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Abstract: As an important biomarker in urine, the level of uric acid is of importance for human
health. In this work, a Cu(II) functionalized metal–organic framework (Cu2+@Tb-MOFs) is designed
and developed as a novel fluorescence probe for wide-range uric acid detection in human urine. The
study shows that this fluorescence platform demonstrated excellent pH-independent stability, high
water tolerance, and good thermal stability. Based on the strong interaction between metal ions and
uric acid, the designed Cu2+@Tb-MOFs can be employed as efficient turn-on fluorescent probes for
the detection of uric acid with wide detection range (0~104 µM) and high sensitivity (LOD = 0.65 µM).
This probe also demonstrates an anti-interference property, as other species coexisted, and the
possibility for recycling. The sensing mechanisms are further discussed at length. More importantly,
we experimentally constructed a molecular logic gate operation based on this fluorescence probe
for intelligent detection of uric acid. These results suggest the Cu(II) functionalized metal–organic
framework can act as a prominent candidate for personalized monitoring of the concentration of uric
acid in the human urine system.

Keywords: metal–organic frameworks; probe; detection; uric acid; logic gate

1. Introduction

Uric acid (2,6,8-trihydroxypurine, UA), a major metabolite in birds and mammals, is
the ultimate metabolized product of purine nucleotide metabolism in body fluid [1,2]. An
abnormal level of UA will affect the physiological system and even other normal functions.
A risen level of UA causes gout, chronic kidney disease, hyperuricemia, hypertension,
cardiovascular disease, etc. [3,4]. The content of UA in serum and urine has become an
important indicator for the prediction and diagnosis of diseases. Therefore, the sensitive
and precise determination of UA is significant in, for instance, disease screening and physi-
ological studies [5]. In recent years, many methods have been developed for the estimation
and detection of UA levels, such as enzymatic assays [6,7], electrochemical sensors [8–11],
spectrophotometric methods [12–15], Raman spectroscopy [16], chromatography [17–19],
and fluorescent spectrometry [20–24]. Although enzymatic assays are the conventional
method for the detection of UA, this method has challenges, including the high purifi-
cation costs and the thermal instability of enzyme. In addition, most of these methods
generally have some intrinsic disadvantages, such as the use of expensive instruments and
time-consuming and laborious manipulation procedures, which greatly limit their practical
and wide applications in the determination of UA. Thus, it is crucial to develop a simple,
precise and low-cost method for identification of UA.

Fluorescent probes have been rapidly developed and have widely received increasing
attention [25–28], because of their distinctive advantages, including easy modification,
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adjustable luminescence, good biocompatibility, facile operation, use of simple instrumenta-
tion, excellent analysis sensitivity, fast response, and highly sensitive fluorescence. Owing
to their prominent fluorescence properties, lanthanide rare-earth metal–organic frameworks
have been made for UA detection [29–31]. However, most of these cannot detect UA over
other common components in human urine. In addition, few of these have a noteworthy
fluorescence enhancement response to UA. Therefore, the fabrication of a fluorescent probe
for UA with outstanding selectivity and high sensitivity is of great challenge.

Logic gates are the basic components of integrated circuits for information processing
and storage [32,33]. If molecules are used to describe the input and output signals in a
logic gate and thus realize the logic operations at the molecular level, such a logic system
is called a molecular logic gate [34,35]. In recent years, the field has evolved from a single
physical or chemical input to a combinatorial and sequential operation, showing great
potential and broad promise. Molecular logic gates are gradually replacing traditional
semiconductor electronic computers with their significant advantages and are used for
heavy metal ion detection, environmental monitoring, food safety detection, pre-disease
diagnosis, and biosensor research [36–38]. MOFs-based fluorescent probes are highly se-
lective and sensitive, allowing the construction of chemical sensors for sensing various
analytes by host–guest interactions. Due to the different fluorescence changes (such as
“quenching” or “enhancement” effect) of MOFs [39] in detecting analytes, molecular logic
gates can be further constructed for programmed detection.

