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Recent scholarship suggests that the genomes of those around us
affect our own phenotypes. Much of the empirical evidence for
such “metagenomic” effects comes from animal studies, where the
socio-genetic environment can be easily manipulated. Among hu-
mans, it is more difficult to identify such effects given the non-
random distribution of genes and environments. Here we leverage
the as-if-random distribution of grade-mates’ genomes conditional
on school-level variation in a nationally representative sample.
Specifically, we evaluate whether one’s peers’ genetic propensity
to smoke affects one’s own smoking behavior net of one’s own
genotype. Results show that peer genetic propensity to smoke has
a substantial effect on an individual’s smoking outcome. This is
true not only when the peer group includes direct friends, and
therefore where the individual plays an active role in shaping
the metagenomic context but also when the peer group includes
all grade-mates and thus in cases where the individual does not
select the metagenomic environment. We explore these effects
further and show that a small minority with high genetic risk to
smoke (‘bad apples’) can greatly affect the smoking behavior of an
entire grade. The methodology used in this paper offers a poten-
tial solution to many of the challenges inherent in estimating peer
effects in nonexperimental settings and can be utilized to study a
wide range of outcomes with a genetic basis. On a policy level, our
results suggest that efforts to reduce adolescent smoking should
take into account metagenomic effects, especially bad apples,
within social networks.
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Tobacco use habits are largely established during adolescence;
indeed, 9 out of 10 smokers first try cigarettes before age 18

(1). Scholars have approached the question of which youth adopt
smoking behavior from 2 perspectives. The first emphasizes in-
dividual’s biological tendencies that reward nicotine consump-
tion (2) and in particular their genetic architecture that encodes
that reward system (3). Under this framework variation in to-
bacco usage and likelihood of developing a nicotine dependency
result from individual genetic differences shaping the biological
responses to nicotine consumption.
The second approach emphasizes instead the role the social

environment plays in governing the availability of cigarettes (4)
and in acculturating individuals to smoke (5). For adolescents,
the social environment may include many different contexts: the
neighborhood (6), school (7), their grade (8), friends (9), and
family (10). Across these domains, same-age peers have been
shown to be particularly influential: having coeval peers who
smoke is associated with increased individual smoking (11). This
effect holds for many different types of peers, with the literature
showing a robust association between the smoking behavior of
one’s schoolmates, classmates, and close friends and one’s own
smoking behavior (12, 13). Limited experimental evidence sug-
gests that these associations are not epiphenomenal (14).
Despite the respective power of genetics and peers in accounting

for variation in which adolescents smoke, little prior research has

sought to integrate the two—that is, to simultaneously identify ge-
netic influence, peer effects and the interaction between the 2 as
they influence adolescent tobacco use (15). One possible avenue for
integration, and the one explored in this paper, is the analysis of
metagenomic effects—also referred to as “social genetic effects” or
“indirect genetic effects” in animal studies (16–18)—that is, the
extent to which others’ genes affect an individual’s outcomes. We
borrow the metaphor of metagenomics from research on the
microbiome where all organisms in the microbiome are genotyped
to capture the collective genomic context which is then used to
understand individual outcomes. In the case here, the metagenome,
or the collective genomic context, consists of the genomes of all of
one’s peers. Since smoking behavior has a genetic basis, and since
others’ behaviors may matter for individual behaviors and out-
comes, we should not be surprised to observe metagenomic effects.
Indeed, a recent experimental study on mice found that randomly
assigned cage-mates’ genotypes affect individual mice’s outcomes,
accounting for as much as 29% of the phenotypic variance among
the mice (19).
However, for humans in particular, extant evidence for

