unique.
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Introduction
Autism spectrum disorder (ASD) is a heterogenous neu-
rodevelopmental disorder which occurs in > 1% of the 
population [1, 2]. While the phenotypic presentation of 
ASD is highly variable, it is characterized by two core 
symptom domains: (i) impairments in social communi-
cation and interaction as well as (ii) repetitive, restricted 
patterns of behavior or interests [3]. Although the etiol-
ogy of ASD involves an array of contributing factors, 
extant literature has demonstrated a strong genetic com-
ponent with heritability estimates from twin and family 
studies ranging between 64 and 91% [4–6]. A substan-
tial proportion of this heritability (∼ 12%) is attributable 
to common genetic variation as evidenced by recent 
genome-wide association studies (GWASs) of ASD [2, 7].

ASD often presents alongside other neuropsychiatric 
conditions; the most frequent comorbidity is attention-
deficit/hyperactivity disorder (ADHD) [8], a childhood-
onset disorder characterized by symptoms of either 
inattention, hyperactivity, or some combination of the 
two [3]. Indeed, conservative estimates suggest that one 
in every three children with ASD will also meet diag-
nostic criteria for ADHD [9]. Extending beyond com-
plete comorbidity, autistic children are likely to present 
with features associated with ADHD, and vice versa [10]. 
Converging evidence indicates that a common genetic 
architecture partially underlies liability for both disor-
ders and their cardinal symptoms [10, 11]. For example, 
observations from family-based studies find that ASD 
and ADHD tend to co-aggregate within families [12], 
and this co-aggregation is due, in part, to shared additive 
genetic influences [13, 14]. These findings are corrobo-
rated by molecular and statistical genetic studies which 
have estimated moderate genetic correlations between 
ASD and ADHD [2, 11, 15], indicating a shared genetic 
architecture.

These findings illustrate a broad challenge of parsing 
disorder-specific biological pathways when two pheno-
types are genetically and phenotypically correlated. These 
difficulties necessitate the need for multivariate genomic 
analyses capable of isolating the genetic variance that is 
unique to a specific trait. Here, we approach these chal-
lenges by leveraging Genomic Structural Equation Mod-
eling (SEM) and its extensions to separate out the genetic 
variance unique to ASD from that which is shared with 
ADHD [16–18]. We model GWAS summary statistics 
for ASD and childhood-diagnosed ADHD using a Cho-
lesky decomposition to derive a unique ASD (henceforth, 
uASD) latent factor, reflecting the residual genetic vari-
ance for ASD after removing genetic overlap with ADHD. 
We then apply downstream analyses to interrogate the 
genetic architecture of uASD at the genome-wide, func-
tional, and gene expression levels of analysis. Collectively, 
these analyses delineate the biological mechanisms that 

contribute specifically to the etiology of ASD as opposed 
to those that may confer a broader spectrum of shared 
neurodevelopmental susceptibility.

Method
Summary statistics
Summary statistics for ASD were used from the most 
recent GWAS meta-analysis [2]. Briefly, the original 
GWAS included 13 076 cases and 22 664 controls from 
the Danish population-based cohort iPSYCH and 5 305 
cases and 5 305 pseudo-controls (i.e., non-transmitted 
parental alleles) from family-based trio samples from 
the Psychiatric Genomics Consortium (PGC). Together, 
the meta-analysis totaled 18 381 ASD cases and 27 969 
controls/pseudo-controls. GWAS summary statistics 
for childhood-diagnosed ADHD were utilized from the 
GWAS conducted by Rajagopal et al. (2022), which strati-
fied ADHD cases by age of diagnosis. Here, we specifi-
cally utilize summary statistics for ADHD diagnosed in 
childhood due to its higher genetic overlap with ASD 
compared to persistent or adulthood-diagnosed ADHD 
[15, 19]. The childhood-diagnosed GWAS included 14 
878 cases and 38 303 controls from the iPSYCH cohort. 
Of note, all subsequent analyses based on these summary 
statistics capture only common genetic variation indexed 
by GWAS. The term “genetic variance” is henceforth 
used to refer to the variance that can be explained by this 
common genetic variation.