Here, in this work, we synthesize a novel fluorescence nanoprobe based on Cu(II)
functionalized metal–organic frameworks (Cu2+@Tb-MOFs) and explore its application in
fluorescence detection (Scheme 1). Ten kinds of related substance in urine were detected,
and their impacts on the fluorescence of the Cu2+@Tb-MOFs compound was analyzed. The
Cu2+@Tb-MOFs can specially and selectively recognize UA by fluorescence recovering and
exhibit high sensitivity for UA. In addition, a molecular logic gate was constructed based
on the whole system, and finally a molecular logic network system for uric acid detection
connecting basic and integrated logic operations was implemented. This strategy is simple
and practical, and provides a guiding method for constructing molecular-level logic gates
for uric acid detection on a simple platform.
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2. Results and Discussion

2.1. Characterization of Cu2+@Tb-MOFs Fluorescent Probe

The powder X-ray diffraction patterns (PXRD) of the reported Tb-MOFs, the synthetic
crystalline Tb-MOFs and Cu2+@Tb-MOFs samples are shown in Figure 1a. The main
diffraction peaks of the prepared Tb-MOFs match well with that of the reported one [40],
suggesting that the pure Tb-MOFs samples can be synthesized by this fast and facile
method at room temperature. Moreover, the structure of the as-obtained Cu2+@Tb-MOFs
is also verified by XRD. Compared with the Tb-MOFs, the positions of the diffraction
peaks of Cu2+@Tb-MOFs are basically the same and the intensity varies slightly, indicating
that the addition of Cu2+ would not cause a structural change in the Tb-MOFs samples.
Moreover, the Cu2+@Tb-MOFs samples were immersed in water, for 12 h and 24 h, or
in an environment with different pH values (pH = 3.0~9.0) to test their corresponding
XRD patterns. As shown in Figure S1, the crystal structure has hardly changed, indicating
that the composite Cu2+@Tb-MOFs have good structural stability in different pH and
water environments. The thermogravimetric analysis of Cu2+@Tb-MOFs and Tb-MOFs
(Figure S2a) show that there are about three weight-loss intervals. The weight loss of
(14.37%) Tb-MOFs sample at the first stage appears at a platform before 200 ◦C, which is
mainly due to the loss of the free water and coordination water molecules in the system.
In the second stage, at 200~400 ◦C, the weight loss (30.9%) is due to the lack of ligand
mucus acid. At the third stage, the final weight loss (25.85%) after 400 ◦C may be due to
the pyrolysis of the whole system. The result basically corresponded to the theoretical
weight loss rates of the assumed structure of Tb-MOFs. Moreover, the weight loss rates of
Cu2+@Tb-MOFs in three stages are 15.43%, 26.73% and 24.93%, respectively. It can be also
seen that the structure of Cu2+@Tb-MOFs and Tb-MOFs are the similar. In addition, from
the thermal decomposition rate by DTG curve (Figure S2b), it can be observed that the
unmodified material Tb-MOFs (orange) and the copper ion modified material Cu2+@Tb-
MOFs (green) have similar pyrolysis at about 200 ◦C. As the pyrolysis temperature is
about 400 ◦C, Tb-MOFs has obvious pyrolysis, whereas Cu2+@Tb-MOFs does not have this
process, indicating that Cu2+@Tb-MOFs has better high-temperature anti-pyrolysis ability.
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Morphology of Cu2+@Tb-MOFs was studied by scanning electron micrograph (SEM).
As shown in Figure 1b, the Cu2+@Tb-MOFs samples are composed of a large number of
cracked spheres with a diameter of 3–5 µm. Comparing the SEM image of Tb-MOFs samples
(Figure S3a), the morphology of Cu2+@Tb-MOFs samples had not changed significantly,
which is consistent with XRD results. Subsequently, the composition changes of Cu2+@Tb-
MOFs (Figure 1c) and Tb-MOFs (Figure S3b) were measured by energy-dispersive X-ray
analysis (EDX). The Cu2+@Tb-MOFs samples contained several elements of Tb, C, H, O,
and Cu (except Au) and the Tb-MOFs sample contained several elements of Tb, C, H, O
(except Au). It can be seen that Cu element is detected in the Cu2+@Tb-MOFs samples,
and the mole ratio of Cu and Tb (Cu:Tb = 1.8) is close to the stoichiometric ratio of the
addition amount (Cu:Tb = 2.0). Moreover, the loading levels of Cu2+ onto the Tb-MOFs
samples have been further evaluated by inductively coupled plasma (ICP) analysis. The
experimental molar ratio of Cu/Tb ions in Cu2+@Tb-MOFs was checked to be 1.81, which
is also consistent with the analysis result of Cu2+@Tb-MOFs.