metagenomic effects is limited. Only a few studies to date have
seriously considered the question and thus for most outcomes,
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including smoking, there is little credible evidence that such ef-
fects exist. Specifically, in the absence of careful study design,
genes and environments can act as mutual proxies, confounding
the researcher’s attempts to parse their effects (20). Because of
these difficulties, the few empirical studies that do consider the
question of metagenomic in humans are, at best, suggestive (21,
22). Perhaps the most convincing evidence for metagenomic
effects in humans comes from research that has identified the
important impact of parental and sibling genotypes on an indi-
vidual’s health and educational outcomes, in a dynamic called
“genetic nurturance” (23, 24). Outside the family environment,
however, empirical evidence remains scarce; that said, research
from behavioral genetics has consistently found that nonshared
environment is more salient to most phenotypes than is the
shared (read: family) environment of siblings (25, 26). This may
suggest that metagenomics effects are not limited to genetic
nurturance in the household context.
In this study, we explore the metagenomic effects of smoking.

We use data from the National Longitudinal Study of Adoles-
cent to Adult Health (Add Health), a nationally representative
cohort study of the health and behavior of US students in grades
7 through 12, first interviewed in 1994 to 1995 across a sample of
132 middle and high schools in the United States (27). In wave
IV of the data collection, in 2008 and 2009, DNA specimens
were collected and archived. With the advent of genotyping
technology, these samples were later genotyped and linked to the
survey data in 2017. This results in a one-of-a-kind dataset, which
ties adolescents and their genomes to their health and behaviors
within the group setting most salient to their young lives: schools.
The basic analytic approach involves predicting an individual’s

smoking behavior as a function of the genetic risk for smoking in
their metagenomic environment, operationalized as the mean
polygenic score (PGS) for smoking of their peers, controlling for
possible confounders (such as population stratification) and the
individual’s own genetic risk (see Materials and Methods and SI
Appendix for more information). In a second set of analyses, we
relax the mean polygenic score constraint and explore potential
nonlinear effects.
By using unchanging peer genotypes as our independent var-

iable, we overcome 2 common problems in peer effects research:
the reflection bias, where peer and individual behavior are ob-
served at the same moment such that influence cannot be ad-
judicated, and the exclusion bias, where the fact that you cannot
be friends with yourself induces a mechanical, negative correla-
tion between peer and individual behavior (28). That said, other
potential biases thwart easy estimation. Peers and individuals
share the same environment and therefore may adopt similar
behaviors (contextual bias) (29, 30). For example, if people with
particular genotypes attend similar kinds of schools, our esti-
mation will be biased (31, 32). To ward against context effects,
we include grade and school fixed effects, leveraging random,
grade-cohort fluctuations in the genetic landscape to identify
metagenomic effects.
Peers may also select into relations with one another, whether

in being friends or classmates, on the basis of their genetic fac-
tors even within the context of a single grade. The risk that our
results will be biased by this form of genetic selection will
therefore depend on how we define peers. Because adolescents
are embedded in multiple social groups even within the context
of a single grade, peers can be defined in a myriad of ways. We
explore 3 such groups: the grade (all of the other students with
whom one shares a grade, or grade-mates), the classroom (all of
the other students with whom one shares classes, or classmates;
see Materials and Methods for a description of how this is
ascertained), and the friendship group (all of the friends one
nominated or from whom one received a friendship nomination,
or friends).

At the most macrolevel, we explore the relationship between
the average genetic predispositions toward smoking of an ado-
lescent’s grade-mates to the adolescent’s own smoking behavior.
We posit that conditional on school-level variation, the distri-
bution of genetic propensity to smoke is as-if-random in a given
grade. Because genes are assigned at birth and being in a given
grade within a school is roughly defined by the year and month of
birth, it is reasonable to assume the absence of selection into the
grade environment based on an individual’s smoking genes. We
show evidence for this assumption in the SI Appendix. Although
smoking has been shown to be correlated with lower educational
performance (33) and may therefore also be correlated in being
held back a grade, there is no evidence of a nation-wide trend in
individuals being held back in some years but not others. We
therefore posit that the grade-mate estimates are unbiased. In a
second set of analyses, we evaluate the extent to which the ob-
served metagenomic effects are social in nature and operate
through the actual smoking behavior of grade-mates using an
instrumental variable analysis (SI Appendix, Table S4). While this
analysis is likely underpowered, it suggests a way to link genetic
and social theories, which could prove fruitful as more and larger
datasets incorporate social, relational and genetic data.
We then explore the relationship between the average ge-

