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Non-canonical secretion pathways, collectively known as unconventional protein secretion
(UPS), are alternative secretory mechanisms usually associated with stress-inducing
conditions. UPS allows proteins that lack a signal peptide to be secreted, avoiding the
conventional endoplasmic reticulum-Golgi complex secretory pathway. Molecules that
generally rely on the canonical pathway to be secreted may also use the Golgi bypass, one
of the unconventional routes, to reach the extracellular space. UPS studies have been
increasingly growing in the literature, including its implication in the biology of several
diseases. Intercellular communication between brain tumor cells and the tumor
microenvironment is orchestrated by various molecules, including canonical and non-
canonical secreted proteins that modulate tumor growth, proliferation, and invasion. Adult
brain tumors such as gliomas, which are aggressive and fatal cancers with a dismal
prognosis, could exploit UPS mechanisms to communicate with their microenvironment.
Herein, we provide functional insights into the UPS machinery in the context of tumor
biology, with a particular focus on the secreted proteins by alternative routes as key
regulators in the maintenance of brain tumors.
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INTRODUCTION

Eukaryotic cells have developed an array of mechanisms involved in protein secretion, which plays a
crucial role in cellular homeostasis and cell-to-cell communication (Sicari et al., 2019). Proteins
destined for secretion to the extracellular environment are initially synthesized on ribosomes in the
cytoplasm and then transported to the endoplasmic reticulum (ER) (Cavalli and Cenci, 2020) in the
presence of signal peptide sequences, which have the utmost importance to direct the newly
produced proteins to the ER (Rehm et al., 2001). At the beginning of protein synthesis, the 7S RNA
from the signal recognition particle binds to the extremity of the polypeptide chain, which pauses the
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translation and transports the complex (mRNA and ribosome) to
ER anchorage points (Hebert and Molinari, 2007). The
translation is then restarted, and, as the polypeptide chain is
extended, the chaperones that reside in the ER lumen assist the
newly synthesized proteins in achieving their native
conformations. Alternatively, translation can occur entirely
in the cytoplasm, where after synthesis, the Sec62-Sec63
complex orchestrates protein translocation to the ER lumen
along with additional chaperones (Cohen et al., 2020). In the
ER, proteins may undergo modifications with the support of
local chaperones when necessary, being encapsulated into
transport vesicles formed by COPII and addressed to the
Golgi complex (Cavalli and Cenci, 2020). Once in the Golgi
apparatus, these proteins undergo additional modifications
and will finally be selected for transport vesicles, which bud off
from the Golgi complex. Motor proteins then carry these
vesicles to fuse with different portions across the plasma

membrane to release their content, which is dictated by
specific destination domains (Cohen et al., 2020).

Therefore, the classical secretory pathway consists of the
secretion of proteins containing a signal peptide and/or
transmembrane domain, which leads them to the ER where
COPII-coated vesicles bud to transport secretory proteins
through the Golgi apparatus, reaching the plasma membrane
where they are released into the extracellular milieu (Palade, 1975;
Rabouille, 2017). However, during a stress response, cells present
distinguished manners to express and secrete proteins to promote
survival (Ferro-Novick and Brose, 2013). Under stressful
conditions, the facilitated transport of proteins across the
membranes of vesicles and the fast response in protein
secretion along with signaling activation led to alternative
pathways of secretion. It has been experimentally shown that
only a limited number of proteins enter the non-classical
secretory pathway (Nickel and Rabouille, 2009), including

FIGURE 1 | Types of Unconventional Protein Secretion in Eukaryotes. The classical secretion of proteins containing signal peptides involves the endoplasmic
reticulum (ER) and the Golgi complex during normal conditions. These proteins are transported through vesicles that bud off the Golgi complex and fuse with the plasma
membrane. However, leaderless proteins can be secreted through an unconventional pathway (UPS) that bypasses the Golgi during stress conditions. There are four
different USPs in eukaryotes: Type I, in which proteins are secreted through a pore in the plasma membrane; Type II, with the transport of proteins through the
superfamily of ATP-binding cassette (ABC) transporters (not shown in the figure); Type III, which uses autophagosomes/endosomes to transport proteins to the
extracellular; and type IV, in which proteins containing a signal peptide are secreted bypassing the Golgi. Brain tumors canmake use of three different types of UPS: type I
(membrane pores), type III (differential vesicles), and type IV (Golgi bypass). The plethora of proteins secreted through UPS can interact with neighboring cells, promoting
distinct pathways of key importance in GBM biology, such as proliferation (orange), migration (blue), invasion (pink), inflammation (yellow), angiogenesis (red) and drug
resistance (green).
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primarily fibroblast growth factors, interleukins, and galectins
found in the extracellular matrix (Hughes, 1999; Nickel, 2003).
These leaderless proteins lack a classical N-terminal signal
peptide and function independently of the ER-Golgi network
(Bendtsen et al., 2004). Additionally, their export from cells is not
affected by the classical secretion inhibitors brefeldin A (BFA)
(Fujiwara et al., 1988) and monensin (Schuerwegh et al., 2001;
Wesche et al., 2006; Zhao et al., 2009). Recently, studies have
described the cell trafficking mechanisms that avoid the
conventional ER-Golgi system and comprise unconventional
protein secretion (UPS) (Nickel and Rabouille, 2009; Ferro-
Novick and Brose, 2013) (Figure 1). While the UPS system
mainly promotes the secretion of proteins lacking the signal
peptide sequences and transmembrane domains - namely
leaderless proteins - it may also cause conventional proteins to
be alternatively secreted via Golgi bypass (Nickel and Rabouille,
2009; Rabouille, 2017).

UPS comprises types I to IV, and the molecules secreted via
non-canonical routes include cytoplasmic proteins with a central
role in cell biology and its microenvironment. Briefly, type I UPS
is related to the translocation of leaderless proteins across the
membrane through pores. Type II is associated with ABC
transporter-dependent secretion, while type III uses
intracellular intermediates including endosomes,
autophagosomes and lysosomes for secretion (Nickel and
Rabouille, 2009; Rabouille, 2017). Finally, type IV comprises
proteins that, albeit having a signal peptide or transmembrane
domain bypass the Golgi apparatus, being transported from the
ER to the plasma membrane. Interestingly, the family of
peripheral Golgi proteins named Golgi Reassembly and
Stacking Proteins (GRASPs) can participate in the Golgi
bypass and in type III endosomal transport (Giuliani et al.,
2011; Rabouille, 2017). These mechanisms will be better
discussed through this study in a tumoral context, focusing on
the role of UPS in brain tumors maintenance and progression
(Figure 1).

