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Abstract
In this article, we provide an evidence-based primer of current tools and evolving concepts in the area of intraprocedural
artificial intelligence (AI) methods in colonoscopy and laparoscopy as a ‘procedure companion’, with specific focus on
colorectal cancer recognition and characterisation. These interventions are both likely beneficiaries from an impending
rapid phase in technical and technological evolution. The domains where AI is most likely to impact are explored as well
as the methodological pitfalls pertaining to AI methods. Such issues include the need for large volumes of data to train AI
systems, questions surrounding false positive rates, explainability and interpretability as well as recent concerns sur-
rounding instabilities in current deep learning (DL) models. The area of biophysics-inspired models, a potential remedy to
some of these pitfalls, is explored as it could allow our understanding of the fundamental physiological differences
between tissue types to be exploited in real time with the help of computer-assisted interpretation. Right now, such
models can include data collected from dynamic fluorescence imaging in surgery to characterise lesions by their biology
reducing the number of cases needed to build a reliable and interpretable classification system. Furthermore, instead of
focussing on image-by-image analysis, such systems could analyse in a continuous fashion, more akin to how we view
procedures in real life and make decisions in a manner more comparable to human decision-making. Synergistical
approaches can ensure AI methods usefully embed within practice thus safeguarding against collapse of this exciting field
of investigation as another ‘boom and bust’ cycle of AI endeavour.
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“Technology, through automation and artificial intelligence is
one of the most disruptive sources of our age. It changes the
way we work and the skills we need”

Alain Dehaze, CEO the Adecco Group

Introduction

Minimal access interventions provide screen-based dis-
play of internal appearances for human practitioner in-
terpretation to guide intellectual and mechanical progress
through a complex procedure. Since its inception in the
1960s, such videoscopy has revolutionised our ability to
diagnose, monitor and manage an abundance of gastro-
intestinal conditions at sites otherwise inaccessible
without traditional operation.1 Both colonoscopy and
laparoscopy are deployed for the diagnosis and treatment

of disease of the colon and rectum and require high levels
of interventionalist cognition and dexterity for the correct,
confident labelling of abnormalities encountered in the
absence of hard landmarks. Both interventions provide the
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opportunity over diagnostic radiology to directly sample
and even cure lesions encountered, ideally at the index
procedure. To do so requires real-time human realisation
of abnormality and a qualitative decision based on training
and experience to act as part of the perception/action
neural loop in the interventionalist’s brain. Surgical
decision-making is particularly rooted in the opinion and
judgement of the human expert with less objective visual
aids to prompt or justify actions than those available to the
endoscopist.2

Before now, advances have predominantly either been
in the field of hardware optimisation (e.g. big screen
display with resolution up to 4K, technological adjuncts
such as 3D and augmented surface characterisation in-
cluding narrow band spectral reading and real-time mi-
croscopic examination of colorectal mucosa in situ3,4) or
through procedural organisation (e.g. technical stand-
ardisation and specialisation with centralisation of certain
patient cohorts such as screening populations).5 Chal-
lenges remain though as both colonoscopy and laparos-
copy are fundamentally operator-dependent procedures.
This is compounded by patients with colorectal disease
who ultimately require specialist input presenting to
a variety of healthcare settings both electively and
emergently, and so their initial care is via a spectrum of
practitioners with differing levels of expertise and tech-
nological capability. Artificial intelligence (AI) methods
offer the opportunity to augment human interpretation
intraprocedurally and to provide statistical measures of the
relevance of lesions as they are encountered in real time,
including all contributory data around the case (e.g. pa-
thology and radiology).6 Logically, these can progress to
decision support systems for critical steps whether re-
moval, in situ ablation or accelerated, streamlined further
investigation to ensure the right patient gets exactly the
right level of care improving interventional accuracy
and minimising wasteful over-investigation. Modern-day
computer vision (CV) techniques offer several potential
benefits to a surgeon (see Table 1) although some limi-
tations with regard to newer computational interpretations

have recently become apparent especially with respect to
deep learning (DL) that questions their suitability in the
field of medicine where ‘explainability’, ‘interpretability’
and accountability are of paramount importance. These
issues are reviewed here extrapolating learnings from
recent endoscopic advances into the laparoscopic para-
digm and alternative or indeed complementary methods,
such as biophysics-inspired computer modelling, dis-
cussed to frame the near-term evolution of this exciting
field for surgeons.