netic predispositions of an adolescent’s classmates and friends
and the adolescent’s smoking behavior. Unlike the grade-mate
analyses, these models are descriptive in nature due to the
presence of genetic homophily, but they are still analytically
useful for contextualizing the grade-mate results presented
earlier and are substantively interesting in themselves. The
grade, while perhaps not considered the most salient peer
group in the sociological literature, offers us the chance to
identify causal effects free from selection bias; effects of
classroom peers and friends are subject to confounding due to
selection; thus, we consider the grade-mates effects the purest
estimate of metagenomic peer effects. The grade as an envi-
ronment is also theoretically interesting because it is an ecology
within which individuals in a birth cohort interact, form groups,
and learn behaviors. Examining the entire grade relaxes the
assumption that the diffusion of behaviors is restricted to dy-
adic interactions and that social contagion works like a conta-
gion of viruses (34, 35).
Our framework allows us to explore interesting and potentially

superlinear effects of both peer behaviors and peer genes on
individual behavior. For instance, we might expect individuals
with the highest or lowest levels of genetic risk of smoking in a
given grade to have a disproportionate impact on individual
smoking compared with the impact of the average grade-level
genetic risk. Research on the effects of grade and classroom
composition on individual outcomes has pointed to the possi-
bility that the presence of an exceptionally excellent student may
lead to positive outcomes for everyone in the class (the “shining
light” model) (36). Alternatively, one or a few exceptionally
disruptive students may evince negative outcomes for the entire
grade/class (the “bad apple” model) (37, 38). We test these
contextual dynamics empirically by examining whether the pro-
portion of individuals within a grade who fall in the top or bot-
tom decile of the overall smoking polygenic score distribution,
has a significantly different impact on individual smoking com-
pared with what the grade-level average PGS indicates.
Overall, our results show that adolescents’ smoking behavior is

strongly predicted by the genetic propensity of their peers to
smoke. This holds at multiple different levels, whether peers are
conceptualized as grade-mates or friends. Further, adolescents
appear to be particularly affected by peers who are in the top
decile of smoking PGS, while peers in the bottom decile offer
little by way of protection.
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Results
Metagenomic Effects. In the results presented in Fig. 1, we examine
the association between the metagenomic environment, defined as
grade-mates’, classmates’, and friends’ smoking polygenic scores,
and individual smoking behavior. Before the analyses were run
and the contextual variables constructed, polygenic scores were
residualized on the first 4 principal components for the genetic
data to ward against population stratification. Grade-mates
include all others in an adolescent’s grade, classmates include
people with whom the adolescent commonly shared classes,
and friends include any student who the adolescent nominated
as a friend and anyone who nominated the adolescent as a
friend. Full descriptions about how grade-mates, classmates,
and friends were identified and defined can be found in the
Materials and Methods section. For each model, we control for
race and the smoking behavior of family members, to ward
against potential confounds related to population stratification,
and a number of contextual variables shown to be associated
with smoking behavior, both on the individual and respective
peer level. That is to say, models at the grade-level control for
the attributes and behaviors of the grade-mate peers, while
models at the friend-level control for those very same attributes
but averaged across a person’s friend group. When considering
peers at a more macrolevel such as the grade, we do not exclude
friend or classroom clusters because we are interested in the
overall effect of the metagenomic environment and not the
effect of the grade net of the friends and shared classroom
contexts. The focal individual is left out of the calculation of
every peer-level calculation of the mean both for the in-
dependent variable (average smoking PGS levels) and for the
peer-level control variables. Thus, unlike a classical hierarchi-
cal model, the number of observations in each regression re-
flects the total number of students in Add Health who have
membership in a grade, classroom, or friendship group, rather
than the number of grades, classrooms or friendship groups in the
data. That said, all models correct SEs for school-grade clusters.
For 3 of the 5 models, we find that the average levels of smoking