UNCONVENTIONAL PROTEIN SECRETION
IN BRAIN TUMORS

Protein secretion is a fundamental process in both health and
disease, playing pivotal roles in intercellular communication,
which is a critical aspect in tumor progression and metastasis
(Peinado et al., 2017). The tumor microenvironment (TME) is
composed of blood vessels, extracellular matrix components,
tumor-associated immune cells, fibroblasts, neural cells
including astrocytes and neurons, and a plethora of different
signaling molecules and cytokines derived from the TME (Spill
et al., 2016; Greten and Grivennikov, 2019). Cancer cells require
active communication with neighboring cells and the local
microenvironment during tumor initiation and progression.
Indeed, protein secretion has been broadly described as an
essential mechanism for tumor initiation and progression,
including in central nervous system (CNS) tumors such as
glioblastoma (GBM) (Kucharzewska et al., 2013; Broekman
et al., 2018). GBM, a grade IV astrocytoma, is an incurable

malignancy and extremely aggressive neoplasm in adults
characterized by microvascular proliferation, necrosis, and
inter- and intratumoral heterogeneity, which may contribute
to therapy resistance. Even with recent advances in GBM
therapy, the overall patient survival is 15 months with few
long-term survivors. Glioblastomas are characterized by
presenting Isocitrate dehydrogenase (IDH) wildtype profile,
usually associated with worst prognosis compared to mutant,
present amplification in the epidermal growth factor receptor
(EGFR), and Telomerase reverse transcriptase (TERT) promoter
mutation that lead to lengthened telomeres (Louis et al., 2021).
Finally, GBM also present frequently alterations in gain or loss of
chromosome copy numbers (+7/−10) (Parsons et al., 2008; Louis
et al., 2021). The TME exerts great influence in tumor development
and secreted molecules involved in cell-to-cell communication is
crucial to promoting tumor maintenance (Zhou et al., 2015).
Proteins and molecules secreted by the tumor and its associated
cells seem to play a crucial role in chemo and radiotherapy
resistance, assisting in the poor prognosis of patients with GBM
(Ou et al., 2020). It is also important to highlight that under stress
conditions - such as hypoxia, which is relatively common in brain
tumors - there is an increase in chemotherapy-resistant cells
(Goenka et al., 2021; Singh et al., 2021). Hence, under such
conditions, the tumor cells might use UPS to release proteins
and molecules to modulate the TME (Figure 1).

As we will discuss in this review, the UPS routes are used by
many proteins with key roles in promoting tumor
chemoresistance, such as HSP70 family-like glucose-regulated
protein 78 (GRP78) (Lee et al., 2008) and ATF6 (Dadey et al.,
2016). Therefore, in the following sections, we will describe UPS
types and address their specific roles in the context of brain
tumors, focusing on the contributions of each non-canonical
secretion route to tumor progression and resistance to treatment.

Types I and II UPS—Translocation of
Leaderless Proteins Through Membrane
Pores
Type I UPS is characterized by the formation of plasma
membrane pores that induce the translocation of cytoplasmic
proteins without the participation of vesicular intermediates
(Rabouille, 2017). Leaderless proteins can be translocated
across the plasma membrane through pores that allow the
traffic of cytoplasmic cargoes (Rabouille, 2017). Pore
formation is, however, a complex process that can either be
self-dependent or driven by inflammation, two pivotal
mechanisms when it comes to protein release to the
extracellular space (Rabouille, 2017). Regulated pore formation
for UPS requires the recruitment of leaderless proteins by acidic
membrane lipids at the inner leaflet of the plasma membrane,
followed by oligomerization-induced membrane insertion and
tyrosine phosphorylation (Rabouille, 2017). A classic example of
this mechanism is the constitutive export of fibroblast growth
factor 2 (FGF2). This process depends on sequential interactions
of FGF2 with the phosphoinositide PI(4,5)P2 at the inner leaflet
and heparan sulfate proteoglycans (HPSG) at the outer leaflet of
the plasma membrane (Dimou and Nickel, 2018). Eventually,
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PI(4,5)P2-induced self-oligomerization stimulates membrane
insertion, aided by Tec kinase-mediated phosphorylation
(Steringer et al., 2015). Furthermore, FGF2 secretion is related
to cell-surface ligands such as HPSG, as shown by Zehe and co-
workers in a study that reported inhibition of FGF2 secretion
under pharmacological inhibition of HPSG biosynthesis (Zehe
et al., 2006). This data indicates that HPSG drives the
translocation of FGF2 across the membrane through a
molecular trap (Zehe et al., 2006). In detail, several cis-
elements participate in FGF2 secretion, namely: K127/R128/
K133 forming the PI(4,5)P2 binding pocket, Y81 being the
target of Tec kinase, and two cysteine residues C77/C95
promoting FGF2 oligomerization, as well as four trans-acting
factors: the aforementioned PI(4,5)P2, ATP1A1, Tec kinase, and
HPSGs (Steringer et al., 2017). Interestingly, FGF1 and FGF2 are
soluble molecules well described in the brain TME. FGF1 is a
140 amino-acid polypeptide belonging to the fibroblast growth
factor family (Jaye et al., 1986; Di Serio et al., 2008) that binds to
FGF receptors (FGFR), as well as other membrane receptors, such
as integrin. FGF1 receptor binding stimulates a plethora of
biological processes related to tumor progression, such as cell
survival, proliferation, angiogenesis, differentiation, and
migration (Mori et al., 2008; Yamaji et al., 2010). In brain
tumors, such as gliomas, FGF1 is involved in chemotaxis and
migration of tumor cells (Brockmann et al., 2003) which
primarily express the FGF1B and FGF1D isoforms (Myers
et al., 1995). This protein has also been considered a
therapeutic target in glioma, in which the inhibition of its
receptor FGFR1 decreased tumor growth (He et al., 2018).

The FGF2 is either located in the nucleus and the cytosol or
released in the extracellular milieu through UPS (Akl et al., 2016).
While most of its physiological functions are shared with FGF1
(Mori et al., 2008; Yamaji et al., 2010), FGF2 plays a vital role in
tumor-induced angiogenesis, contributing to tumor growth.
FGF2 is overexpressed in human cancers, including gliomas,
and acts as an autocrine and paracrine angiogenic factor
(Takahashi et al., 1992; Akl et al., 2016). In gliomas, both
FGF2 and VEGF seem to have an essential role in regulating
tumor growth and angiogenesis, indicating that their inhibition
could be implemented as an antitumoral treatment (Bian et al.,
2000). In addition, FGF2 can promote proliferation and cell
survival through the activation of the Akt signaling pathway
(Wang et al., 2015), which corroborates the fact that anti-FGF2
antibodies inhibited both anchorage-dependent and independent
tumor growth of gliomaU87MG and T98G cells (Takahashi et al.,
1992). For instance, FGF2 membrane translocation through the
membrane pore occurs in a fully folded conformation that
requires an interaction with PIP2, which causes FGF2 to
oligomerize (Torrado et al., 2009). Only then this complex can
achieve membrane insertion, highlighting the need for an internal
quality control mechanism that ensures the secretion of fully
folded and biologically active FGF2 proteins (Torrado et al.,
2009).