The emission spectra of Tb-MOFs and Cu2+@Tb-MOFs are presented in Figure S4.
Under the excitation of 227 nm at room temperature, several emission spectra (EM) of
Tb3+ appeared at 450~700 nm, belonging to 5D4→7Fj (j = 6, 5, 4, 3) [41,42], respectively.
The maximum emission wavelength is 545 nm (5D4→7F5), which in principle leads to
green emission [43]. However, the Cu2+@Tb-MOFs overall fluorescence emission peak
is considerably lower than the normal level of the original Tb-MOFs, so the actual green
fluorescence does not appear under UV irradiation. In addition, the fluorescence stability
of Cu2+@Tb-MOFs in water and different pH environments was also studied. There was
no significant change in the fluorescence spectrum and the corresponding fluorescence
intensity histogram (Figure S5), indicating that Cu2+ was locked in the composite Cu2+@Tb-
MOFs and had high stability in different pH and water environments. The results show that
Cu2+@Tb-MOFs has good pH and water stability and can adapt to various environments,
which makes the fluorescent sensor better in practical application.

2.2. Detection of Uric Acid in Aqueous Solutions

To test the potential of Cu2+@Tb-MOFs as fluorescent probes for uric acid, it was
immersed in various aqueous solutions of common components in human urine, including
uric acid (UA), NaCl, KCl, creatine, glucose (Glu), urea, hippuric acid (HA), creatinine
(Cre), NH4Cl, and H2O. Figure 2a shows the fluorescence emission spectra of Cu2+@Tb-
MOFs sample materials immersed in aqueous solutions of different urine components after
sonicating for 20 min. The results show that only uric acid induced a remarkable rebound
of the fluorescence spectrum of Cu2+@Tb-MOFs showing a turn-on response, whereas other
urine chemicals showed almost no changes. The inset shows the fluorescence measurement
of Cu2+@Tb-MOFs in suspension state, the fluorescence intensity 2D-histogram showed
that after the addition of UA solution to the composite Cu2+@Tb-MOFs, the fluorescence
intensity of Tb3+ at 545 nm was restored and was considerably higher than that of other
urine components, suggesting the composite material Cu2+@Tb-MOFs has a good selectivity
for UA in biological metabolites. Therefore, the composite Cu2+@Tb-MOFs has specific
recognition for the detection of UA in aqueous solution and high selectivity for UA.
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The anti-interference of fluorescent nanoprobes is a very significant characteristic of
their practical analytical performance. Actual biological samples (in human urine) contain
a large number of other molecules that coexist and compete with each other. Therefore, in
order to test the effect of the coexistence of other competitive substances on the identification
capability of Cu2+@Tb-MOFs, the competitive uric acid response of Cu2+@Tb-MOFs probe
in the presence of potentially interfering species in urine was studied under the same
experimental conditions. As shown in Figure 2b, as other biological metabolites (except
UA) were added, the fluorescence of the composites did not recover, and the intensity
did not change significantly; whereas, the luminescence of the composite at 545 nm was
restored by the addition of UA, and its fluorescence intensity was significantly improved
compared with that before the addition of uric acid. This indicates that other common
biological metabolites have little influence on the luminescence of the composite, and that
the composite has superior selectivity and strong anti-interference ability for UA detection.