polygenic scores among peers is positively and, depending on the
model, at least marginally, significantly associated with individual
smoking behavior. This association is positive and significant at
the grade-level, which is the only causally identified model. It is
marginally significant for friends. That the CIs of the grade- and
friend-level models are overlapping suggests they do not signifi-
cantly differ from one another. In the SI Appendix, we explore

potential causes for the difference in magnitude between the
grade-level and friend-level effects. Breaking down friendships by
in-degree friends (those who nominated an individual) and out-
degree friends (those whom an individual nominated) shows that
in-degree friends’ average smoking PGS is positively and signifi-
cantly associated with smoking behavior while out-degree smoking
PGS is not. Classmates’ smoking PGS is not significantly associated
with individual smoking outcomes, likely indicating that classmates
are not a highly relevant social context and that classmates are in-
consequential for one’s smoking behavior.
In Fig. 2, we plot the grade-level metagenomic effect alongside

other coefficients included in the grade-level model, all of which
have been identified as important determinates of adolescent
smoking, including: individual smoking polygenic score (15),
being male (39), having a household member that smokes (8),
and family income (40). The sizable metagenomic effect repre-
sents a form of genetic nurturance that is “horizontal” in nature,
in contrast to the vertical nurturance parental genetic nurturance
documented by Kong et al. (23) and which may be driving the
strong effect that we observe having a household member that
smokes has on one’s smoking behavior.
Having shown a robust association between peer genes and

individual smoking outcomes, we can utilize this association to
answer age-old questions about peer effects. The study of peer
effects, that is, the causal effect of peers on individuals’ behav-
iors, beliefs or outcomes, suffers from a set of difficulties that
thwart its estimation: specifically, the reflection problem, con-
textual bias, and selection bias (see Materials and Methods for
more detail). Because genes are assigned at birth and being in a
given grade is roughly defined by one’s age, we argue that the
distribution of genetic propensity to smoke in a given grade is as-
if-random conditional on the school attended. This provides a
plausible identification strategy for the estimation of the effect of
peer smoking on individual smoking.
To estimate the peer effects of smoking behavior, we use the

average level of genetic predisposition toward smoking within a
school and grade as an instrument for the levels of smoking
behavior in that grade. This instrument is then used to predict an
individual student’s smoking behavior. We find a positive and

Fig. 1. This figure presents metagenomic effect sizes for smoking across
different operationalizations of the peer context. Bars signify the magnitude
of the coefficient for each context. CIs at the 95% are colored according to
significance: blue if significant at a 0.05 level, purple if significant at a 0.10
level, and red otherwise.

Fig. 2. This figure compares the metagenomic effect size for smoking at the
grade-level to other predictors in the grade-level model. Since all of these
coefficients come from the same model, the effects are conditional on each
other. Polygenic scores, whether at the individual- or group-level (i.e., grade,
classmates, and friends), were residualized on the first 4 genetic principal
components. Bars signify the magnitude of the coefficient for each variable.
CIs at the 95% are colored according to significance: blue if significant at a
0.05 level, purple if significant at a 0.10 level, and red otherwise.
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significant association between peer behavior, instrumented
by grade-mates’ genes, and individual smoking behavior. The
coefficient is roughly the same as that of the metagenomic effects
at the grade level signaling that the effect of peer genes indeed
goes through peer behavior. The full table of the results can
be found in the SI Appendix. Although this analytical tech-
nique provides a simple and useful framework for the study of
peer effects, we may be underpowered to find robust results
using two-staged least square analysis (see SI Appendix for more
details).