Interleukin-1β (IL-1β) secretion also follows the type I UPS
pathway upon inflammatory cues in monocytes, macrophages,
and dendritic cells (Rabouille, 2017). IL-1β is a polypeptide
related to host defense and homeostasis and has been shown

as one of the many mediators of infection, inflammation, and
autoimmune diseases (di Giovine et al., 1991). Although IL-1β
does not directly bind to PI(4,5)P2, it has been shown that
inflammasome activation induces pores in the plasma
membrane that allows IL-1β to reach the extracellular space
(Cavalli and Cenci, 2020). Direct IL-1β secretion depends on
the activation of caspase-11 in mice or caspase-4 and caspase-5 in
humans, which activates gasdermin-D, a cytosolic protein
containing two domains separated by a linker peptide
(Kayagaki et al., 2015). Gasdermin-D undergoes a
conformational change in its annular shape and drives
membrane pore formation with its active amino-terminal
fragment in a PI(4,5)P2-dependent manner (Liu et al., 2016).
IL-1β is secreted by activated monocytes in a process related to
the translocation of intracellular membranes, mostly during cell
stress (Rubartelli et al., 1990). IL-1β secretion by tumor-
associated macrophages in gliomas presents an essential role
in tumor maintenance (Lu et al., 2020). Data from the
literature demonstrate that tumor-infiltrating macrophages can
help metabolism reprogramming for glioma cell survival. This
effect occurs through the secretion of IL-1β since it triggers a shift
in energy metabolism (from oxidative phosphorylation to aerobic
glycolysis) and induces tumorigenesis and cell proliferation (Lu
et al., 2020). It is noteworthy that along with tumor necrosis factor
(TNF), IL-1β is one of the most critical neuro-pro-inflammatory
molecules in both health and disease (Rizzo et al., 2018).

Other examples of leaderless proteins that follow the type I
UPS mechanism are sphingosine kinase 1 (SPHK1), annexin A2,
synaptotagmin 1 (SYT1), small calcium protein (S100A3), and
TAT, among others (Rubartelli and Sitia, 1991; Kim, 2006;
Rabouille, 2017; Steringer et al., 2017; Cruz-Garcia et al., 2018;
Popa et al., 2018; Ye, 2018; Aliyu et al., 2019; Cavalli and Cenci,
2020; Cohen et al., 2020).

Specifically, SPHK1 is an enzyme with multiple functions, one
of which catalyzes the phosphorylation of sphingosine to S1P,
a lipid that regulates processes at both the intra- and
extracellular levels (Wang et al., 2013). Furthermore, this
enzyme is related to ceramide biosynthesis, decreasing its
production, and acting as an anti-apoptotic factor (Maceyka
et al., 2005). SPHK1 also regulates the inflammatory response
in the nervous system due to S1P, which stimulates the TRAF2
E3 ubiquitin ligase activity and promotes the activation of the
NF-κB signaling pathway (Alvarez et al., 2010; Adada et al.,
2013). Loss-of-function studies have also shown that SPHK1
takes part in endocytic membrane trafficking and recycling,
and is enriched in the nerve terminus, which is essential for
neurotransmission (Shen et al., 2014; Lima et al., 2017). A
higher expression of SPHK1 has also been shown to correlate
to a poor prognosis in GBM, elevating both migration and
invasion rates (Paugh et al., 2009). In addition to IL-1, EGFR, a
well-described oncogenic driver in GBM, has also been
described as a modulator of SPHK1 activity in glioma
spheres since EGFR inhibition leads to a decrease in
angiogenesis, cell viability and increases apoptosis in GBM9
cell lines (Estrada-Bernal et al., 2011), while also increasing
ceramide levels (SPHK1’s precursor molecule) (Kapitonov
et al., 2009; Abuhusain et al., 2013).
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Moreover, annexin A2, a type I UPS protein (Rabouille, 2017),
is localized to the basement membrane of epithelial cells,
endothelial cells, and keratinocytes (Waisman et al., 1995),
belonging to a family of calcium-dependent proteins that bind
to the membrane and phospholipids (Mayer et al., 2008). In the
microenvironment, annexin A2 acts as a co-receptor for
plasminogen and plasminogen tissue activators, promoting
vascular fibrinolysis (Seidah et al., 2012). Annexin A2 also
plays an important role in cholesterol homeostasis by
interacting with PCSK9, a convertase that regulates the
degradation of the LDL receptor (Ly et al., 2014). In tumors,
annexin A2 pseudogene 2 (A2P2) is highly expressed in tumor
tissues and cell lines, indicating its potential role as a prognostic
biomarker (Du et al., 2020). In addition, A2P2 inhibition in
glioma cells decreased cell proliferation and aerobic glycolysis,
showing a correlation with the Warburg effect in which cells shift
to anaerobic glucose metabolism (Du et al., 2020). In gliomas,
annexin A2 is overexpressed and associated with a mesenchymal
and invasive phenotype due to its interaction with transcription
factors involved in the epithelial-mesenchymal transition (EMT),
such as RUNX1, FOSL2, and BHLHB2 (Kling et al., 2016; Maule
et al., 2016). These data indicate the valuable role of annexin A2 as
a potential therapeutic target for treating gliomas (Kling et al.,
2016; Maule et al., 2016). Annexin A2 is also found in
extracellular vesicles (EVs) derived from GBM cells,
contributing to an increase in aggressiveness, being a direct
target of microRNAs (miR) such as miR-1 and mi-R155HG
(Bronisz et al., 2014; Wu et al., 2019).

SYT1 is a known gatekeeper of neurotransmitter release
sensitive to calcium (Fernandez-Chacon et al., 2001), that has
been marked as a differentially expressed gene in GBM and other
types of human cancers, and its expression is inversely correlated
with the survival of patients with cancer (Yang and Yang, 2020).
In addition, this protein has also been shown to be a potential
target of tumor suppressor miR-34c, which plays a key role in
inhibiting cell growth and inducing apoptosis (Shi et al., 2020).
On the other hand, S100A3 is a protein from the S100 family
involved in epithelial cell differentiation (Kizawa et al., 2008)
which has also been identified as a differentially expressed protein
from grades II-IV of astrocytomas, differing according to the
tumor malignancy (Camby et al., 1999). Fewer studies have also
indicated that S100A3 might be related to glioma immunity, even
though the mechanism is still not fully understood (Zhang et al.,
2021). Lastly, TAT (or HIV-1 TAT Stimulatory Factor) is a small
protein essential for HIV replication (De Marco et al., 2010) that
shares a similar secretion mechanism with FGF2 (Steringer et al.,
2017). Taking a closer look into the TAT’s non-conventional
roles, data have shown that this molecule has a neurotoxic activity
affecting cell a composite peptide containing permeabilization
and membrane depolarization in neuroblastoma cells and
decreasing cell growth of gliomas (Sabatier et al., 1991; Daniel
et al., 2004). Interestingly, TAT (BRBP1-TAT-KLA) has also been
used as a therapeutic target against metastatic brain tumor cells,
inducing mitochondrial damage and apoptosis (Fu et al., 2015).