The sensitivity of fluorescent nanoprobes is also one of the important factors in mea-
suring the comprehensive properties of composite materials. Concentration-dependent
luminescence was carried out in aqueous solution. The fluorescence response test of the
composite material Cu2+@Tb-MOFs was explored for the quantitative detection of uric
acid in aqueous solution. The fluorescence titration spectra are showed in Figure S6. It
can be clearly that the emission intensity of Cu2+@Tb-MOFs at 545 nm gradually increased
with incremental UA concentration. As shown in Figure 2c, the emission intensity of
composite material Cu2+@Tb-MOFs has a good linear relationship with UA concentration
in the range of 0~104 µM (correlation coefficient R2 = 0.9866). Linear fitting equation: I =
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(0.310 ± 0.013) [UA] − 174.2 (170 ± 70) ([UA] is the uric acid concentration in the equation,
and I is the fluorescence intensity of uric acid aqueous solutions with different concentra-
tions). According to the IUPAC 3σ criterion formula: 3σ/K (σ is the standard deviation of
20 repeated fluorescence measurements of blank solution, K is the slope of the fitting line).
The detection limit (LOD) [44] is calculated to be 0.65 µM, which is much lower than the
normal concentration of uric acid in blood (0.21~0.42 mM) and urine (0.95~4.50 mM) [16].
This linear relationship can be used to quantitatively measure unknown concentrations of
UA in real biological samples. So, the composite MOFs Cu2+@Tb-MOFs is a fluorescence
monitoring material with excellent response to UA, and that has excellent selectivity and
high sensitivity. In addition, the performance comparison of different nanoprobes for uric
acid detection is listed in Table 1. Comparing different probes, Cu2+@Tb-MOFs has a wider
detection range and a lower LOD value, which makes its performance comparable or better
than other probes reported in the literature.

Table 1. The performance of different probes to detect UA.

Probe Work Range (µM) LOD (µM) Ref.

Eu-BDC@FM 0~200 0.6 [5]
MBP-SO3@Nafion 30~3000 11.3 [10]

CD-MONT-2 1.5~9.1 4.3 [14]
Hf-UiO-66-Py 0~30 1.4 [21]

Eu-TDA 0~327 0.689 [30]
MOF-235 10~90 3.46 [31]

Cu2+@MIL-91(Al:Eu) 0~1200 1.6 [45]
URICASE and HRP@HP-DUT-5 5~100 0.8 [46]

PCN-222(Fe) 10~800 3.5 [47]
Cu2+@Tb-MOFs 0~104 0.65 This work

In order to make the fluorescence sensor easier and more intuitive in practical applica-
tion, it is designed as a portable test paper for uric acid detection. As shown in Figure 2d, the
test paper was immersed in uric acid solutions, and the results could be directly observed
under UV irradiation (Figure 2d, d-2) after drying in the air. The test paper showed a dull
color with almost no fluorescence before being soaked in uric acid solution, whereas the test
paper treated with uric acid solution showed a bright green color. Thus, the fluorescence
color of the test paper can be directly distinguished by the naked eye. General information
about uric acid concentration can be obtained, which can be used for preliminary detection
to determine whether the related diseases are caused by high uric acid. Therefore, the
composite probe based on Cu2+@Tb-MOFs showed excellent performance in the detection
of uric acid.

