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ABSTRACT
Background  For best efficacy, vaccines must provide 
long-lasting immunity. To measure longevity, memory 
from B and T cells are surrogate endpoints for vaccine 
efficacy. When antibodies are insufficient for protection, 
the immune response must rely on T cells. The magnitude 
and differentiation of effective, durable immune responses 
depend on antigen-specific precursor frequencies. 
However, development of vaccines that induce durable T-
cell responses for cancer treatment has remained elusive.
Methods  To address long-lasting immunity, patients 
with HER2+ (human epidermal growth factor receptor 
2) advanced stage cancer received HER2/neu targeted 
vaccines. Interferon-gamma (IFN-γ) enzyme-linked 
immunosorbent spot measuring HER2/neu IFN-γ T cells 
were analyzed from 86 patients from three time points: 
baseline, 1 month after vaccine series, and long-term 
follow-up at 1 year, following one in vitro stimulation. The 
baseline and 1-month post-vaccine series responses were 
correlated with immunity at long-term follow-up by logistic 
regression. Immunity was modeled by non-linear functions 
using generalized additive models.
Results  Antigen-specific T-cell responses at baseline 
were associated with a 0.33-log increase in response at 
long-term follow-up, 95% CI (0.11, 0.54), p=0.003. 63% 
of patients that had HER2/neu specific T cells at baseline 
continued to have responses at long-term follow-up. 
Increased HER2/neu specific T-cell response 1 month after 
the vaccine series was associated with a 0.47-log increase 
in T-cell response at long-term follow-up, 95% CI (0.27, 
0.67), p=2e-5. 74% of patients that had an increased 
IFN-γ HER2 response 1 month after vaccines retained 
immunity long-term. As the 1-month post-vaccination 
series precursor frequency of HER2+IFN-γ T-cell responses 
increased, the probability of retaining these responses 
long-term increased (OR=1.49 for every one natural log 
increase of precursor frequency, p=0.0002), reaching an 
OR of 20 for a precursor frequency of 1:3,000
Conclusions  Patients not destined to achieve long-term 
immunity can be identified immediately after completing 
the vaccine series. Log-fold increases in antigen-specific 
precursor frequencies after vaccinations correlate with 

increased odds of retaining long-term HER2 immune 
responses. Further vaccine boosting or immune checkpoint 
inhibitors or other immune stimulator therapy should be 
explored in patients that do not develop antigen-specific 
T-cell responses to improve overall response rates.

INTRODUCTION
Increased human epidermal growth factor 
receptor 2 (HER2)-specific Th1 T cells have 
been associated with improved survival in 
HER2+metastatic breast cancer and decreased 
recurrence in local HER2+breast cancer.1 2 
Therefore, the goal of HER2+vaccines is to 
increase HER2+T-cell immunity. Immuno-
logic memory generated by vaccines has long 
been the surrogate endpoint for vaccine effi-
cacy for infectious diseases. Adaptive cellular 
immune responses from B and T cells both 
contribute to protective immunity.3 Where 
antibodies are unable to neutralize free 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Increased human epidermal growth factor receptor 
2 (HER2) -specific T-cell immunity is associated 
with improved survival and decreased recurrences 
in HER2+breast cancer. Vaccines for HER2+breast 
cancer need to augment this immune response to 
be effective.