The need for alternative mechanisms of protein secretion
protein secretion in cancer cells is still not fully understood.
However, it might be related to cellular strategies for protein

quality control, as well as to cope with the quantity and speed of
protein secretion needed to respond to essential processes such as
inflammation triggered by tumors. Additionally, this rapid
response is very characteristic of survival mechanisms that in
cancer are related to tumor progression, resistance, and
recurrence processes. Despite these data describing the
function of type I UPS proteins in brain tumors, the specific
path of secretion of these proteins in the tumor context still
requires further investigation.

Regarding type II UPS, it comprises specifically the transport
through the superfamily of ATP-binding cassette (ABC)
transporters, which are integral membrane proteins that bind
and translocate a substrate in an ATP-dependent manner,
modulating the uptake and export of macromolecules or ions
(Rees et al., 2009; Wilkens, 2015; Locher, 2016; Stefan, 2019). The
UPS mechanism modulated by ABC transporters was studied
essentially in non-eukaryotic models. Thus, this specific model
will not be further discussed in this review. However, it is
noteworthy that ABC transporters are related to the
unconventional secretion of heat shock Protein 70 (HSP70) in
mammalian cells since they modulate the entrance of HSP70 to
endolysosomal vesicles prior to secretion after the heat shock
stimuli (Mambula and Calderwood, 2006; Cohen et al., 2020).
The role of HSP70 in tumors is well established, and it will be
further discussed in the following sections.

Type III UPS—Vesicular Transportation of
Leaderless Proteins
Type III UPS, also known as autophagosome/endosome-based
secretion, is a stress-induced pathway characterized by the
recruitment of membrane-bound organelles that are co-opted for
secretion (Rabouille, 2017). Leaderless proteins cross the membrane
of endosomes and autophagosomes and are later secreted after the
organelle fuses with the cell membrane (Duran et al., 2010).
Although the role of exosome-mediated secretion is well known,
what might distinguish it from type III UPS is their different
strategies in recruiting cargo (Ye, 2018). As an example,
mammalian misfolded proteins might be secreted using type III
UPS (Misfolding-Associated Protein Secretion, or MAPS), being
translocated from ER to the lumen of late endosomes afterward
secreted through fusionwith the plasmamembrane (Lee et al., 2016).
In this way, there are no extracellular vesicles released. HSP70 and its
co-chaperone DNAJC5 are also involved in MAPS (Xu et al., 2018).
This mechanism consists of the recruitment of misfolded proteins to
the surface of the ER by an associated deubiquitinase (DUB) named
USP19 (Xu et al., 2018). Cargo proteins enter the lumen of late
endosomes, and secretion occurs when vesicles released from
endosomes fuse directly with the plasma membrane. Interestingly,
this process has been associated with several key proteins in
neurodegenerative diseases such as TDP-43 and α-synuclein
(Fontaine et al., 2016; Lee et al., 2016).

In certain eukaryotes, type III UPS promotes the formation of
Compartments for Unconventional Protein Secretion (CUPS),
which were first described in yeast and are characterized by the
involvement of a cup-shaped collection of tubulo-vesicular
membranes that act as transport intermediates for secretion
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(Rabouille, 2017). The biogenesis of CUPS can be traced by the
expression of the Grh1 protein (the yeast ortholog of GRASP),
which migrates to distinct membrane foci of cells undergoing
stress (Bruns et al., 2011) or starvation-induced autophagy (Yang
and Klionsky, 2010). However, CUPS biogenesis is not triggered
by rapamycin as observed in conventional pathways, and it
involves proteins that are not required for classical autophagy,
such as Bug1 and endosomal sorting complex required for
transport (ESCRT)-II and -III (Bruns et al., 2011). CUPS can
form initially from pre-existing Golgi complex membranes that
mature by the contribution of endosomal membranes, depending
on the activity of PI-3 kinase for its maintenance (Cruz-Garcia
et al., 2014).

The involvement of autophagy-related proteins (ATG-related
ATG8 and ATG9) in CUPS led to the hypothesis that a secretory
and non-degrading autophagosome-like vesicle forms in UPS
(Duran et al., 2010; Manjithaya et al., 2010; Bruns et al., 2011).
Interestingly, ATG8-mediated autophagy in glioma cells
modulates radiotherapy resistance and malignancy (Huang
et al., 2017). On the other hand, ATG9A modulates an
alternative lysosomal transport of ferritin in glioma cells
(Goodwin et al., 2017), as well as regulates hypoxia in GBM
cells, with its silencing leading to inhibition of cell proliferation
and tumor growth (Abdul Rahim et al., 2017). The
unconventional secretion related to autophagy was recently
described in GBM modulating TMZ sensitivity through
HMGB1 which, in turn, enhances M1-like polarization of
tumor-associated macrophages (TAMs) (Li et al., 2022).
Indeed, autophagy has been broadly studied for developing
potential therapies for GBM, presenting controversial roles in
the tumor’s biology since different studies have described both
the induction and repression of autophagy as potential strategies
for therapy (Manea and Ray, 2021).

In addition, heat shock proteins are also implicated in the
transport of some cargoes in type III UPS, as transport by
membrane fusion is restricted to unfolded proteins. This
mechanism requires the two members of the mammalian
GRASP family: GRASP55 (Dupont et al., 2011) and GRASP65
(Zhang et al., 2015), with a role for GRASP55 in the formation of
secretory autophagosomes (Dupont et al., 2011).

GRASPs are comprised of a range of proteins related to Golgi
reassembly and cisternae stacking. These molecules exist in
homologous forms across different organisms: GRASP55 and
GRASP65 in mammals; dGRASP in Drosophila; Grh1 in yeast;
and GrpA in Dictyostelium (Deretic et al., 2012). The yeast
GRASP Grh1 was demonstrated to colocalize with COPII in
the transitional endoplasmic reticulum, and it was suggested to
play roles in the early secretory process, albeit it was shown to be
unessential in the organization of secretory compartments (Levi
et al., 2010). In this case, the currently proposed mechanism
consists of the formation of a collection of small vesicles and
tubules that mature and get surrounded by flat saccules of an
unknown nature that will fuse with the plasma membrane
(Curwin et al., 2016). Therefore, in type III UPS, loads
translocate through the membrane of the “secretory” organelle,
with different structures such as a saccule, an early
autophagosome, and a late endosome being reported.