To evaluate genetic overlap with other relevant pheno-
types, we leveraged publicly available European-ances-
try summary statistics for 85 external traits spanning 
domains of cognition, psychopathology, health/lifestyle 
behaviors, interpersonal relations, and physical activ-
ity. We also included several traits and diseases related 
to immune and gastrointestinal dysfunction given their 
clinical associations with ASD. We used a SNP-based 
heritability (h2

SNP) Z-statistic cutoff of 4, as recom-
mended by the original linkage disequilibrium score 
regression (LDSC) developers [20], to limit our pool of 
external traits to those with interpretable genetic cova-
riance. Based on this cutoff, 83 of our original 85 traits 
were carried forward for analysis. A comprehensive list 
of included external traits and relevant characteristics is 
reported in Supplementary Table 1.

Genomic structural equation modeling
Prior to analysis, all GWAS summary statistics under-
went an identical set of QC filters using the munge 
function in the GenomicSEM R package. These filters 
included restricting analyses to HapMap3 SNPs and 
removing SNPs with a minor allele frequency (MAF) < 1% 
and imputation score (INFO) < 0.9 (when available). Once 
processed, these GWAS summary statistics were used 
as input for multivariable LDSC using the ldsc function 
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within GenomicSEM, which produces the genetic covari-
ance and sampling covariance matrices across included 
traits. The genetic covariance matrix includes the h2

SNP 
on the diagonal and the genetic covariances on the off-
diagonal. The sampling covariance matrix contains 
squared standard errors (sampling variances) on the 
diagonal and the sampling covariances (sampling depen-
dencies) on the off-diagonal that will arise in the presence 
of participant sample overlap. The sampling covariance 
matrix is estimated directly from the data using a block 
jackknife resampling procedure and allows for GWAS 
with varying degrees of power and sample overlap to be 
included in the same statistical model.

For binary traits, estimates were converted to the lia-
bility scale using the population prevalence and the sum 
of effective sample size across contributing cohorts [21]. 
For ASD, the effective sample size was estimated directly 
from the data. This is because the ASD GWAS used 
pseudocontrol subjects, which reduces power to detect 
GWAS associations, such that using the observed sum of 
effective sample size would produce downwardly biased 
estimates of heritability [22]. LDSC requires that esti-
mates are produced within a single ancestry group as the 
LD weights used to estimate the regression model will 
vary across ancestral populations. Due to limited avail-
ability of data in other ancestral groups, GWAS statistics 
were limited to participants of European ancestry, and 
the LDSC model was estimated using the 1000 Genomes 
Phase 3 European LD scores. These scores excluded the 
major histocompatibility complex (MHC) due to com-
plex LD structures in this region that can bias estimates.

The output from LDSC was used as input to all subse-
quent analyses in Genomic SEM. We began by fitting a 
Cholesky decomposition model to our observed variables 
based on GWAS summary statistics for ASD and child-
hood-diagnosed ADHD (henceforth, simply referred to 
as ADHD). Both ASD and ADHD were regressed onto 
a latent factor, cADHD, which represents the genetic 
variance of ADHD as well as the proportion of genetic 
variance for ASD that is shared with ADHD. ASD was 
additionally regressed onto uASD, representing the resid-
ual genetic variance that is unique to ASD after account-
ing for genetic covariance with ADHD. By construction, 
uASD and cADHD were orthogonal (rg = 0). The genetic 
residual variances of ASD and ADHD were fixed to 0 
so that all common genetic variance in the disorders 
was explained by the latent factors. Given that the Cho-
lesky decomposition is a fully saturated model that per-
fectly recapitulates the observed data, we do not report 
fit indices as they would indicate a perfect model fit by 
definition. At the genome-wide level, this model was 
expanded to compute the genetic correlations between 
uASD and each of our pre-selected 83 external traits (see 
Supplementary Table 2). In interpreting the statistical 

significance of each genetic correlation, we apply a strict 
Bonferroni-adjusted significance threshold (p < 5.9E-4).