Superlinear Metagenomic Effects. The models above have re-
peatedly shown an association of higher peer smoking genetic
risk and individual smoking outcomes. This effect, however,
might not be strictly linear. Individuals who have the highest
genetic predisposition to smoking could have a disproportionate
impact on an individual’s smoking. We examine this possibility by
replacing the average level of genetic risk of smoking by the
proportion of the grade that has a top or bottom decile smoking
PGS (see Materials and Methods for how the deciles were cal-
culated), which we refer to as “bad apples” and “shining stars”
models, respectively, following previous literature (36).
The results can be found in Fig. 3, where Fig. 3A presents a

coefficient plot for the bad apple regressions and Fig. 3B pre-
sents a coefficient plot for the shining star regressions. Pro-
portion bad apples is positively associated with one’s own
smoking across all of the different operationalizations of the
peer group except for the classroom, but only significantly so at
the grade-level. Proportion shining stars is negatively associated
with one’s own smoking across all of the different operationali-
zations of the peer group except for the classroom, but never
significantly so. Therefore, ignoring significance levels the di-
rection of the coefficients, the results generally paint a similar
picture across all levels except for the classroom: higher pro-
portions of bad apples are positively associated with smoking
behavior, while higher proportions of shining stars do not appear
to have a suppressive effect.

Conclusion
Smoking behavior has long been thought to have both social and
genetic etiologies. Our findings suggest that genes should be
treated as an important part of the social environment and the
social environment must be considered when thinking about
genetic influence. In this paper, we show a robust association
between the metagenomic environment and individual outcomes.

Individuals’ smoking habits are associated with the smoking PGS
of their peers across multiple social contexts: the grade, the
friendship group and in-degree friends (those who nominated the
individual as a friend). We find grade-mate smoking behavior to
possibly be a stronger predictor of individual smoking than even
the individual’s own genetic contributions.
Finally, we explored the contextual dynamics of metagenomic

effects of smoking and find that the presence of bad apples in the
peer context, that is, those in the top decile of smoking genetic
risk, increases adolescents’ smoking likelihoods. More work
should be done to understand under what conditions the effect
of bad apples can be mitigated (or, for that matter, the effect of
shining stars can be amplified), including how forces such as
the grade friendship network structure, school’s administrative
activities, or state’s cigarette taxation rates might moderate their
effect.
Our design affords insight into the nature of peer influence

and its relationship to genetic effects. It also has substantial
implications for future research, even beyond the case of
smoking. That an individual’s smoking behavior, and ultimately
health outcomes, are affected by his or her peers’ genes is im-
portant to consider for understanding social multiplier effects.
Further, our framework relies only on the assumption of random
variation in the local metagenomic environment and, as a result,
can be used to estimate both metagenomic effects and peer ef-
fects for any behavior that has a genetic basis. This is especially
valuable given the difficulty of estimating causal effects of peers,
whether they result from their behaviors or genes. Future work
may seek to apply this method to other socially driven outcomes,
including health outcomes, that display an element of contagion
and are in part influenced by genetic disposition—be that actual
communicable disease as driven by the immunological profiles of
peers around us, or depression and suicide. In the meantime,
public health efforts to reduce smoking update among adoles-
cents would be wise to take account of peer environments in
designing interventions.

Materials and Methods
The data for this study come from Add Health, a nationally representative
cohort study on the health and behavior of adolescent school children first
interviewed in 1994 to 1995 across a sample of 132 middle and high schools
across the United States (41). An in-school survey was administered to every
student present at each of the 132 schools asking them to self-report their
social and health behaviors, friends, and family and school context. A follow-
up in-home survey was administered to a random sample of the students in

Fig. 3. This figure shows the effect of bad apples and shining stars on smoking behavior across different peer contexts. A compares the effect of bad apples
across different peer contexts, while B does the same for shining stars. Bars signify the magnitude of the coefficient for each context. CIs at the 95% are
colored according to significance: blue if significant at a 0.05 level, purple if significant at a 0.10 level, and red otherwise.
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each school, which entailed a far more detailed questionnaire about their
behaviors, attitudes, health, parents, siblings, and home life. Information on
how to obtain the Add Health data files is available on the Add Health
website (https://www.cpc.unc.edu/projects/addhealth).