Mammalian GRASP55 and GRASP65 were reported to play
essential roles in the maintenance of Golgi architecture (Barr
et al., 1997; Shorter et al., 1999). Despite GRASP55 and GRASP65
being homologous to each other and exhibiting similar functions,
they present their own specific characteristics. The 65 kDa
GRASP may be found in the cis-Golgi cistern and assembles
into a complex with GM130 (a protein that has been
characterized as a component and regulator of cis-Golgi
structure (Nakamura et al., 1995) and p115, a membrane
tethering molecule that is related to Golgi maintenance
(Radulescu et al., 2011). On the other hand, the 55 KDa
GRASP is localized to the medial- and trans-Golgi cisternae
and does not interact significantly with the same proteins as
GRASP65 (Shorter et al., 1999; Zhang et al., 2018). Since their
discovery and initial characterization more than 20 years ago,
GRASP55 and GRASP65 have been extensively studied by several
groups. Of note, mTORC1 has been described as a
phosphorylating agent of GRASP55, which consequently stacks
GRASP55 within the Golgi complex (Nuchel et al., 2021).
Remarkably, the lack of mTORC1 activity promotes the
dephosphorylation of the GRASP protein, which, in turn,
leads to a change in its localization within the cell and can
consequently cause the secretion of extracellular matrix
proteins via UPS (Nuchel et al., 2021). Interestingly, not only
has mTORC1 surfaced as a potential therapeutic target in GBM
(Ronellenfitsch et al., 2018), but studies showed that the use of
mTORC1 inhibitor everolimus has great therapeutic potential
against pediatric low-grade gliomas (Poore et al., 2019; Cacchione
et al., 2020). GRASPs are closely related to UPS mechanisms such
as type III and IV UPS (Giuliani et al., 2011), and GRASP55 is
considered an unconventional secretion factor (van Ziel et al.,
2019).

GRASP55 and GRASP65 have been shown to control the
transport of proteins such as CD8α - a dendritic cell marker with
increased expression in pro-inflammatory niches of brain tumors
(Pituch et al., 2018) - and Frizzled-4 (FZD4), both containing
valine residues at the C-terminal during Golgi trafficking
(D’Angelo et al., 2009). In addition, proteins of the Frizzled
family, such as FZD4 and FZD5, participate in the WNT
signaling pathway and inflammatory processes in nervous
tissue (Zhao et al., 2015) and are related to tumor initiation
and cell proliferation of glioma cells (Sarkar et al., 2020),
respectively, and can modulate tumor progression.
Additionally, soluble Frizzled-related proteins, or sFRPs, also
have an important role in glioma maintenance, modulating
tumor growth and migration through MMP-2 and tyrosine
phosphorylation of beta-catenin (Roth et al., 2000). Altogether,
these features place Frizzled proteins as a potential therapeutic
target for specific subtypes of GBM (El-Sehemy et al., 2020).

IL-1β is one of the most intensively investigated
unconventional secretion loads, with several non-conventional
mechanisms involved in its secretion (Andrei et al., 1999;
MacKenzie et al., 2001; Brough et al., 2003; Qu et al., 2007;
Lopez-Castejon and Brough, 2011). The translocation through
pores was described above in this review. Moreover, when
lipopolysaccharide (LPS) is the trigger, IL-1β is secreted in
vesicles containing cathepsin D and Lamp-1, indicating a
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secretion pathway of endolysosomal origin (Andrei et al., 1999).
According to this model in human monocytes, upon reaching the
endolysosomes, the pro-IL-1β polypeptide is cleaved by caspase-1
and converted into a mature IL-1β protein, which is released into
the extracellular space by fusion of the compartment with the
plasma membrane (Piccini et al., 2008; Kimura et al., 2017). This
process is mediated by the HSP90 chaperone, which interacts
with a signal peptide in the mature region of IL-1β, with the
participation of GRASPs, to deliver the charge to a phagophore, a
precursor of the autophagosome that, when mature, transports
IL-1β to the cell surface (Zhang et al., 2015). Interestingly, not
only can IL-1β promote hypoxia-induced apoptosis in GBM
through the inhibition of the HIF-1/AM axis (Sun et al.,
2014), but it also induces tumorigenicity and promotes the
formation of glioma spheres in LN-229 glioma cells (Wang
et al., 2012).

The fatty acid-binding protein 4 (FABP4) is a cytoplasmic
adipokine with chaperone functions whose secretion relies on
UPS. Since FABP4 lacks a peptide signal sequence (Schlottmann
et al., 2014), it is secreted in a GRASP-independent manner via
endosomes and secretory lysosomes (Villeneuve et al., 2018).
FABP4 secretion was also shown to be calcium-dependent in
adipocytes (Schlottmann et al., 2014). FABP4 is upregulated in
normal and low-grade gliomas, mainly related to angiogenesis
(Cataltepe et al., 2012), and presents an essential role in GBM,
contributing to tumor growth through the activation of WNT
signaling (Li et al., 2018). FABP4 expression is observed in grade
III anaplastic meningiomas, is highly expressed in vascular
endothelial cells, and functions as a potential biomarker for
this type of brain tumor. Additionally, other protein from the
fatty acid-binding protein family, FABP7, has also been
implicated as a glioma prognostic marker, and was correlated
with the recurrence of several types of gliomas (Elsherbiny et al.,
2013).

Like FABP4, the insulin-degrading enzyme (IDE) does not
have a peptide signal sequence, relying on UPS to be transported
to the extracellular space (Son et al., 2016). In HeLa cells and
murine hepatocytes, IDE secretion was insensitive to inhibitors of
the classical secretory pathway and conventional stimulators of
protein secretion, which indicated the role of UPS in the transport
and release of this protein (Zhao et al., 2009). This amyloid β
protease has been investigated in Alzheimer’s disease and was
shown to be secreted by astrocytes via the autophagic pathway
and RAB8A, where GRASP activity was necessary for this process
to occur (Son et al., 2016). Additionally, statins have been
demonstrated to induce the autophagy-mediated secretion of
IDE (Son et al., 2015). In N2a cells, it was shown that IDE
might be transported into multivesicular bodies, which is
followed by sorting into exosomes (Bulloj et al., 2010).
Furthermore, the overexpression of IDE is associated with
tumor progression, with its silencing inhibiting cell
proliferation and promoting cell death in neuroblastoma
(Tundo et al., 2013).

An interesting protein described in the literature that has been
differentially secreted is the heat shock organizing protein (HOP),
the human ortholog of stress-inducible protein one (STI1), which
does not present a signal peptide for secretion, but it is found in

the extracellular environment associated with vesicles (Hajj et al.,
2013; Cruz et al., 2018). HOP is an adaptor molecule that assists
the chaperones HSP70 and HSP90 in protein folding in several
species, including humans (Song and Masison, 2005).
Furthermore, in GBM, HOP modulates cell proliferation
in vitro and tumor growth in vivo in its soluble secreted form,
which interacts specifically with the cellular prion protein (PrPC)
on the cell surface (Lopes et al., 2015; Iglesia et al., 2019).
Additionally, secreted HOP binding to PrPC in glioma stem-
like cells (GSC) leads to an increase in self-renewal, proliferation,
and migration (Iglesia et al., 2017), and the blockage of this
interaction has presented a therapeutic potential in some studies
(Lopes et al., 2015; Iglesia et al., 2017).