AI and Machine Learning

It is generally accepted that modern AI as a concept first
arose at a meeting in Dartmouth College, Hanover, in
1956 which simply challenged: ‘Every aspect of learning
or any other feature of intelligence can be so precisely
described that a machine can be made to simulate it’.7

Computer scientists, the world over set about designing
such ‘intelligent’ computer systems although it was
decades before increased computing power and data
storage capabilities, along with the emergence of big
data, enabled their implementation to become main-
stream. AI approaches initially focussed on logical,
knowledge-based approaches – the so-called von Neumann
architectures – where knowledge is programmed as
decision rules. Many decision rules are aggregated to-
gether to attempt to cover every anticipated scenario, often
resulting in large, complex collections of rules. Although
well suited for situations where possible scenarios are
limited, such as controlling the movements of
a manufacturing robot, such approaches do not scale well
to other tasks curtailing the optimism of these early and
the so-called ‘Golden Years’ of AI.8

The 1990s saw a resurgence in AI research with ad-
vancements so significant that this period is now referred
to as the ‘first AI revolution’ with standout examples of
computers surpassing even brilliant human minds in
specific tasks (e.g. IBM’s Deep Blue defeat of chess
GrandMaster Garry Kasparov).9 Rapidly, computers were

Table 1. Offerings of computer vision capability to laparoscopic surgery.

Capability Benefit

Ability to constantly monitor and detect subtle on-screen patterns
that may be missed by, or imperceptible to, the human eye

Addresses issues of consistency and cognitive burden in surgical
practice by adding a tireless, ever-present computerised
assistant

Development and training of machine learning systems to the
highest possible standard and their worldwide availability with
quantitative decision support based on statistical models
capturing many examples of previous practice as standard
practice leading to better standards of care

Augmentation of the qualitative decision-making of a single
operator

Convergence of radiology and pathology data streams integrated
alongside surgical intraoperative visual findings

Allows more dynamic analysis of on-screen findings to prompt
appropriate actions to be taken by the operator in real time
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applied to areas such as speech and facial recognition,
internet search engines and image classification.10 Ma-
chine learning (ML), whereby an AI system can be
programmed to learn from example data (and not decision
rules) to perform classification and prediction tasks,
marked a break from traditional knowledge-based ap-
proaches. DL then evolved in the mid-2010s. Increased
computing capabilities and algorithmic advances, for
example, back propagation, meant learning algorithms
consisting of many networked layers of interconnected
processing units known as neurons could be designed as
neural networks ((NNs), first conceived in the 1940s), in
principle, similar to human NN whereby inputted data are
passed through several complex hidden steps to extract
patterns from data at scale arriving at an output. Inclusion
of a mathematical operation called convolution, a speci-
alised kind of linear operation, in place of general matrix
multiplication in at least one layer of a NN opens DL
application to visual imagery in the form of a convolu-
tional neural network (CNN).

The use of DL is growing rapidly across many areas of
medicine. Specific DL architectures such as CNNs have
successfully performed image recognition tasks such as
detection of diabetic retinopathy and cutaneous melanoma
and the classification of breast lesions.11-13 Deep learning
however requires a large corpus of examples (commonly
tens of thousands of examples) for training and testing.
The ground breaking DeepMind project in ophthalmology
required one million retinal scans to achieve its results.14

This requirement limits the application of DL to all, but
the most common procedures where archives of large
numbers exist from routine application. Techniques to
reduce the dependence of learning algorithms on large
volumes of data are an active area of research in the ML
community.15

Other methods of AI exist, for example, specific
mathematical modelling techniques such as biophysics-
inspired modelling (BIM) which builds on understanding
of the dynamics of biological and physical processes to
describe them in terms of a simplified number of pa-
rameters. For instance, perfusion of blood through tissue
is well described in the literature using a range of so-called
compartment models which reduce the complex un-
derlying advection and diffusion processes into a small
number of physical parameters.16 Simplifying the de-
scription of complex biophysical processes of interest in
this way can help develop accurate predictive techniques,
with confidence intervals, without dependence on vast
image banks. Recent studies of angiogenesis demonstrate
how a fundamental understanding of cell biology, gained
through traditional experimental models, can be combined
with mathematical/computational modelling to explore
the spatial and temporal aspects of vessel replication in
new ways.16

Endoscopy vs Laparoscopy

AI methods so can likely play a role in assisting inter-
ventionalist orientation via continuous re-evaluation of
the procedural field in real time to draw the operator’s
attention to the important clinical regions and help cancel
out unhelpful surrounding noise. While the endoscopist
and surgeon are generally performing a similar visually
driven act, the spectrum of signals and potential actions
precipitated is much broader for the surgeon.