Recyclable performance plays an important role in practical applications when com-
posite materials are used as sensors. To investigate the reversibility of Cu2+@Tb-MOFs
material, the fluorescence intensity of Cu2+@Tb-MOFs at 545 nm was monitored. After
completing the test of UA detection, Cu2+ was added into the composite solution for the
next measurement. As illustrated in Figure S7, the fluorescence intensity of Cu2+@Tb-MOFs
recovered as a result of UA addition, whereas the intensity decreased when Cu2+ existed.
After four recycles, performed by successive addition of UA and Cu2+, the fluorescence
intensity of the Cu2+@Tb-MOFs material sensor obtained changed little compared with
that of the initial cycle, which indicates that the Cu2+@Tb-MOFs material sensor can be
used for recyclable detection of UA.

2.3. Sensing Mechanism

The possible mechanism of the Cu2+@Tb-MOFs sample for UA detection was in-
vestigated in detail. As shown in Figure 3a, the powder X-ray diffraction pattern of
UA/Cu2+@Tb-MOFs collected from UA aqueous solution is in good agreement with that
of Cu2+@Tb-MOFs and Tb-MOFs. This result not only indicates the structural stability
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of Cu2+@Tb-MOFs, but also excludes the possibility of fluorescence recovery caused by
structural collapse or reorganization [48,49]. The luminescence lifetime is a very impor-
tant parameter to explore the fluorescence recovery mechanism of Cu2+@Tb-MOFs; we
determined the fluorescence lifetime of Tb-MOFs, Cu2+@Tb-MOFs and UA/Cu2+@Tb-
MOFs samples. As shown in the Figure 3b, the fluorescence lifetime of the generated
Cu2+@Tb-MOFs (5.7 µs) decreases greatly compared with that of Tb-MOFs (910.0 µs). After
adding UA to Cu2+@Tb-MOFs, the fluorescence life of UA/Cu2+@Tb-MOFs was partially
recovered and enhanced (from 5.7 µs to 234.5 µs) [50]. This restored emission lifetime indi-
cates the interaction between UA sites and Cu2+ promotes the recovery of the fluorescent
probes [51].

Molecules 2022, 27, x FOR PEER REVIEW 7 of 13 
 

 

PCN-222(Fe) 10~800 3.5 [47] 
Cu2+@Tb-MOFs 0~104 0.65 This work 

Recyclable performance plays an important role in practical applications when com-
posite materials are used as sensors. To investigate the reversibility of Cu2+@Tb-MOFs ma-
terial, the fluorescence intensity of Cu2+@Tb-MOFs at 545 nm was monitored. After com-
pleting the test of UA detection, Cu2+ was added into the composite solution for the next 
measurement. As illustrated in Figure S7, the fluorescence intensity of Cu2+@Tb-MOFs re-
covered as a result of UA addition, whereas the intensity decreased when Cu2+ existed. 
After four recycles, performed by successive addition of UA and Cu2+, the fluorescence 
intensity of the Cu2+@Tb-MOFs material sensor obtained changed little compared with 
that of the initial cycle, which indicates that the Cu2+@Tb-MOFs material sensor can be 
used for recyclable detection of UA. 

2.3. Sensing Mechanism 
The possible mechanism of the Cu2+@Tb-MOFs sample for UA detection was investi-

gated in detail. As shown in Figure 3a, the powder X-ray diffraction pattern of 
UA/Cu2+@Tb-MOFs collected from UA aqueous solution is in good agreement with that 
of Cu2+@Tb-MOFs and Tb-MOFs. This result not only indicates the structural stability of 
Cu2+@Tb-MOFs, but also excludes the possibility of fluorescence recovery caused by struc-
tural collapse or reorganization [48,49]. The luminescence lifetime is a very important pa-
rameter to explore the fluorescence recovery mechanism of Cu2+@Tb-MOFs; we deter-
mined the fluorescence lifetime of Tb-MOFs, Cu2+@Tb-MOFs and UA/Cu2+@Tb-MOFs 
samples. As shown in the Figure 3b, the fluorescence lifetime of the generated Cu2+@Tb-
MOFs (5.7 µs) decreases greatly compared with that of Tb-MOFs (910.0 µs). After adding 
UA to Cu2+@Tb-MOFs, the fluorescence life of UA/Cu2+@Tb-MOFs was partially recovered 
and enhanced (from 5.7 µs to 234.5 µs) [50]. This restored emission lifetime indicates the 
interaction between UA sites and Cu2+ promotes the recovery of the fluorescent probes 
[51]. 