Superoxide scavenger enzyme or superoxide dismutase 1
(SOD1) is another protein that does not have a signal
sequence but shows a conserved diacidic motif that determines
its UPS fate (Cruz-Garcia et al., 2017). Pathologically, this motif is
also present in a mutated form of SOD1 that is related to
amyotrophic lateral sclerosis (Cruz-Garcia et al., 2017). SOD2,
a second family member, was related to resistance to
temozolomide (TMZ) in GSCs and GBM recurrence (Chien
et al., 2019). In brain tumors, recombinant SOD1 and two
associated with manganese (r-hMnSOD) exhibit a therapeutic
potential since they can attenuate edemas by combating the
oxygen-free radicals produced during the inflammatory
response (Shoshan and Siegal, 1996). Indeed, the expression of
several SODs and other antioxidants are inversely correlated with
glioma malignancy and prognosis (Aggarwal et al., 2006),
presenting low activity in tumors compared to normal tissues
(Popov et al., 2003), thus supporting their anti-tumor activity.
Furthermore, the transcription factor SP1 was shown to regulate
SOD2 expression, which is related to TMZ resistance and
recurrence in an MGMT-independent manner (Chang et al.,
2017).

It is noteworthy that many leaderless proteins in the brain
tumor context are related to cell survival, especially regulated by
stress response regulators such as chaperones and associated
molecules, inflammatory response, antioxidants, and proteins
that participate in autophagy, which support the participation
of UPS mechanisms in tumor progression and resistance to
therapy.

Type IV UPS—Golgi Bypass
While leaderless proteins can be secreted via unconventional
routes, proteins with a signal peptide and/or a transmembrane
domain can also deviate from the conventional secretory
pathway. If these proteins are not directed to the Golgi
apparatus on their way to vesicular organelles, the plasma
membrane, or the extracellular environment, they undergo
UPS via Golgi bypass, whose mechanism harbors many
similarities with the other UPS types, despite certain exclusive
features (Grieve and Rabouille, 2011; Rabouille, 2017).
Importantly, the Golgi bypass has been a research topic of
increasing interest that remains poorly understood. Although
several studies point to type IV UPS being triggered by stress (ER
and mechanical) (Giuliani et al., 2011), emerging evidence shows
that different proteins can be constitutively secreted by both the
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conventional mechanism and Golgi bypass (Baldwin and
Ostergaard, 2002).

The first example of proteins “skipping” the Golgi comes from
a study in 1980 by Bergfeld et al., who observed this phenomenon
in the formation of storage protein bodies and accumulation of
proteins in the vacuole of Sinapis alba through electron
microscopy (Bergfeld et al., 1980). Since then, the process has
been observed in different organisms, including plants, fungi,
Drosophila, and mammalian cells (Bergfeld et al., 1980; Morre,
1981; Sluiman, 1984; Schotman et al., 2008; Davis et al., 2016; Ng
and Tang, 2016; Dimou et al., 2020)), indicating that this process
is a conserved mechanism throughout evolution. Furthermore,
the Golgi apparatus is the central organelle for protein processing,
in which many resident proteases change protein composition
through post-translational modification (Kulkarni-Gosavi et al.,
2019; Frappaolo et al., 2020). If proteins bypass the Golgi, their
structural composition is maintained as it was initially
synthesized in the ER. These proteins will present the
commonly high-mannose oligosaccharide N-linked core but
will not be processed in Golgi, where sugar would be added to
this core by resident proteases (Roth, 2002; Ito and Takeda, 2012;
Fujikawa et al., 2016). Therefore, the Golgi bypass could represent
a mechanism that modulates protein composition, function, and
affinity with other molecules through its structural composition
(i.e., glycosylation state).

Proteins that undergo the Golgi bypass can have different
functions (Baldwin and Ostergaard, 2002; Gonzalez et al., 2018;
Witzgall, 2018; Van Krieken et al., 2021), but all of these proteins
show similar characteristics that are utilized for their
identification (Grieve and Rabouille, 2011), such as resistance
to BFA, which inhibits the formation of COPI coats in Golgi
membranes through Arf1 activation (Zeghouf et al., 2005;
Langhans et al., 2007). Thus, only proteins sorted to the Golgi
bypass, and consequently do not require COPI or COPII-coated
vesicles to reach the plasma membrane or the extracellular
medium, are BFA-resistant (Rabouille et al., 2012). Proteins
are also found to be independent of specific SNAREs involved
in the ER to Golgi transport and beyond (Yoo et al., 2002).
Specifically, Syntaxin 5 (STX5) is known to be extremely
important to Golgi transport (Dascher et al., 1994), and
protein secretion in its absence suggests the independence of
these groups of proteins to reach their proper localization (Grieve
and Rabouille, 2011; Kim et al., 2016). Furthermore, SNAREs are
quite relevant to the biology of brain tumors. For example,
Syntaxin 1 (STX1) expression supports tumor growth and
invasiveness in GBM models (Ulloa et al., 2015), and several
genes from the SNARE family are enriched in pediatric
medulloblastoma (Huang et al., 2020b). Thus, the correlation
of SNARE-independent transport with brain tumors warrants
further investigation.

Another important aspect is that proteins that can bypass the
Golgi appear to have one or more Postsynaptic density-95, disks-
large, and zonula occludens-1 (PDZ) domains, a protein
interaction module responsible for target recognition (Gee
et al., 2011; Vinke et al., 2011; Liu and Fuentes, 2019).
Previous studies described some of these molecules related to
brain tumors, although their secretion mechanism is not fully

understood. For example, the scaffold protein called syntenin,
which contains two postsynaptic density protein-95/discs-large/
PDZ domains, also presents as a potential new therapeutic target
in GBM (Haugaard-Kedstrom et al., 2021). The highly selective
inhibitor of syntenin KSL-128114 can bind to the PDZ1 domain
of syntenin and demonstrates a decrease in cell viability of
primary GBM cells and significantly increases survival in
patient-derived xenograft mouse models (Haugaard-Kedstrom
et al., 2021). Additionally, specific inhibition of syntenin activity
by the PDZ1 inhibitor decreases radioresistance of human GBM
cells and decreases invasion post-radiotherapy (Kegelman et al.,
2017). Indeed, syntenin is a scaffold protein that acts at the cell
surface, and its expression is more evident in high-grade gliomas
compared to its counterparts. Syntenin also increases cell
migration and invasion, and its silencing decreases tumor
growth and therapy resistance (Kegelman et al., 2014;
Kegelman et al., 2017). The transcriptional coactivator with
PDZ-binding motif (TAZ) participates in the Hippo pathway
and modulates glioma cell EMT, proliferation, invasion,
differentiation, and patient survival (Bhat et al., 2011; Li et al.,
2016). Other examples of PDZ-containing proteins that are
essential for brain tumor biology include the Tax-interacting
protein (TIP)-1 related to GBM motility (Wang et al., 2014),
membrane-associated guanylate kinase inverted 3 (MAGI3), and
Protein interacting with C kinase 1 (PICK1), which are inversely
correlated with glioma malignancy and progression (Cockbill
et al., 2015; Ma et al., 2015). However, the specific mechanisms of
translocation of these proteins to the membrane of brain tumors
have not been fully explored, and more research is required to
confirm their association with the UPS.