Stratified genomic SEM
We applied Stratified Genomic SEM to identify enrich-
ment for functional annotations (i.e., categories of genes) 
for uASD. We first ran multivariable Stratified LDSC 
(S-LDSC) to obtain genetic covariance estimates strati-
fied across different functional annotations. These strati-
fied estimates reflect the proportion of variance for ASD 
and ADHD that are captured by each annotation. To 
avoid confusion with similar analyses in the genetic field, 
we highlight that this analysis is not stratified by chro-
mosome. We originally included a total of 168 annota-
tions for analysis. However, 12 of these annotations were 
excluded due to the model failing to converge (n = 10) or 
negative heritability estimates (n = 2). The remaining 156 
were examined to ensure that none required a smoothing 
of the covariance matrix resulting in a z-statistic differ-
ence > 1.96 (as recommended by Grotzinger et al., 2022) 
before moving forward. Our final analysis included 49 
annotations from the 1000 Genomes Baseline LD Ver-
sion 2.2 [23], as well as neuronal and brain tissue anno-
tations from DEPICT [24], gnomAD [25], GTEx v8 [26], 
and the Roadmap Epigenomics Project [27] (see Supple-
mentary Table 3 for full list of annotations). Using the 
enrich function within GenomicSEM, we then estimated 
enrichment for uASD within each annotation. The enrich 
function works by first estimating the model using the 
genome-wide estimates (i.e., from an annotation includ-
ing all SNPs). The function then fixes the loadings from 
the genome-wide model, and finally estimates the vari-
ances of the factors within each annotation. Fixing the 
loadings from the genome-wide model serves to pro-
duce within-annotation factor variances that are on the 
same scale, which allows for calculating the enrichment 
‘ratio-of-ratios.’ For the current analyses, the numera-
tor of this ratio reflects the proportion of uASD genetic 
variance explained by an annotation (i.e., the within-
annotation genetic variance for uASD divided by the total 
uASD genetic variance). The denominator of the ratio 
reflects the proportional size of the annotation (i.e., the 
number of SNPs in the annotation divided by the total 
number of SNPs analyzed across all annotations). The 
null for this enrichment ratio-of-ratios is 1, where values 
above 1 index functional annotations that account for 
a greater proportion of genetic variance in uASD than 
would be expected based solely on the proportional size 
of that annotation. Given the non-independent nature of 
functional annotations, we applied the FDR correction 
for multiple comparisons to the accompanying p-values 
using the p.adjust R package.
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Transcriptome-wide SEM (T-SEM)
Transcriptome-wide SEM (T-SEM) was applied to iden-
tify patterns of gene expression associated with uASD. 
First, FUSION [28] was used to perform univariate tran-
scriptome-wide association studies (TWASs) on both 
ASD and ADHD. We utilized functional weights for 13 
brain tissue types from the Genotype Tissue Expression 
Project (GTEx v8 [29]), two dorsolateral prefrontal cor-
tex weights from the CommonMind Consortium (CMC 
[30]), and one set of weights for the prefrontal cortex 
from PsychEncode [31]. This resulted in 16 total func-
tional weights from which we derived 73 412 genes with 
imputed expression data across different brain regions 
and tissues. These univariate FUSION outputs were then 
input into the read_fusion function in Genomic SEM.

The gene expression estimates were then added to the 
LDSC covariance matrix for ASD and ADHD, and the 
userGWAS function was used to estimate the effect of 
gene expression on both uASD and cADHD. Given the 
scope of the analyses, we specifically focus on the rela-
tionship between gene expression and uASD. Finally, to 
identify gene sets with significant enrichment in uASD, 
we used the WebGestalt package to conduct an over-
representation analysis (ORA [32]), on genes identified 
by T-SEM. An FDR correction was used in interpreting 
significance of T-SEM and ORA results. We also carried 
forth a drug repurposing analysis on these genes using 
methods outlined by Grotzinger et al. 2023. As these 

analyses did not produce any findings, no results are 
reported below.