 
Figure 3. (a) PXRD pattern of Cu2+@Tb-MOFs and UA/Cu2+@Tb-MOFs; (b) Luminescence decay 
curve of Tb-MOFs, Cu2+@Tb-MOFs and UA/Cu2+@Tb-MOFs at 545 nm. 

The XPS patterns of Tb-MOFs, Cu2+@Tb-MOFs and UA/Cu2+@Tb-MOFs are shown in 
Figure 4. After the introduction of UA, the peak position of Cu 2p of UA/Cu2+@Tb-MOFs 
exhibits a higher binding energy (932.5 and 952.5 eV) compared to that of Cu2+@Tb-MOFs 
(932.0 and 952.0 eV) (Figure 4b,c), which is also direct proof of the interaction between 
Cu2+ and UA in Cu2+@Tb-MOFs [34]; whereas, a new peak position of N 1s (Figure 4d) 
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The XPS patterns of Tb-MOFs, Cu2+@Tb-MOFs and UA/Cu2+@Tb-MOFs are shown in
Figure 4. After the introduction of UA, the peak position of Cu 2p of UA/Cu2+@Tb-MOFs
exhibits a higher binding energy (932.5 and 952.5 eV) compared to that of Cu2+@Tb-MOFs
(932.0 and 952.0 eV) (Figure 4b,c), which is also direct proof of the interaction between
Cu2+ and UA in Cu2+@Tb-MOFs [34]; whereas, a new peak position of N 1s (Figure 4d)
appeared in the XPS sub-peak of UA/Cu2+@Tb-MOFs. Considering N element does not
exist in Cu2+@Tb-MOFs structure, the signal of N 1s of UA/Cu2+@Tb-MOFs could be
caused by the addition of uric acid (Figure S8), giving another powerful proof of successful
coordination. Therefore, it can be speculated that, after the addition of uric acid recognition,
Cu2+ reacts with uric acid in the UA/Cu2+@Tb-MOFs system fixed on the surface or in the
holes of MOFs.
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The mechanism of fluorescence recovery was further studied. Shown in Figure S9 are
the fluorescence spectra of Tb-MOFs in water (a) and uric acid (d), as well as the fluorescence
spectra of Cu2+@Tb-MOFs suspension with uric acid (b) and without uric acid (c). The
fluorescence spectrum of UA/Tb-MOFs formed by Tb-MOFs combining with uric acid was
similar to that of the initial Tb-MOFs. Therefore, uric acid did not affect the fluorescence of
Tb-MOFs. However, Cu2+@Tb-MOFs composites have almost no fluorescence emission,
and Cu2+ has an obvious quenching effect on the 4f–4f transition of Tb3+. The fluorescence
intensity recovered when uric acid was added to Cu2+@Tb-MOFs suspension. As shown
in Figure S10, under UV irradiation, the observed results of the corresponding substance
are consistent with the change of fluorescence intensity in Figure S9. Compared with the
Cu2+@Tb-MOFs, the fluorescence intensity of UA/Cu2+@Tb-MOFs formed by UA doping
was significantly recovered, and under UV lamp irradiation, the results can be clearly
identified with the eye.