Endoscopy for colorectal cancer. Studies have consistently
proven that adenomatous polyps represent potentially
cancerous precursor lesions and that their removal is
positively associated with reduced colorectal cancer
rates.1 Arguably therefore the role of colonoscopy in the
detection, characterisation and resection of these lesions is
more valuable than its role in diagnosing cancer and
underpins its worldwide adoption. 1% increases in ade-
noma detection rates (ADRs) at colonoscopy have shown
3-6% reductions in interval cancer rates.1,17,18 However
ADRs vary greatly between institutions for numerous
reasons including endoscopist experience, withdrawal
time and the number of individuals observing the monitor
during procedures.19,20 While imaging quality advances
such as narrow band imaging (NBI) and chromoendo-
scopy, as well as regular auditing of key performance
indicators have improved standards worldwide, these
measures are inconsistently implemented between cen-
tres.4 Along with detection, lesion/tissue characterisation
is an essential attribute of effective colonoscopy. While it
remains important to detect and adequately resect all
sessile serrated or adenomatous polyps, there exist many
diminutive non-neoplastic polyps, especially in the rec-
tosigmoid region, that are of no clinical relevance.21,22

The removal of these lesions places a large burden on
histopathology services as well as putting patients at risk
of undue harm from unnecessary polypectomy. Aside
from leaving innocuous lesions, confidence in the correct
categorisation of lesions that do need address accelerates
the patient towards definitive care.

Laparoscopy for colorectal cancer. In the last 20 years, much
elective operation for colorectal cancer is now com-
menced and completed laparoscopically. The advantages
to this approach are well proven in terms of short-term
convalescence, and it is now the standard access of
choice.23,24 Robotic-assisted systems provide electro-
mechanical platforms that enable greater precision at
instrument tips. Neither method has yet augmented in-
traoperative decision-making other than providing im-
proved visualisation. Therefore, safe and effective surgery
depends crucially on the surgeon’s ability to recognise
structures in the field of vision and to plot the operative
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sequence from initiation through to conclusion. Similar to
colonoscopy and different to other surgical fields such as
orthopaedics, there is a lack of rigid measures of orien-
tation and therefore, it is difficult to provide means of
anatomical direction and mile-stoning other than via
surgeon expertise with continuous checking to reassure.
Inter-individual variation, prior surgery, disease and
obesity can challenge anatomical recognition including
fascial plane, neurological structure and adjacent organ
identification.

In particular, classification of lesions unrecognised by
preoperative imaging and seen for the first time at surgery
currently relies on the subjective assessment of the op-
erator. The peritoneum along with the mesocolonic,
mesenteric and liver surfaces is often poorly characterised
on computerised tomographic imaging, yet any lesions
present here affect the staging of the patients and impact
theranostically.25 Frozen section provides a degree of
intraprocedural assistance to the operator in certain cir-
cumstances; however, it is not always available and may
not be definitive with small, fragile tissue samples. Similar
so to colonoscopy, an ability to detect and characterise
lesions and recognise major normal anatomy automati-
cally is crucial, especially in high stakes decision-making
during major operation where it needs to be rapid and
highly accurate. However, the field of view is more
complex.

AI Methods in Endoscopy

As a commonly performed procedure readily suitable to
image capture, AI methods have developed in endoscopy
and are now commercially available (for example:
GI Genius, Medtronic. MN, USA) concentrated pre-
dominantly in the areas of lesion detection and charac-
terisation and, more recently, are providing assistance in
quality measures such as bowel preparation and with-
drawal times.26,27 Early exploits involved rudimentary AI
methods performing retrospective analysis of initially
static, followed by dynamic, images.28-31 These methods
provided acceptable sensitivities and specificities in post
hoc static image testing that then fell sharply when at-
tempts were made at real-time analysis.32-34 Furthermore,
the desire to ensure detection of all lesions encountered
came at the price of unacceptably high false positive
rates.35 The emergence of big data and CNNs saw the
resurgence of AI methods in endoscopy as well as near
real-time decision-making and reduced false positive
rates.33,36-38