Results
Genome-wide results reveal genetic correlates of uASD
ASD and ADHD were moderately genetically corre-
lated (rg = 0.45, SE = 0.05). The Cholesky decomposition 
revealed that cADHD explained ∼ 20% of the genetic vari-
ance in ASD and uASD explained the remaining ASD 
genetic variance (see Fig.  1 for visual representation of 
the structural equation model and partitioning of genetic 
variance). The remaining analyses sought to clarify what 
genetically differentiates ASD from ADHD by examin-
ing associations with the uASD factor at multiple levels 
of analysis. We began by genetically correlating uASD 
with 83 external traits in order to evaluate the extent of 
genetic overlap with other phenotypes relevant to men-
tal and physical health. By virtue of our statistical defini-
tion of uASD, these correlations represented associations 
extending above and beyond those with cADHD. A full 
list of external traits and relevant outputs is available in 
Supplementary Table 2. Our analyses revealed that uASD 
was significantly correlated with 20/83 external traits. 
These 20 correlations tended to span four primary phe-
notypic dimensions – cognition, psychopathology, physi-
cal movement, and interpersonal relations – that we 
review below (and in Fig. 2, panels A, B, C, and D).

Fig. 1  Genomic structural equation modeling to decompose ASD genetic variance. (A) Cholesky decomposition model producing uASD, a latent vari-
able encompassing the genetic variance unique to ASD independent of ADHD, and cADHD, which captures the residual genetic variance of ASD (i.e., 
variance shared between ASD and ADHD) and the genetic variance of ADHD. (B) Donut plot showing the proportion of residual genetic variance unique 
to ASD (blue) and shared with childhood ADHD (red). Standard errors for the variance estimates are provided in parentheses

 



Page 5 of 11Schaffer et al. Molecular Autism           (2024) 15:46 

Cognition
Cognitive-related phenotypes demonstrated the most 
robust genetic correlations with the latent factor uASD, 
both in statistical significance and magnitude. We 
observed positive correlations between uASD and edu-
cational attainment (rg=0.48, SE = 0.05), childhood intel-
ligence (rg = 0.45, SE = 0.1), general intelligence (rg = 0.42, 
SE = 0.05), noncognitive skills of educational attainment 
(rg = 0.27, SE = 0.05), word reading (rg = 0.29, SE = 0.08), 
and verbal numerical reasoning (rg = 0.39, SE = 0.05). 
Interestingly, a number of these traits (childhood intelli-
gence, noncognitive skills of educational attainment, and 
word reading) were not found to be significantly associ-
ated with ASD, indicating that uASD may be capturing 
additional genetic variance uniquely related to cognitive 
and education-related traits. While we observed consis-
tent associations with traits indexing intellectual abilities, 
we did not observe a statistically significant correlation 
between uASD and the trail-making task B, a well-estab-
lished measure of executive functioning [33, 34]. Col-
lectively these cognitive results indicate that the genetic 

component unique to ASD is specifically associated with 
more general cognitive processes independent of self-
regulatory processes.

Psychopathology
Several psychiatric phenotypes, especially those fall-
ing within the internalizing spectrum, were positively 
and significantly associated with uASD. These included 
major depressive disorder (MDD; rg = 0.20, SE = 0.05), 
self-harm (rg = 0.36, SE = 0.10), consideration of self-harm 
(rg = 0.44, SE = 0.08), and sensitivity to environmental 
stress and adversity (rg = 0.16, SE = 0.05). Positive genetic 
correlations were also observed between uASD and 
schizophrenia (rg = 0.22, SE = 0.04) and anxiety (rg = 0.22, 
SE = 0.07), though the correlation with anxiety did not 
surpass the Bonferroni-adjusted significance threshold. 
These genetic correlations with psychopathology were 
similar in directionality and magnitude to those observed 
for ASD and cADHD. This suggests that, despite their 
high level of genetic overlap, ASD and ADHD each have 