In order to further explore the mechanism of fluorescence recovery of Cu2+@Tb-MOFs
composite to UA, the visible absorption spectra of a Cu2+ solution and a mixed solution of
Cu2+ and UA were tested. As shown in Figure S11, compared with the visible absorption
spectra of the Cu2+ solution, the absorption peaks of the mixed solution of Cu2+ and
UA have changed, further indicating that there is an intense reaction between Cu2+ and
UA [52]. Therefore, based on the above experiments, it can be reasonably inferred that
the interaction between Cu2+ and UA is the main factor. The nitrogen/oxygen-containing
group in the structure of uric acid was employed as a strong Cu2+ chelator to Cu2+@Tb-
MOFs composites, and Cu2+ was removed from the surface of Cu2+@Tb-MOFs composites,
leading to fluorescence recovery of Cu2+@Tb-MOFs composites.
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2.4. Construction of Luminescent Logic Gate

Based on the successful observation of Cu2+@Tb-MOFs selective analysis ability to-
ward UA, we have developed a fluorescent logic gate system capable of multipath analysis
of UA substance in the system. In the logical operation, Tb-MOFs act as gates, while the
substance to be detected (Cu2+, UA and the necessary premise of UV) and fluorescence
emission changes serve as chemical input and output at 545 nm (λ545nm), respectively
(Figure 5). As shown in Figure 5a, the input is “off” (i.e., 0) when the detection substances
(Cu2+, UA and UV) are not injected and the input is “on” (i.e., 1) when the substances are
added. The output value is defined as 1 (fluorescence recovery “ON”) or 0 (fluorescence
quenching “OFF”) by comparing with the output threshold (fluorescence emission rela-
tive intensity at 545 nm). Then, INHIBIT, AND, and OR logical operations are driven by
different input scenarios. The truth table (Figure 5b) has 8 input cases, among which the
output is 1 when the input is (1/0/0, 1/0/1, 1/1/1) and 0 when the input is other cases. It
can be seen from Figure 5c that the threshold of the system is related to the fluorescence
intensity at 545 nm emission center. The threshold is expressed as the relative intensity
below and above 3 under different input conditions. The output is “1” when the relative
intensity is higher than the threshold value, whereas the output is “0” when the relative
intensity is lower than the threshold value, and the output response signals can be observed
by the naked eye as fluorescence recovery and fluorescence quenching, respectively. This
molecular logic gate sensor can directly carry out visual detection of UA through logic
operation and analyze the changes of these different inputs. To the best of our knowledge,
this is the first example of the design of a logic gate system for detecting uric acid using
Cu(II) functionalized metal–organic frameworks.
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3. Experimental Section
3.1. Reagents and Instruments

All chemical reagents and solvents are commercially available.

3.2. Synthesis of Tb-MOFs and Cu2+@Tb-MOFs

The Tb-MOFs (Tb(L)1.5·5H2O, L = C6H10O8) sample was synthesized according to our
previous report via a modified procedure [53]. Firstly, 0.4 mmol mucic acid was dissolved
in 20 mL of distilled water and vigorously stirred for 20 min. Then, 2.5 mL of 0.35 M KOH
solution was added into the solution and stirred vigorously for 30 min. After the solution
was completely dissolved, a transparent solution was obtained. Then, 8 mL of 0.025 M
Tb(NO3)3 solution was added. The whole reaction process was kept at room temperature
with vigorous stirring until the reaction stopped after 30 min. The resulting precipitates
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were washed alternately with distilled water and ethanol solution several times, and then
dried for 24 h in an oven at 55 ◦C.

The Cu2+@Tb-MOFs sample was synthesized using a simple ultrasonic immersion
method. Firstly, the as-synthesized Tb-MOFs were immersed in 1 mM aqueous solution of
Cu2+ and then the mixture was shaken uniformly and equilibrated evenly for 30 min by
ultrasound treatment. Finally, the precipitates obtained were collected centrifugally and
dried in an oven for 24 h.