During the fourth wave of data collection in 2008 to 2009, 96% of the
respondents who participated in the Wave IV in-home survey (n = 15,159)
agreed to provide biospecimen (in the form of saliva and capillary whole
blood samples) to be immediately genotyped for specific single-nucleotide
polymorphisms (SNPs) and candidate genes; of those individuals, 80% (n =
12,254) agreed to have their biospecimen archived for future use. With the
more recent development of genotyping technology and the resulting de-
crease in cost, the archived samples were genotyped on about one million
genetic markers, which provide genome-wide data for polygenic score
construction (42). Two Illumina platforms were used for genotyping Add
Health genetic data. Illumina Human Omni1-Quad BeadChip was used for
roughly 80% of the sample and includes over 1.1 million genetic markers.
Illumina Human Omni-2.5 Quad BeadChip was used for the remainder of the
sample and includes 2.5 million markers. A series of quality control proce-
dures were performed on the SNP and individual level. Genetic markers with
call rates <90% and minor allele frequency <0.5% were excluded. SNPs with
Hardy–Weinberg Equilibrium P value < 5 × 10−5 were also excluded. After
the quality control measures, genotype data were available for 9,975 indi-
viduals. For more details on the Add Health genome-wide association study
(GWAS) data quality, see Highland et al. (43).

Our measure of genetic propensity to smoke is a polygenic score. A
polygenic score is a genome-wide score that summarizes the presence of
presence and associated weights of risk alleles discovered by GWASs. In es-
sence, a polygenic score is a weighted average or composite score that
considers information across an individual’s entire genome to measure his/her
genetic predisposition or risk for a particular outcome. A polygenic score for
individual i is a weighted average across J SNPs of the number of reference
alleles x (0, 1, or 2) at loci j multiplied by the score for that SNP β:

PGSi =
XJ

j=1

�
βjxij

�
. [1]

Many complex traits have been shown to be highly polygenic, that is,
affected bymany different genetic variants each contributing a small amount
to the overall outcome (44). This is true even for clinically dichotomous
outcomes, which may reflect a shift along a phenotypic continuum known as
decanalization (45). In analyzing such traits, individual genes will have low
penetrance, making it difficult to distinguish between the effects of genes
and the effects of the environment. Polygenic scores overcome many of
these difficulties. Unlike candidate-gene approaches, polygenic scores do
not focus on a few prespecified genes of theoretical interest. Rather, they
attempt to quantify an individual’s genetic risk to exhibit a trait by aggregating
the effects of all of genes on the phenotype of interest. Polygenic scores are
therefore “hypothesis-free,” in the sense the researcher does not have to un-
derstand all of the underlying biological processes giving rise to a phenotype to
be able to study the effects of genes on that phenotype. As a result, they can be
used to discover genetic contributions previously unknown to researchers.

Although polygenic scores are far more robust than candidate-genes,
recent research has identified some of their shortcomings. Polygenic scores
have been shown to pick up not only direct genetic effects, but also the
effects of genetic nurturance, deep ancestry, and assortative mating, all of
which can bias results when the distribution of genes to environments is
nonrandom. Nevertheless, this should not impact our results as long as our
assumption holds that the distribution of grade-mate polygenic scores within
schools is as-if random.We provide evidence in favor of this assumption in the
SI Appendix.

To identify bad apples and shining stars, respondents in the full sample
were ordered according to their PGS. The top 10% of respondents in terms of
PGS, those who were deemed as having the highest genetic risk of smoking,
were classified as bad apples, while the bottom 10%were classified as shining
stars. We performed this classificatory exercise separately for members of
each race, in case racial differences in mean PGS were driving assignment to
bad apple or shining star.