Fig. 2  Genetic correlations between uASD and external traits. Genetic correlations between uASD (blue) and external traits for domains of cognition and 
education (A), psychiatric disorders and symptoms (B), and interpersonal traits (C). Traits are sorted top to bottom by ascending p-value for the uASD cor-
relation. (D) Genetic correlations between accelerometer-based average total hourly movement within the 24-hour day beginning at midnight (i.e., hour 
1) and uASD and cADHD. Correlations are also shown between external traits and ASD (pink) as well as cADHD (red). Error bars represent 95% confidence 
intervals. Translucent points and error bars represent genetic correlations that did not surpass the Bonferroni-adjusted significance threshold. Panel D de-
picts a LOESS regression line used to visualize overall trends across individual point estimates. Shaded region around the regression line represents a 95% 
confidence interval. Dashed pink line represents the LOESS regression line for genetic correlations with ASD. EA = educational attainment, EF = executive 
function (assessed using trail-making task B; TMTB), MDD = major depressive disorder, OCD = obsessive-compulsive disorder, PTSD = post-traumatic stress 
disorder, Visit Frequency = frequency of friend and family visits
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unique genetic pathways that link them to other forms of 
psychopathology.

Given the shared genetic influences across uASD and 
other psychiatric disorders, we went on to implement a 
follow-up model to examine the magnitude of unique 
genetic variance in ASD after partialing out genetic over-
lap with multiple psychiatric disorders. This involved 
running a multiple regression model with ADHD, MDD, 
anxiety, and schizophrenia as correlated predictors of 
ASD. The multiple regression model path diagram is 
visualized in Supplementary Fig. 1 and its output is pro-
vided in Supplementary Table 3. This model revealed that 
74% of the residual genetic variance in ASD was unex-
plained by the other psychiatric disorders. This demon-
strates that ASD is not merely a genetic amalgamation of 
ADHD and other psychiatric disorders, but has a sizable 
proportion of unique genetic variance distinguishing it 
from other forms of psychopathology.

Physical movement
We examined the genetic correlations with acceler-
ometer data (i.e., physical movement) in 1-hour incre-
ments across a 24-hour period. This accelerometer data 
can be considered a useful indicator of atypical patterns 
of movement that may reflect disturbances in sleep and 
circadian rhythm, wherein these processes have been dis-
cussed as transdiagnostic correlates of psychiatric and 
neurodevelopmental disorders [17, 35, 36]. We observed 
positive associations between uASD and movement at 
hours 0–1 (i.e., 12:00AM-1:00AM; rg = 0.29, SE = 0.08), 
21–22 (i.e., 9:00PM-10:00PM; rg = 0.28, SE = 0.07), 22–23 
(rg = 0.29, SE = 0.08), and 23–24 (rg = 0.44, SE = 0.08), indi-
cating that this genetic overlap was restricted to move-
ment during periods of early morning and late night. We 
also observed overlap between uASD and physical inac-
tivity (rg for hours of moderate exercise = − 0.25, SE = 0.07) 
and irritable bowel syndrome (rg = 0.21, SE = 0.06).

Interpersonal relations
A select few traits relating to increased social behavior 
displayed genetic correlations with uASD. Notably, these 
positively associated traits tended to revolve around 
social relations with family members, such as family sat-
isfaction (rg = 0.41, SE = 0.07) and the frequency of friend 
and family visits (rg = 0.48, SE = 0.07). Age of first sexual 
encounter was also positively genetically correlated with 
uASD (rg = 0.32, SE = 0.06), and this association was not 
observed with ASD.