3.3. Fluorescence Sensing of Detection UA

In a typical process for sensing urine chemicals, 3.0 mg of Cu2+@Tb-MOFs powders
were simply added into the aqueous solutions (5 mL, 10 mM) of different urine chemicals,
including uric acid (UA), NaCl, KCl, creatine, glucose (Glu), urea, hippuric acid (HA),
creatinine (Cre), NH4Cl, and H2O. The luminescence spectra of these suspensions were
measured after sonicating for 20 min. Each measurement was repeated three times, and
the average value was used. In the selectivity experiment, 2 mL of the Cu2+@Tb-MOFs
suspension was added into a mixture containing both interfering analyte and UA.

The pH value and water stability of Cu2+@Tb-MOFs were determined by soaking
20 mg Cu2+@Tb-MOFs powder in 10 mL solution with pH values of 3~9 and standing for
24 h before centrifugal drying. In addition, 20 mg Cu2+@Tb-MOFs powder was immersed
in 10 mL aqueous solution and stood for 24 h and 48 h, respectively. Then the PXRD and
luminescence spectra were measured.

The preparation of portable uric acid test paper: the filter paper (3 cm × 1 cm)
was dipped in the dispersion of Cu2+@Tb-MOFs solution for 24 h, and then dried at
room temperature.

4. Conclusions

In summary, a novel composite metal–organic framework Cu2+@Tb-MOFs is proposed
for the detection of uric acid, a purine metabolite in living organisms. The prepared
Cu2+@Tb-MOFs not only has good water stability and pH stability, but also has high
sensitivity and anti-interference ability when other urine components coexist. The accurate
determination of uric acid is achieved through the “turn on” fluorescence trigger mode, with
a wide linear detection range (0~104 µM) and a LOD as low as 0.65 µM, which improves
the reliability of uric acid detection analysis and reduces the possibility of resulting false
diagnosis. These results show that the composite material Cu2+@Tb-MOFs can be used as a
promising fluorescence sensor for the detection of uric acid in urine. More importantly, a
molecular logic gate was constructed, providing a promising technology for UA detection
by intelligent control. This research may help to design other biochemical sensors and
further open fluorescence applications in logic devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27154803/s1, Characterization; Figure S1: (a) XRD
patterns of Cu2+@Tb-MOFs in different pH aqueous solutions; (b) XRD patterns of Cu2+@Tb-MOFs
after immersing in aqueous solutions for a few hours. Figure S2: (a) TGA of Tb-MOFs and Cu2+@Tb-
MOFs samples; (b) DTG of Tb-MOFs and Cu2+@Tb-MOFs samples. Figure S3: (a) SEM and (b) EDX
of Tb-MOFs samples. Figure S4: Emission (red line) spectra of as-prepared Cu2+@Tb-MOFs samples;
emission (blue line) spectra of as-prepared Tb-MOFs samples. Figure S5: (a)The fluorescence intensity
of Cu2+@Tb-MOFs at various immersion pH solutions; (b)The histogram of fluorescence intensity of
Cu2+@Tb-MOFs at various immersion pH solutions; (c)The fluorescence intensity of Cu2+@Tb-MOFs
at various immersion times; (d)The histogram of fluorescence intensity of Cu2+@Tb-MOFs at various
immersion times. Figure S6: The fluorescence recovery response of UA to Cu2+@Tb-MOFs. Figure S7:
The histogram of relative fluorescence intensity of Cu2+@Tb-MOFs at 545 nm after four recycles.
Figure S8: The Chemical structural formula of uric acid. Figure S9: The fluorescence emission
spectrum of Tb-MOFs (red), Cu2+@Tb-MOFs (blue), UA/Cu2+@Tb-MOFs (green) and UA/Tb-MOFs
(purple), respectively. Figure S10: The corresponding photograph of samples under light (side view)
and UV-light irradiation (top view), respectively: (a) Tb-MOFs; (b) Cu2+@Tb-MOFs; (c) UA/Cu2+@Tb-
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MOFs; (d) UA/Tb-MOFs. Figure S11: The UV-Vis absorption spectra of Cu2+ solution and mixed
solution of Cu2+ and UA.
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