The Golgi bypass could be a strategy for cells to deliver
proteins to the plasma membrane and extracellular space
faster than the canonical secretory pathway (Baldwin and
Ostergaard, 2002; Grieve and Rabouille, 2011). The first
sorting mechanism described for the Golgi bypass was
discovered by observing the secretion of the cystic fibrosis
transmembrane conductance regulator (CFTR). Mutated CFTR
is known for its role in cystic fibrosis disease, and its most
common mutation is associated with its cell surface expression
(Elborn, 2016). Despite wild-type CFTR being conventionally
secreted from ER exit sites using COPII-coated vesicles, wild-type
and mutated CFTR also present unconventional secretion
mediated by GRASP55 (Gee et al., 2011). GRASP55 can form
a homodimer through their PDZ domains in the Golgi, which is
important for Golgi structural assembly (Wu et al., 2020). Upon
ER stress, GRASP55 is phosphorylated at serine 441 residue by a
yet unidentified kinase, leading GRASP55 back to the ER as a
monomer (Kim et al., 2016). Monomeric GRASP55, via its PDZ
domain, can recognize other PDZ domains of proteins that
undergo the Golgi bypass (Gee et al., 2011; Kim et al., 2016).
Mouse models carrying mutations in the CFTR promoter develop
ependymoma tumors and hydrocephalus, with no other
alterations in vital organs such as the lungs and pancreas
(Perraud et al., 1992). On the other hand, the expression of
CFTR in human GBM cells is less evident when compared to
normal tissue, and it abrogates GBM cell proliferation and
invasion through the inhibition of the JAK2/STAT3 signaling
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pathway (Zhong et al., 2019). This demonstrates that the mutated
CFTRmay present an opposite role to its wild-type counterpart in
tumors, thus suggesting a role for UPS in this process.

More recently, additional sorting machinery was proposed
involving HSP70, a protein that is an essential molecular
chaperone in health and disease and displays constitutive
expression despite being highly induced by different stress
stimuli (Rosenzweig et al., 2019). Additionally, the HSP70
family and other chaperones present significant participation
in brain tumor biology, including GBMs (Iglesia et al., 2019).
In the context of ER stress and UPS activation, the heat shock
cognate Hsc70 (a constitutive human isoform of HSP70)
associated with its co-chaperone DNAJC14 directly interacts
with cargo proteins selected to the Golgi bypass, directing the
cargo to the plasma membrane instead of directing it to refold or
to the ER-associated degradation (ERAD) system (Jung et al.,
2016). Furthermore, Hsc70 is highly expressed in tumor tissues,
including gliomas, and is directly related to the poor prognosis of
high-grade gliomas (HGG), where its silencing decreases tumor
proliferation and survival (Sun et al., 2019).

Interestingly, in insulin-positive alpha and beta cells of
patients with and without type 1 diabetes, PrPC was found in
the plasma membrane and the ER but not in Golgi, possibly
indicating UPS by the Golgi bypass. In this work, the authors
suggest that the PrPC’s Golgi bypass observed in the human
pancreas could be through HSP70/DNAJC14 or GRASP55
(Hiller et al., 2021). As aforementioned, PrPC associates with
the HSP70/90 co-chaperone STI1/HOP in the cell surface (Lopes
et al., 2005; Rosenzweig et al., 2019), which could indicate a
greater tendency of secretion to be via HSP70/DNAJC14,
although this hypothesis must be tested and the mechanism
for PrPC UPS needs to be clarified. As previously mentioned,
the interaction of PrPC and STI1 in GBM cells promotes the self-
renewal and migration of GSCs, as well as proliferation and
survival (Iglesia et al., 2017) of heterogeneous tumors (Lopes
et al., 2015).

In addition, the HSP70 co-chaperone, heat shock protein 70-
binding protein (HspBP), is usually found overexpressed in brain
tumors and presents diverse cellular sub-localizations, including
in the extracellular media when compared to normal tissue
(Graner et al., 2009). Furthermore, HspBP interacts with
several members of the HSP70 family-like glucose-regulated
proteins 75 and 78 (GRP75 and GRP78, respectively) and
Hsp110, among others, including cell surface receptors.
However, in normal conditions, HspBP binds only Hsc70,
GRP75, and HSP110 (Graner et al., 2009), demonstrating a
different stress response in tumor conditions that includes its
secretion. Notably, GRP78 was associated with ER stress in
another mechanism broadly described in the literature, called
the unfolded protein response (UPR) (Markouli et al., 2020).

The UPR consists of an adaptive response to ER stress usually
caused by by the accumulation of unfolded proteins (Le Reste
et al., 2016). This mechanism involves the inhibition of broad
protein translation while increasing the translation of chaperones
to enhance the folding capacity and the degradation of unfolded
proteins to clear the ER (Mann and Hendershot, 2006). A single
chaperone, GRP78, controls these processes. GRP78 acts through

the release of its binding to three proteins: Activating
Transcription Factor 6α (ATF6) (Haze et al., 1999), Inositol
Requiring Enzyme 1 (IRE1α) (Tirasophon et al., 1998), and
PKR-like endoplasmic reticulum kinase (PERK) (Harding
et al., 1999). Once GRP78 dissociates from the binding
proteins, it associates with the hydrophobic domains of
unfolded proteins, leading to the phosphorylation of the
primary binding proteins and consequent activation of
signaling to mediate the stress response. Moreover, ATF6
modulates the transcription of genes related to protein folding
and ERAD. IRE1α also modulates protein folding and ERAD,
lipid synthesis and secretion, and PERK mediates amino acid
metabolism, folding, autophagy processes, and apoptosis
(Bertolotti et al., 2000; Acosta-Alvear et al., 2007; Yamamoto
et al., 2007; Hetz et al., 2009; Scriven et al., 2009; Ye and
Koumenis, 2009; Chevet et al., 2015; Dejeans et al., 2015). It is
broadly discussed in the literature that tumors secrete specific
cores of molecules to promote angiogenesis, proliferation,
invasion, survival, and even reprogramming and EMT (Le
Reste et al., 2016; Markouli et al., 2020). Since UPR
mechanisms can remodel the cascade of activated signaling to
respond to ER stress, it is natural to associate this process with the
ER stress-mediated UPS.