Functional results identify uASD Enrichment
Stratified Genomic SEM revealed four significantly 
enriched functional annotations for uASD. Three of these 
annotations reflected classes of genes implicated in evolu-
tionarily conserved processes, including genes conserved 

in primates (p = 1.00E-7), and two annotations indexing 
genes conserved in mammals (p = 5.68E-4 and 9.45E-4). 
We also found significant enrichment for the H3K4me1 
histone mark in the germinal matrix (p = 6.20E-4), a tran-
sient brain region present only during gestational brain 
development (see Fig.  3 and Supplementary Table 3 for 
the magnitude of these enrichments). These annotations 
represent a subset of eight significantly enriched anno-
tations in ASD, which also included genes conserved in 
vertebrates, as well as enrichment in histone marks in 
the anterior caudate and fetal male and female brains. 
The cADHD factor captured 26 significantly enriched 
annotations which encompassed all of the annotations 
observed in uASD and ASD, albeit with smaller point 
estimates for the evolutionary annotations. Additional 
significant annotations for cADHD were characterized 
predominantly by markers for genetic modifications in 
several brain regions and hormonal centers. A full list of 
annotations and their relative enrichments is provided in 
Supplementary Table 3.

T-SEM uncovers 83 genes Associated with uASD
We obtained 73 412 gene expression estimates for uASD 
(many of which reflect expression levels for the same 
gene in different tissues). T-SEM revealed 278 significant 
expression estimates across 83 unique gene IDs, many of 
which were clustered on chromosomes 8 and 17. These 
results are visualized as a Miami plot in Fig. 4. The most 
highly significant estimate corresponded with the down-
regulation of PINX1 (z = -5.79, p = 6.89E-9), a potent 
inhibitor of telomerase [37]. The univariate TWAS of 
ASD revealed 231 significant expression estimates across 
69 genes at the same significance threshold used for the 
uASD T-SEM analysis (p < 9.37E-5). The uASD T-SEM 
revealed 34 novel genes relative to the ASD univari-
ate TWAS. Despite subtracting out shared genetic vari-
ance with ADHD, novel genes can arise in this model for 
genes with particularly discordant effects across ASD and 
ADHD.

To identify potential biological pathways implicated in 
uASD, we applied ORA to the significant genes identified 
by T-SEM. The analysis revealed two gene sets associated 
with the uASD genes; both of which were implicated in 
skin-related pathologies (WebGestalt output provided 
in Supplementary Table 6). The first set relates to bacte-
rial skin diseases (enrichment ratio = 74.53, p = 6.55E-9). 
The second set corresponded to erythema (redness of 
the skin, often manifesting as a rash) and included all of 
the genes in the gene list for bacterial skin diseases, with 
the exception of FAM167A (enrichment ratio = 43.27, 
p = 2.20E-6).
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Fig. 4  Miami plot of gene expression hits for uASD. Upper and lower bounds represent the FDR-adjusted significance threshold (p < 9.37E-5). Genes 
surpassing the upper bound are upregulated and those below the lower bound are downregulated. Significant hits are colored red and labeled with 
gene ID names

 

Fig. 3  Genetic enrichment of uASD for functional annotations. Functional annotations are arranged by ascending p-value. Enrichment is measured as the 
ratio of the proportion of genome-wide relative risk represented by the size of that annotation relative to the entire genome. Null enrichment value is 1.0 
(visualized by dashed vertical line), in which the genetic variance captured by that annotation is proportional to the expected genetic variance based on 
annotation size. Significant enrichments at an FDR threshold are represented by solid blue bars, and error bars represent the 95% CI around the enrich-
ment estimate. For visualization purposes, enrichment values are also provided for ASD (pink) and cADHD (red). Single asterisk (*) indicates conserved 
mammalian genes defined by GERP score. Double asterisk (**) indicates conserved mammalian genes defined by Lindblad-Toh et al. (2011)

 



Page 8 of 11Schaffer et al. Molecular Autism           (2024) 15:46 

Discussion
The present study leveraged Genomic SEM to dissect 
the genetic architecture specific to ASD after accounting 
for shared genetic variance with another neurodevelop-
mental disorder, ADHD diagnosed in childhood. These 
ADHD summary statistics evince the highest level of 
genetic overlap with ASD across the psychiatric space, 
thereby providing a stringent benchmark for indexing the 
genetic variance unique to ASD. We find that the major-
ity of genetic variance in ASD, as well as genetic overlap 
with other clinically relevant traits, is unique from ADHD 
despite their high levels of genetic overlap [17]. Imple-
menting genome-wide, functional, and gene-expression 
analyses, we investigated the unique genetic variance at 
increasing levels of biological granularity. At each level, 
we interrogated this specific variance and identified dis-
tinct biological pathways with specific relevance to ASD.