WHAT THIS STUDY ADDS
	⇒ Patients not destined to achieve long-term immuni-
ty can be identified immediately after completing a 
vaccine series.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Early identification of patients who fail to respond to 
vaccine may allow the use of boosters or other im-
mune stimulator therapy to improve response rates.
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Figure 1  (A) The scatter plot of T-cell responses in long term follow-up (LTFU) against T-cell responses at baseline in the log 
transformed scale. Y-axis is T-cell precursor frequency as 1:X (representing a calculated 1:frequency of IFN-γ–secreting cells 
in 106 PBMCs) of the IFN-γ response to HER2 antigen in LTFU, X-axis is T-cell precursor frequency as 1:X (representing a 
calculated 1:frequency of IFN-γ-secreting cells in 106 PBMCs) of the IFN-γ response to HER2 antigen at baseline (n=83). Dotted 
line is the fitted linear line. (B) The distributions of T-cell responses at LTFU by the positivity of T-cell responses at baseline. 
HER2, human epidermal growth factor receptor 2; IFN-γ, interferon-gamma; PBMC, peripheral blood mononuclear cells.
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Figure 2  (A) The scatter plot of T-cell responses in long-term follow-up (LTFU) against T-cell responses at month 1 in the log 
transformed scale. Y-axis is T-cell precursor frequency as 1:X (representing a calculated 1:frequency of IFN-γ-secreting cells in 
106 PBMCs) of the IFN-γ response to HER2 antigen in LTFU, while X-axis is T-cell precursor frequency as 1:X (representing a 
calculated 1:frequency of IFN-γ-secreting cells in 106 PBMCs) of the IFN-γ response to HER2 antigen at baseline (n=83). Dotted 
line is the fitted linear line (B) and the distribution of T-cell responses at LTFU by the positivity of T-cell responses 1-month post-
vaccination. HER2, human epidermal growth factor receptor 2; IFN-γ, interferon-gamma; PBMC, peripheral blood mononuclear 
cells.
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pathogens in the extracellular environment, the immune 
response must rely on T cells. Vaccines eliciting memory 
T-cell responses are important for killing infected cells 
and releasing cytokines to inhibit the growth of patho-
gens.4 Vaccines target pathogens harbored within cells 
need T-cell immunity, for example, vaccines for herpes 
zoster and malaria.5–8 The magnitude and differentia-
tion of an effective immune response to an antigen also 
depends on antigen-specific T-cell precursor frequen-
cies.9 10 Developing vaccines that specifically induce long-
lived T-cell responses for cancer treatment continue to 
present these challenges.11

Antigen-specific T cells have been shown to be effective 
in controlling cancer.12 Since developing memory T cells 
specific to cancer antigens are essential in controlling 
disease, efforts are underway to design cancer vaccines 
similar to vaccination approaches for infectious disease.13 
Using vaccines in the adjuvant setting where there is 
minimal or no residual disease or in prophylaxis, where 
the host is immunocompetent provides the best parallels 
to vaccines used against microbial and viral pathogens. 
As the frequency of self-antigen-specific T-cell precursor 
frequency has been shown to determine the quality of 
antitumor responses,14 we evaluated if there is a level 
of immunity seen prior to administering vaccines that 
could predict the persistence of immune responses. We 
also questioned whether there was a level of immunity 
that could be achieved after the vaccine series that would 

predict the persistence of immunity up to a year after 
active immunizations had ended.

PATIENTS AND METHODS
Patient population
Immune-response data were collected from subjects 
enrolled in three clinical trials evaluating HER-2/
neu (HER2) specific vaccination (NCT00436254, 
NCT00194714, and NCT00343109). The trials were 
approved by the Fred Hutchinson Cancer Center/
University of Washington Cancer Consortium Institu-
tional Review Board. Patients with stage III or IV HER2-
positive cancers were eligible.15 16 All subjects had breast 
or ovarian cancer with HER2/neu overexpression in 
their tumor as assessed by immunohistochemistry. A total 
of 104 subjects were enrolled, among whom 86 patients 
had immune response data for 12 months after the 
end of immunizations (defined as long-term follow-up) 
as well as immune response data for either pre-vaccine 
and month-1 post-vaccine series. Patients who met these 
criteria were all patients with breast cancer. Among 86 
patients analyzed, 84 had immune response data for pre-
vaccination and 83 had immune response data 1-month 
post-vaccination series. The vaccination series was 3–6 
months apart. Vaccination was by intradermal injection 
using a 27-gage 0.5-inch needle of study vaccine with 
100 µg recombinant granulocyte macrophage colony 