As is the natural progression in emerging technologies,
small pilot studies have paved the way for larger rand-
omised trials. Wang et al.39 recently published on 1058
patients randomised to either standard or computer aided
colonoscopy with a significant increase in adenoma de-
tection per patient being seen (.31 vs .53, P <.001). Even

more impressively, Su et al.26 reported data from a
randomised study of 623 patients whereby 315 patients
were allocated to conventional, unassisted colonoscopy
and 308 patients assigned to their automatic quality
control system (AQCS). This system incorporated 5 Deep
CNN models to automatically time scope withdrawal
(triggered by the systems recognition of the caecum),
detect polyps (adenomatous and non-adenomatous) as
well as assessing bowel preparation dynamically after
system training on data from 4000 patients with white
light images labelled by two gastrointestinal experts. This
is the first time that AI methods monitored such important
quality measures with the user being prompted to suction
debris or slow down withdrawal rate when appropriate.
Fundamentally, this approach represents a shift away from
unidimensional structure (polyp) recognition to a com-
puter system acting as a type of ‘procedure companion’
that accompanies the operator and provides active guid-
ance throughout the journey. The authors reported sta-
tistically significant increased rates of total polyp (.383 vs
.254) as well as adenoma (.289 vs .165) detection rates in
their AQCS study arm as well as significantly increased
scope withdrawal times (7.03 vs 5.68 minutes). False
prompt rates of .21 prompts per colonoscopy were re-
ported in this study. As is a common feature throughout AI
methods for polyp detection false positives remain a
challenging aspect for AI methods to overcome. Hassan
et al. in their report quote ‘negligible false positive rates’
of .9% false positive frames in their first validation study.
They also acknowledge however that real-life data will
consist of roughly 50,000 frames per colonoscopy sug-
gesting that this false positive frame rate will likely remain
notable in clinical practice.40

AI methods in surgery. AI in surgery is not at all as ad-
vanced as in colonoscopy. This is likely due to the in-
creased complexity and heterogeneity of structures and
elements in any field of view combined with the general
lack of similar annotated video banks for exploitation.
Where it does exist, it is currently deployed for operative
video segmentation and provision of crude measures of
operative fluency such as measuring the time the camera is
in the interior, instrument profiling and partitioning of an
operation into its major steps.41 Increasing the contrast in
the field of view, especially as it may relate to either
critical structure normal anatomy (for preservation) or
disease identification (for removal), as has been seen in
the field of fluorescence-guided surgery (FGS) is ideal
terrain for CV application.42,43 This combines extended
spectral imaging with exogenous fluorophore adminis-
tration (predominantly indocyanine green – (ICG)44-46 to
disclose information regarding the nature of the tissues
being seen by the visualisable presence of contrast dye in
the region of interest such as perfusion characterisation or
biliary anatomy identification (ICG circulates in the blood
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stream before being excreted unchanged in the bile).47

Ureters have been similarly visualised using methylene
blue (an agent excreted selectively by the kidneys) and
a shorter wavelength illumination (c700 nm vs 780 for
ICG) although progress to routine clinical use is being
held up due to licencing issues related to the agent.48

There are many additional agents in development and
some even in phase 2 clinical trials that aim to further
advance the field in terms of structure specificity and ease
of identification.49

With such added contrast, AI has a promising role to
play in providing means of objectively quantifying dye
presence, especially if needed to do so kinetically, that is,
determine the rate of filling or emptying of contrast from
the region of interest. This would potentially add much
information and ease use of many agents which right now
are predicated upon administration long before surgery in
order to aid human identification (i.e. aiming to target the
window of maximum presence in the area of concern with
minimal background elsewhere). By trying to create a
static, coloured field, the techniques of FGS are prone to
false positives and error especially if the timing is different
to what had originally been planned (operative lists are
variable in terms of exact procedure times). Usefulness is
limited however if agents must be pre-planned and ad-
ministered days before surgery rather than being used
simply at the point of necessary enquiry. Furthermore,
because much information is known regarding dye and
illumination energy behaviour in tissue, this can be fac-
tored into AI algorithms by exploiting BIM to characterise
the underlying video signal in terms of well-known
physical parameters related to diffusion and advection.
A particular attraction of the biophysics-inspired approach
is that it alleviates the requirements for millions of images
in the training bank as is typical in pure ML or DL ap-
proaches. This method then does not rely on the analysis
and comparison of surface appearance alone but instead
seeks to delve into the very biology of the tissue in
question. In the realm of fluorescent-guided surgery, AI
sensitivity may allow less specificity in agent de-
velopment as the fluorescent agent will no longer have to
do all the work in lesion identification (nor indeed will the
human in its recognition).