Genome-wide level
Partitioning the genetic variance unique to ASD, we find 
a plethora of genetic correlations with cognitive, psychi-
atric, and other behavioral traits. Notably, we find the 
strongest correlations between uASD and traits related 
to cognition and education. While the phenotypic lit-
erature surrounding ASD and cognitive abilities is mixed 
[38–40], our findings that uASD has a positive genetic 
association with intelligence and educational attainment 
corroborate prior genetic studies of ASD [2, 41–43]. 
Interestingly, we did not see genetic associations with 
executive function despite meta-analytic research dem-
onstrating ubiquitous executive functioning deficits in 
ASD [44, 45]. Cognitive traits showed some of the more 
divergent patterns of association between uASD and 
cADHD, with the latter having large and negative genetic 
associations with the aforementioned cognitive traits. 
For many cognitive traits, the magnitude of the correla-
tions seen with uASD surpassed those seen within ASD 
broadly. Thus, it appears the genetic variance unique to 
ASD may have opposing effects to the variance shared 
between ASD and ADHD, with the unique component 
driving correlations in the positive direction.

Contrary to cognitive traits, we observed general con-
vergence in the directionality of genetic associations with 
psychiatric traits, especially in those relating to mood 
or anxiety disturbances. We therefore conclude that the 
genetic relationships between ASD and many psychiatric 
(especially internalizing) phenotypes are not driven solely 
by the genetic similarity between ASD and ADHD. We 
also show that ASD is not a simple conglomerate of the 
genetic components of ADHD and other psychiatric dis-
orders, but rather a genetically distinct construct within 
the psychiatric space.

Functional genomic level
Functional analyses revealed that the genetic variance 
unique to ASD was concentrated in evolutionarily con-
served genes and the H3K4me1 histone mark in the 
germinal matrix, a transitory brain region present dur-
ing the prenatal period which serves as a hub for neural 
progenitor cells [46]. The enrichment of the H3K4me1 
histone mark, indicative of active enhancer elements, 
reinforces the importance of early epigenetic modifica-
tions underlying neurodevelopmental processes in the 
etiology of ASD [47]. Moreover, our observation of this 
unique enrichment underscores the value of employing 
multivariate genomic analyses to dissect disorder-specific 
biological pathways, facilitating a deeper understanding 
of the molecular mechanisms underlying ASD.

Transcriptome-wide level
Transcriptome-wide analyses revealed 83 unique genes 
with differential expression linked with ASD independent 
of ADHD. Notably, we find several novel genes unique 
to ASD, reflecting genes with highly discordant effects 
across ASD and ADHD. Focusing on genes with expres-
sion associated with uASD, we find overlap with gene 
sets implicated in two classes of skin-related patholo-
gies: bacterial skin disease and erythema (non-specific 
reddening of the skin). There are well-documented links 
between ASD and various immune-mediated conditions, 
with medical research focusing on the association with 
atopic dermatitis (i.e., eczema) [48–51]. Dysfunction of 
the immune system and inflammatory processes have 
been hypothesized to contribute jointly to ASD and skin 
disorders such as atopic dermatitis [52]; however, there is 
a dearth of literature apart from the current study which 
has explicitly identified gene clusters implicated in both 
syndromes. We note that our genetic correlation analy-
ses do not provide ample support for pervasive overlap 
between uASD, skin pathologies, and inflammatory pro-
cesses, indicating that the overrepresentation of genes 
implicated in skin pathology may represent the sharing of 
more circumscribed physiological systems undetected by 
genome-wide correlations.