Figure 3  X axis is 1-month post-vaccination precursor frequency used to define the cut-off for positivity (defined as values 
greater than 1:20,000 interferon-γ-secreting cells per 1×106 PBMC (peripheral blood mononuclear cells), and Y axis is the OR 
of achieving positive immunity at long-term follow-up with the dichotomized 1-month post-vaccination precursor frequency at 
a defined cut point. The smooth line is the fitted loess curve. LTFU, long-term follow-up; PBMC, peripheral blood mononuclear 
cells.
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stimulating factor as an adjuvant in the upper arm. The 
vaccines were an HER2 polypeptide vaccines containing 
immunogenic epitopes of HER2 (p369–384, p688–703, 
and p971–984) (NCT00194714, NCT00343109) or 
the 1790 base pair region of full-length intracellular 
domain (ICD) region of HER2 encoded into plasmid 
DNA (NCT00436254).15–17 A tetanus vaccine was admin-
istered intramuscularly using a 25-gage 1-inch needle in 
the deltoid region of the arm as a control. If patients had 
undergone an axillary lymph node dissection vaccines 
were administered in the contralateral arm and if they 
had bilateral axillary dissections they received vaccine 
in the thigh. Vaccines were quantified and vialed by the 
Biologics Production Facility at the Fred Hutchinson 
Cancer Research Center (Seattle, Washington, USA) and 
Multiple Peptide Systems (San Diego, California, USA) 
under Good Manufacturing Practice (GMP) conditions. 
Immune monitoring was performed to assess baseline, 
1-month post-vaccination series, and 1-year long-term 
immune response. Baseline clinical characteristics for 
all subjects are reported in online supplemental table 1. 
Exclusion criteria did not include restrictions on body 
mass index or body weight, smoking status, or concom-
itant drug use. Patients enrolled in other treatment 
studies, with a history of cardiac disease, with a history 
of pulmonary disease other than controlled asthma, and 
with active autoimmune disease were excluded. Subjects 
with an active immunodeficiency disorder such as HIV 
were also excluded. Immunocompetence was evaluated 
by tetanus toxoid (tt) immunization.

ELISpot
Antigen-specific T-cell responses were analyzed with 
10-day interferon-gamma (IFN-γ) enzyme-linked immu-
nosorbent spot (ELISpot) assays as previously described. 
Data were available for all patients for IFN-γ secreting 
responses for HER2 ICD and tt as specificity control. Data 
were reported as T-cell precursor frequency, corrected 
spots per well per 1×106 peripheral blood mononuclear 
cells (PBMC) with subtraction of background wells, calcu-
lated 1:frequency of IFN-γ-secreting cells in 106 PBMCs 
per published methods. Cells were plated at a density 
of 200,000 cells/well in replicates of 6. T-cell immune 
responses were defined to be positive for values greater 
than 1:20,000 IFN-γ secreting cells.18

STATISTICAL ANALYSIS
When used as a continuous measure, immune response 
data were transformed by adding 1 and then taking 
the natural log. Logistic regression was used to assess 
the correlation between responses at both baseline 
or 1 month after the vaccine series a positive immune 
response at long-term follow-up. The OR, the ratio of 
odds of an event between two levels of a predictor, was 
used to summarize the strength of association. An inter-
action between response at baseline or 1 month after the 
vaccine series with the long-term follow-up outcome was 

tested by fitting an appropriate term in the logistic regres-
sion model. We also examined the association between 
1 month after the vaccine series immune values and posi-
tive immune response at long-term follow-up by modeling 
the 1 month value as a continuous variable (rather than 
a binary positive/negative variable). In addition, we 
modeled immunity at 1 month after the vaccine series by 
non-linear functions using generalized additive models.19 
Each of these models used logistic regression with posi-
tive response at long-term follow-up as the outcome.

RESULTS
Patients with higher pre-existent HER2 T-cell responses 
to HER2 were more likely to develop higher HER2 T-cell 
responses lasting greater than 6 months after immunization 
than those that did not have pre-existing responses
After log-transformation, patients’ HER2 type I T-cell 
responses at long-term follow-up linearly increased with 
their baseline T-cell responses (1-log increase of baseline 
T-cell response was associated with a 0.33-log increase 
in T-cell response at long-term follow-up, 95% CI (0.11, 
0.54), p=0.003, figure  1A). Consistently, long-term 
follow-up T-cell responses for patients with positive base-
line T-cell responses were significantly higher than long-
term follow-up T-cell responses for patients with negative 
baseline responses (p=0.02, figure 1B). Of the 37 patients 
negative for HER2-specific T-cell immune response at 
baseline, 18 (49%) were found to be positive at a long-
term follow-up time point. Of 47 patients who were posi-
tive for HER2-specific Th1 immunity at baseline, 29 (62%) 
continued to be positive at the long-term follow-up time 
point. The OR for long-term positive immunity (positive 
at baseline vs negative at baseline) was 1.7 (95% CI 0.71 
to 4.07, p=0.23). Similar analyses were performed for the 
positive specificity control tt. The median baseline tt-spe-
cific responses for patients with positive ICD responses 
at long-term follow-up was 1:3,289, range of 0 to 1:486 
compared with a median of 1:7,246 for patients with 
negative ICD responses, p=0.27) (online supplemental 
figure 1A).