We use the GWAS summary statistics from the Tobacco and Genetics (TAG)
Consortium on cigarettes per day (3). The SNPs genotyped in Add Health
were then matched to the ones in the GWAS. A polygenic score was then
constructed by aggregating the effects of the overlapping variants across
the genome and weighting them by the strength of their association with
the outcome or behavior. We used 529,390 to create the smoking scores. A
P value threshold was not imposed in the construction of the PGS as to
retain as much information as possible on genetic contributions of all

SNPs, especially since SNPs with higher P values are down weighted in the
composite score. As a check of robustness, we also used the most recent
GWAS provided by the GWAS & Sequencing Consortium of Alcohol and
Nicotine (GSCAN) (46), but found that the resulting polygenic scores were
less predictive of individual smoking behavior compared with those pro-
duced with TAG (0.11 versus 0.15 correlated with cigarettes per day,
respectively).

Student’s who participated in the in-school administration of Add Health
were asked to identify up to 10 friends, 5 male and 5 female friends, using a
roster of the other students in their school. The results from this exercise
make up the friendship data used in this paper. As a consequence of the
nomination design, every student is associated with as many as 10 out-
degree friends, and as many in-degree friends as there are other students
in the school, although the large majority of students were nominated as a
friend by others zero to 4 times. Friend-level variable estimates were
obtained by averaging polygenic scores over: 1) all of a student’s friends; 2)
all of the people who nominated the student; or 3) all of the people who the
student nominated, which we refer to as friend-level, in-degree nomina-
tions, and out-degree nominations respectively.

Identifying classmates required supplementary information, which came
from the The Adolescent Health and Academic Achievement (AHAA) study. It
provides the high school transcripts for Add Health Wave III sample members
(original Wave I sample members who were reinterviewed at Wave III). After
collecting the transcripts, the AHAA constructed academic networks using
overlap in course-taking and ran clustering analyses on those networks using
a p*-based algorithm fully detailed in Field et al. (47). Individuals were
assigned to clusters with other students with whom they took similar sets of
courses, with the idea that the resulting clusters proxy mutual exposure
during course taking. Student’s who were assigned to clusters with one or
no other students were reassigned to the cluster to which they had the
highest probability of belonging according to their coursework. We used
these clusters to identify classmates, and again, for each student, averaged
over the variables of their classmates to provide estimates of their peers’
mean smoking behavior, mean smoking genetic risk, and demographic
composition. We tested other specifications of classmates, including a simple
binary indicator of having shared any course, all of which returned similar
results as to those reported in the main text.

Individual smoking behavior measures how many cigarettes a day an
individual smoked, on the days that they smoked. We include school and
grade fixed effects to control for school and grade level. We further control
for the sex, race, maternal education, familial smoking behavior, having an
older siblings and family income of every individual in the sample as well as
the average level of those variables at the grade level.

Further, following previous research on grade-level peers (48), for all
analyses, we limit the sample to students in schools with a 12th grade (which
results in excluding middle schools, but retaining high schools with seventh
and eighth grades) and who were assigned sample weights. Then, for all
grade-level analyses, we further exclude students who attended a grade with
fewer than 20 total students in our sample. In all, 74 schools and 148 grades
are represented in the data. This leaves us with 3,895 respondents who have
genotype data and are in grades with a reasonable number of peers. For all
friend analyses, we only include students who had at least one other friend in
their grade, giving us 3,708 respondents.

In addition to residualizing individual smoking PGS, a number of controls
were included in the analyses to again ward against various forms of pop-
ulation stratification. In terms of race, we include individuals of all races in the
analyses, but control for the individual’s own race and the racial composition
of the grade, classroom, or friend group. Because it is possible that genes are
a proxy for parent or sibling smoking behavior which might directly influ-
ence other individuals in a grade, we block this pathway by including an
indicator for the presence of household smokers and older sibling both on
the individual and on the grade level. In addition, we control for an indi-
vidual’s own smoking polygenic score in the models such that the results
provide estimates of others’ polygenic scores on individual smoking net of
individual’s own polygenic score.
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