Limitations
The current analyses were restricted to GWAS summary 
statistics derived exclusively from individuals of Euro-
pean ancestry [53], which hinders the generalizability of 
our findings due to differences in allele frequency and 
LD structure across ancestrally diverse populations [54]. 
Efforts to broaden representation in GWAS analyses are 
crucial for extending genetic insights to other ancestral 
groups [55]. Similarly, the ASD GWAS summary sta-
tistics used in these analyses pooled ASD cases across 
all clinical subgroups. While necessary to conduct well-
powered analyses, this approach restricts our capability 
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to investigate the phenotypic heterogeneity inherent to 
ASD and to evaluate the invariance of our model across 
different axes of genetic and clinical variation. For exam-
ple, autistic females tend to be report more internal-
izing symptoms and express fewer repetitive behaviors 
than males [56–58]. Similar divergences are observed 
at the genetic level for later-diagnosed ASD relative to 
ASD diagnosed earlier in life, with the former show-
ing stronger genetic overlap with internalizing disorders 
and symptoms [59]. Unfortunately, we are restricted by 
the current limitations of stratified ASD summary data, 
which is relatively underpowered and/or yields negative 
heritability estimates [60], making them unsuitable for 
use in a multivariate genomic framework.

We are also limited in our ability to account for other 
sources of clinical heterogeneity, such as co-occurring 
cognitive impairments or psychopathologies, in the sam-
ple. However, prior work demonstrates that the common 
genetic architecture of ASD is largely consistent across 
groups with and without intellectual disability, with heri-
tability differences speculatively driven by the presence 
of rare, pathogenic variants in groups with intellectual 
disability [2, 59, 61, 62]. We cannot completely rule out 
confounding from co-occurring psychopathology in our 
original GWAS sample. However, our multiple regression 
analysis revealed that associated internalizing psychopa-
thologies explain only a marginal fraction of the genetic 
variance unique to ASD. Additionally, the high rates of 
internalizing concerns among autistic individuals suggest 
that these symptoms may be somewhat inherent to ASD 
phenomenology rather than an external confound [63]. A 
final consideration of our work is that many behavioral 
and psychiatric traits, including ASD, show discrepancies 
between family- and SNP-based estimates of heritability 
[64]. A substantial component of ASD’s missing herita-
bility is thought to be driven by rare variants, structural 
variants, de novo mutations, or other genomic variations 
typically undetected by GWASs [62, 65, 66]. It is there-
fore important to recognize that we are only examining 
a subset of the genetic factors thought to independently 
contribute to ASD etiology.

Future directions
Our work highlights several avenues for future research 
in the field. The model we utilized here represents a gen-
eralizable framework for partitioning the genetic vari-
ance shared between correlated traits into shared and 
unique components. As well-powered and subgroup-
stratified summary statistics become increasingly avail-
able, extensions of this model can be applied to parse 
the genetic heterogeneity observed in ASD. For example, 
the same analytic approach can be used to isolate the 
genetic variance unique to late-diagnosed autism inde-
pendent of early-diagnosed autism. Such work provides 

the opportunity to formally assess whether clinical dis-
tinctions within ASD are mirrored by disparate genetic 
pathways. Finally, although the current study focused 
on common genetic variation, future lines of research 
should also work to characterize the shared and unique 
effects of alternative forms of genetic variation on neuro-
developmental outcomes.

Conclusions
Taken together, we provide insights across multiple levels 
of biology that characterize the genetic signature unique 
to ASD. Relative to ADHD, we find evidence for diver-
gent patterns of relationships with a range of clinically 
relevant correlates (e.g., cognition) along with unique 
patterns of functional enrichment and gene expression 
that implicate neurobiological processes and disease 
states linked to ASD in the extant literature. While ASD 
has often been discussed as unique within the psychiat-
ric space, the current findings clarify and characterize the 
biological substrata that differentiate this complex neuro-
psychiatric condition.
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