The level of HER2-specific immunity achieved 1 month after 
vaccination series was a stronger predictor of persistent 
immunity than the presence of pre-existent immunity 
responses
After log-transformation, HER2 IFN-γ T-cell response at 
long-term follow-up was more likely as T-cell response 
1 month after the end of the vaccination series increased. 
The magnitude of the increased response at long-term 
follow-up was larger than that seen in the association of 
baseline level and response at long-term follow-up. Specif-
ically, a 1-log increase of month-1 T-cell response was asso-
ciated with 0.47-log increase in T-cell response at long-term 
follow-up, 95% CI (0.27, 0.67), p=2e-5, figure 2A. Consis-
tently, long-term follow-up T-cell responses for patients 
with positive month-1 T-cell responses were higher than 
long-term follow-up T-cell responses for patients with 
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negative month-1 responses (p=6e-4, figure  2B). One 
month after the end of the vaccination series, 53 patients 
were positive for HER2 ICD IFN-γ T-cell responses; 39 
(74%) retained positive immunity in long-term follow-up. 
One month after vaccination, 30 patients were negative. 
Interestingly, 9 (30%) of patients developed their first 
immune response in long-term follow-up highlighting 
the need for prolonged immune monitoring in cancer 
vaccine trials (figure 2). Taken collectively, patients who 
had immunity 1 month after completing the vaccination 
series had higher odds of having persistent HER2-specific 
immunity than those who did not have HER2-specific 
immunity 1 month after completing the vaccination series, 
OR=6.50 (95% CI 2.41 to 17.52, p=0.0002), regardless of 
whether the patients had pre-existing immunity prior to 
vaccination. Further, the correlation between baseline 
and 1 month after the vaccine series T-cell responses was 
R=0.64. Having baseline HER2 immunity did not signifi-
cantly improve the prediction of the long-term follow-up 
positivity by 1 month after the vaccine series (p=0.17), 
nor did baseline HER2 immunity modify the immunity at 
1 month after the vaccine series or the immunity at long-
term follow-up positivity (p=0.30).

The median immunity measured as IFN-γ responses at 
1-month post-vaccination series against tt among patients 
with or without positive tetanus responses at long-term 
follow-up were 1:2,116 (range 0 to 1:302) and 1:3,703 
(range 0 to 1:387), respectively (p=0.17). (online supple-
mental figure 1B).

A higher level of immunity achieved 1 month after the 
vaccination series is associated with a higher probability of 
retaining HER2 specific Th1 immunity in long-term follow-up
As the 1 month after the vaccination series T-cell precursor 
frequency increased, the odds of retaining a robust 
HER2 specific positive response in long-term follow-up 
increased (OR=1.49 for every one natural log increase of 
month-1 precursor frequency, p=0.0002). Adding curva-
ture to the logistic model with a linear term for the log of 
the 1-month post-vaccine series precursor frequency by 
the generalized additive model did not further improve 
the prediction. These results suggest a higher level of 
immunity achieved 1 month after vaccinations associated 
with a higher probability of retaining HER2-specific Th1 
immunity in long-term follow-up. If positivity at 1-month 
post-vaccine series—a dichotomous measure by an arbi-
trary cut point—would be used to predict and classify 
long-term follow-up positivity, the OR estimates gradually 
increase with the values of cut points, reaching 20 for 
precursor frequency 1:3,000 (figure 3).