The ability to characterise lesions based on their bi-
ology dramatically reduces the number of cases needed to
build a reliable system and instead of focussing on image
by image analysis could analyse in a continuous fashion,
more akin to how we view the procedures in real life.
Furthermore, identification of tissue based on its true
biology, rather than on attempted identification by patterns
such as shape or colour as used in the DL methods seen in
endoscopy, will address the still present issue of false
positives. We have already proved this concept in primary
colorectal cancer using computer-aided interpretation of
minute differences in dynamic perfusion patterns between

the distorted architecture of neoplastic tissue and that of
the surrounding ‘normal’ tissue. Our experimental study
of this BIM on a corpus of 20 colorectal cancer endo-
scopic videos correctly identified 19/20 (95%) lesions
with 100% cancer sensitivity (91.7% specificity).50,51

Limitations and Future Directions

Artificial intelligence methods promise to significantly
boost human decision-making in terms of image recog-
nition and are already making inroads into soft tissue
endoscopy moving beyond rigid object (like that
seen with self-driving cars) and defined margin (that
used for melanoma photographs and mammograms)
analysis.10,12,13 The advent of DL/NN has improved re-
search results for colorectal lesion characterisation and
detection; however, these systems fundamentally rely on
large banks of reference images from which they ‘learn’.
To increase system performance, more training images
need to be acquired. Such ‘polyp maps’ are created
through analysis of, in some cases, millions of images to
detect new similar appearing lesions among images pre-
viously unseen to the system with studies using ‘in-house’
databases of reference images. This limits comparison
of results across studies undermining generalizability.
Also, the need for large volumes of images increas-
ingly presents moral challenges as well as logistical ones.
These concerns relate to data ownership and patient
privacy, particularly in the cases of ‘for profit’ systems.
The ‘black box’ nature of these complex systems may
also understandably raise similar concerns. In many
cases, the exact workings of these systems remain in-
completely understood yet are earmarked for widespread
use in the delivery of modern healthcare in the near future.
In the early stages of clinical integration, the concept of
‘explainability’ of results generated from such systems is
a crucial component of adoption by healthcare providers
and insurers. This differs from ‘interpretability’ which
relates to the extent to which a cause and effect can be
observed within a system. Furthermore, Antun et al. re-
cently highlighted the inherent instability of DL because
of the processes it uses to reconstruct and store images.52

Imperfect image reconstruction methods that are accen-
tuated with increasing volumes of images collected may
lead to computational errors.

In contrast, BIM has the advantage over other AI
techniques when it comes to ‘interpretability’. Their de-
cision processes build their foundation upon known bi-
ological phenomena which results in a more predictable
pattern of decision-making and more closely replicates the
human minds decision processes. For decisions in surgery
and even endoscopy, especially where dynamic modelling
of tissues may be helpful, the use of fluorescence and
computer-aided decision augmentation may help to
smooth the differences in operator ability from centre to
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centre using computer classifiers that are easily interpreted
to assist the operator in their endeavours to provide the
highest level of care to patients. Furthermore, computer
processes could provide alternative presentation of data
through mathematical modelling such as 2D and even 3D
maps of the tumour. Such AI systems that analyse in real
time based on tissue biology also obviate the need for the
collection of large masses of patient data for training
purposes and, if successful, would have implications
across all disciplines of healthcare. Furthermore, such
in vivo contrast enhancement can help train AI systems on
the corresponding white light imagery.

Conclusion

While the era of AI and computer augmented decision-
making in medicine is still very much in its infancy, it
likely portends a significant revolution in improving the
standard of healthcare delivered worldwide, and it is
developing rapidly. The increasingly widespread avail-
ability of technology allows more research groups than
ever access to this rapidly evolving area and thus further
promotes improvements. Daunting barriers to use on a
large scale remain, however, most notably the high rate
of false positives, the large volumes of comparative
pictures that are currently required to ‘educate’ these
computer systems and the difficulties associated with
explaining and accounting for unseen, and poorly un-
derstood, processes happening within some AI models.
Correct clinical integration also needs consideration likely
in the first phases as collaborative systems rather than
challenging the role of the doctor as decision-maker with
the likely advent of a new type of practitioner, the in-
terventionalist (be it gastroenterologist or surgical tech-
nologist). Importantly too, the history of computer science
teaches us that, whatever the AI methodology, always
unforeseen pitfalls arise leading to ‘boom and bust’ cycles
further encouraging complementary methods of advance
to safeguard against collapse of this exciting field of
investigation.
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