Several studies associate ER stress and the central molecules of
UPR modulation, ATF6, IRE1α, and PERK with brain tumor
biology (Markouli et al., 2020). For example, ATF6 was associated
with GBM resistance to radiotherapy (Dadey et al., 2016) and the
formation of a pro-angiogenic GBM TME since it responds to
VEGF secretion (Karali et al., 2014). ATF6 signaling was
described as modulating NOTCH signaling in gliomas in
hypoxia conditions, leading to radiotherapy resistance of GSCs
(Dadey et al., 2016). In meningiomas, ATF6 expression levels
were associated with tumor aggressiveness (Iglesias Gomez and
Mosquera Orgueira, 2014). IRE1α was related to glioma growth,
angiogenesis, and invasion (Drogat et al., 2007; Dejeans et al.,
2012; Auf et al., 2013; Pluquet et al., 2013; Jabouille et al., 2015;
Minchenko et al., 2020). Gliomas expressing low levels of IRE1α
present impaired growth and angiogenesis ability and increased
survival of glioma xenograft-bearing animals (Auf et al., 2010).
IRE1α can also modulate the expression of hypoxia-related genes
in GBM (Minchenko et al., 2016), hypoxia-induced cell death
(Romero-Ramirez et al., 2004; Minchenko, et al., 2020), and the
neuroinflammation associated with gliomas through the
secretion of interleukins and activation of NF-κB (Hu et al.,
2006; Auf et al., 2010). IRE1α activation in ER stress of gliomas
caused by nutrient starvation or hypoxia leads to VEGF-mediated
angiogenesis (Drogat et al., 2007), and IRE1α signaling activation
was correlated with the increase of invasion markers expression
and tumor infiltration by immune cells (Lhomond et al., 2018).

PERK is related to tumormetabolism and therapy resistance of
GBM (Hamed et al., 2010; Yacoub et al., 2010; Hou et al., 2015).
Indeed, gliomas do present high levels of glycolysis, also due to
the hypoxia, which supports tumor growth, and this mechanism
may be regulated by PERK and the activation of Akt signaling
(Hou et al., 2015). The inhibition of upstream effectors of PERK
sensitizes GSCs to radiotherapy and decreases recurrence (Yang
et al., 2020). Furthermore, PERKmodulates angiogenesis in GBM
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in hypoxic conditions (Soni et al., 2020), and it is correlated with
the stem-like cell phenotype through the modulation of SOX2
expression (Penaranda-Fajardo et al., 2019). In
medulloblastomas, PERK activation is associated with
cerebellar dysplasia (Lin et al., 2011), angiogenesis, cell
migration (Jamison et al., 2015), and tumorigenesis (Ho et al.,
2016).

Furthermore, GRP78 is highly expressed in gliomas,
assisting tumor initiation and protection against cell
damage and death mediated by reactive oxygen species
(Suyama et al., 2014). In GBM, this protein is also
overexpressed, especially in recurrent GBM, and correlates
with tumor progression (Wen et al., 2020) and therapy
resistance to TMZ (Pyrko et al., 2007; Lee et al., 2008) and
radiation (Lee et al., 2008; Dadey et al., 2016). GRP78
expression is increased in endothelial cells derived from
clinical gliomas as compared to endothelial cells from
healthy tissues. Interestingly, these patient gliomas-derived
endothelial cells are highly resistant to apoptosis, and GRP78
expression in these cells was recently associated with the
resistance to chemotherapist agents (Virrey et al., 2008).
The expression of GRP78 was evaluated in GBM treated
with the UPR inducer TAK-243, a ubiquitin-activating
enzyme 1 (UBA1) inhibitor, to inhibit tumor cell viability
and, interestingly, the expression of GRP78 was related to the
stem-like phenotype and increased sensitivity of these cells to
the treatment (Liu et al., 2021). Another enzyme, the
Ubiquitin-conjugating enzyme E2T (UBE2T), is correlated
with tumor recurrence, highly expressed in GBM, and
associated with poor prognosis, EMT regulation, and
invasion of GBM cells through GRP78 (Huang et al.,
2020a). Also, in recurrent GBM, it was demonstrated that
overexpression of GRP78 in patient-derived samples
correlated with poor survival and tumor progression
(Dadey et al., 2016). Data from the literature demonstrated
that a recurrent glioma sample that was subjected to the Stupp
protocol, which consists of a combination of TMZ with
fractionated radiation, presented a higher level of GRP78
compared to primary samples and was correlated to ER
stress and therapy resistance (Shah et al., 2019). Regarding
therapeutic possibilities using ER-stress as a target against
brain tumors, the treatment with betulinic acid (BA) inhibited
GBM primary and recurrent tumor cells growth through the
activation of UPR by the PERK axis (Lo et al., 2020).

Indeed, therapeutic possibilities have been studied using ER
stress as a target against brain tumors. For example, the use of
ursodeoxycholic acid (UDCA) alone or associated with the
proteasome inhibitor bortezomib (BTZ) leads to G1 cell cycle
arrest and consequent decrease in cell viability by apoptosis in
GBM, triggering ER stress through the ATF6-IRE1-PERK axis
(Yao et al., 2020). Another example is the combination of TMZ
with Fluoxetine (FLT), which activates ER stress through the
ATF6-IRE1α-PERK cascade, causing an increase in early
apoptosis levels and inhibition of cell proliferation in glioma
(Ma et al., 2016). The combination treatment of TMZ and
simvastatin (Simva) also effectively triggers UPR and leads to
apoptosis. The use of inhibitors such as MKC8866 (IRE) and

GSK-2606414 (PERKi) led to an impairment in the viability of
GBM cells (Dastghaib et al., 2020; Le Reste et al., 2020).
Additionally, the stimulation of UPR with 2-Deoxy-D-Glucose
(2-DG) enhanced the radiotherapy effects in GSCs by increasing
apoptosis (Shah et al., 2019).

CONCLUSION AND FUTURE
PERSPECTIVES

Herein, we described the mechanisms of UPS and their
participation in brain tumor maintenance. The UPS system is
related to survival mechanisms since it allows the activation of
alternative paths that promote the stress response and rapid
turnover of cell behavior, either through the secretion of
leaderless proteins or the fast release of proteins across the
membrane, some bypassing the Golgi. On the other hand, the
biology of cancer cells are remarkable, given that they present an
outstanding ability to survive and proliferate in adverse
environments. Some of these behaviors are sustained by
substantial expression and secretion of factors related to stress
response by those cells, as their microenvironment is enriched in
and has a high activation of multiple signaling pathways
(Rabouille, 2017; Dimou and Nickel, 2018) (Supplementary
Table S1).

In this context, the UPS system can actively promote cancer
survival and response to the TME, including the ability of the cells
to resist therapy. Brain tumors are highly lethal and present
several attributes that compromise treatment efficacy, such as the
location of the tumor, the invasive capacity, therapy resistance,
and quiescence ability. It is widely described in the literature that
the role of the TME in the survival of brain tumors, and many
secreted proteins, autocrine or paracrine, were correlated with
key features related to the prognostic of patients with brain
tumors (Quail and Joyce, 2017). Furthermore, the recent
identification of UPS mechanisms and their study could bring
together the significant correlation of non-canonical protein
secretion with cancer cell survival and present a new field of
study for therapy development. Indeed, the hypothesis of non-
canonical pathways of secretion assisting tumor evasion override
and overtake the options for inhibitors targeting classical
secretion pathways. Nevertheless, very little is currently
understood about the regulation of UPS in brain tumors, as
this is a new and emerging research subject. A greater
comprehension of the mechanisms underlying the processes
involved in the activation and maintenance of UPS pathways
is essential for developing new inhibitory drugs for the treatment
of brain tumors and the advancement of cancer therapeutics.
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