DISCUSSION
Long-lasting immunity from cancer vaccines can be 
predicted from immune responses measured 1 month 
after completion of the vaccination series, and the magni-
tude of antigen-specific T-cell immunity seen correlates 
with the likelihood that the response will persist. Existing 

CD8 T-cell memory has been shown to influence the 
magnitude of naïve CD8 T-cell responses.20 The ability 
of T cells to acquire an effector memory cell phenotype 
depends on the CD8 T-cell differentiation state, which 
is modulated by the number of pre-existing memory T 
cells.21 Signaling through the cytokine we have measured, 
IFN-γ, has also been shown to control the magnitude of 
T-cell responses and memory differentiation.22

The frequencies of memory T cells are known to influ-
ence the effectiveness of immune response when chal-
lenged with antigen or boosted after vaccines. When 
there is an abundance of antigen-specific T cells, boosting 
can lead to five to eight divisions, long-term survival of 
effector-memory T cells, and preservation of their prolif-
erative potential. However, when there is a low frequency 
of memory T cells, boosting leads to contraction of effec-
tors, senescence and poor protective memory.10 When this 
principle was studied in self-antigens using mouse tumor 
models with adoptive transfer of T cells, the addition of 
naïve antigen-specific T cells increased vaccine-elicited 
tumor immunity.14 Our findings do not necessarily mean 
that more precursors will always provide an advantage as 
there may be a threshold beyond which more precursors 
led to decreased responses due to intraclonal competi-
tion, although this may also be overcome with CD4 T-cell 
help.14 23 Our findings may also reflect low-avidity T-cell 
clones due to the high antigen loading doses used, which 
may represent a limitation of this study.

Knowing the threshold number of antigen-specific T 
cells secreting IFN-γ measured at 1 month after the vacci-
nation series that will predict long-term immune responses 
identifies an early, reliable time point and benchmark 
to estimate the success of vaccination. However, we 
acknowledge that a limitation of this study is that other 
post-vaccination time points were not studied, so it is 
not clear if other longitudinal time points might prove 
superior. Generation of post-vaccination immunity in the 
form of antigen-specific T-cell responses has correlated 
with survival in melanoma, prostate cancer, breast cancer, 
biliary tract cancer, and ovarian cancer.16 24–28 This 
provides an early window to employ booster vaccines in 
those that fail to respond, vaccinate with a heterologous 
platform, or target alternate antigens if those are avail-
able. Boosters have been used in therapeutically vacci-
nated patients with breast cancer with waning levels of 
antigen-specific T cells, but have not necessarily shown an 
advantage in disease-free survival.29 30 Although multiple 
vaccinations and boosters have been associated with clin-
ical responses,26 applying this strategy universally should 
be used with caution as data from preclinical models have 
suggested that repeated boosting may not sustain central 
memory T cells and may adversely affect overall survival.31 
Patients given booster vaccinations with a peptide-
targeted human papillomavirus 16 (HPV16) for treat-
ment of low-grade cervical dysplasia augmented a Th2 
response.32 HPV represents a foreign non-self antigen, 
and boosters in this setting may lead to T-cell exhaustion 
driven by chronic exposure to antigen.4 However, this 
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may be overcome with immune checkpoint inhibition to 
expand T cells primed with an HPV-directed vaccine.33 34 
This synergy could also be a strategy exploited to treat 
other malignancies.35–40 If patients who are not destined 
to achieve adequate immunity can be identified after the 
initial round of vaccinations, boosters may be given to this 
selectively targeted group. Alternate adjuvants that favor 
Th1 immunity or vaccine platforms that allow a heterolo-
gous boost are strategies that may also bring higher yields 
in this subgroup of patients.41 42 But the effectiveness of a 
specific adjuvant or platform may vary depending on the 
antigen and a patient’s own immune phenotype.43

We conclude that patients at risk of failing to achieve 
long-term immunity can be identified immediately after 
completion of therapeutic cancer vaccinations. The 
magnitude of antigen-specific T cells detected after 
completion of vaccination most strongly correlates with 
persistent long-term immunity. Boosters, checkpoint 
inhibitors or alternate vaccine targets should then be 
explored in this subgroup of patients to improve overall 
response rates.
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