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Abstract
Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how
monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a
challenging question. Work in the past years linked uH2A to transcriptional repression by the
Polycomb group proteins of developmental regulators. Recently, a number of mammalian
deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been
discovered. These studies provide convincing evidence that H2A deubiquitination is connected
with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular
response to DNA damage and in cell cycle progression. In this review we will discuss new insights
into uH2A biology, with emphasis on the H2A DUBs.

Background
Conjugation of ubiquitin (Ub) occurs through the con-
certed action of an ATP-dependent Ub-activating enzyme
(E1), a Ub conjugating enzyme (E2), and a Ub ligase (E3)
[1]. The 76-amino acid protein Ub can be conjugated to
target proteins in multiple ways, conferring a high poten-
tial of diversity to Ub-mediated signaling [2]. As a mono-
mer, Ub can be linked to one (monoubiquitination) or
several lysines (multiple monoubiquitination) on target
proteins. In addition, Ub has seven lysine residues which
can be modified to form polyubiquitin chains. Lysine 48-
linked Ub chains generally target proteins for proteolytic
destruction. In contrast, monoubiquitination as well as
chain formation through lysine 63 have a regulatory role
in various processes, including endocytosis, DNA repair,

transcription and chromatin regulation [2]. Ubiquitin sig-
naling is transduced by the so called "ubiquitin receptors',
proteins which utilize ubiquitin binding domains to
interact with ubiquitinated targets [3].

Processes that impact on DNA, such as transcription, DNA
replication, DNA repair and mitosis have in common the
ability to perform DNA transactions in the chromatin
environment. Histones are essential proteins that com-
pact the DNA in the basic unit of chromatin, the nucleo-
some. In the nucleosome core particle, a tetramer of (H3-
H4)2 is flanked by two dimers of H2A-H2B to form the
histone octamer, around which 146 bp of DNA is
wrapped [4]. Core histones interact with the DNA and
with each other through a histone fold domain. In addi-
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tion, their unstructured N-terminal or C-terminal (in the
case of H2A and H2B) "tails" protrude from the nucleo-
some and provide sites for covalent modification by a
variety of enzymes. Histone modifications act both
directly (affecting contacts between nucleosomes) and
indirectly (through the recruitment of non-histone pro-
teins) in order to orchestrate chromatin environment [5].
It has become clear that covalent modifications ("marks")
can influence one another and their combination has
been proposed to constitute a "histone code" that regu-
lates chromatin-based processes [6].

Monoubiquitination of histone H2A is one of the most
abundant histone modifications in mammalian cells. The
ubiquitination site has been mapped to lysine 119 (K119)
on the carboxyterminal tail of H2A and monoubiquiti-
nated H2A (uH2A) has been estimated to comprise
between 5–15% of H2A. Histone H2B is monoubiquiti-
nated at K120 in about 1% of total H2B [7-10]. Despite
H2A being the first protein shown to be ubiquitinated, the
function of uH2A has remained obscure for a long time.
Only recently, the discovery that the Polycomb protein
complex Ring1A/B-Bmi1 is a major E3 ligase targeting
H2A, strongly linked uH2A to gene silencing and tumor
development [11-14]; reviewed in [15]. Accumulating evi-
dence supports an additional role of uH2A in the mainte-
nance of genome integrity, further highlighting the
potential impact of this modification on neoplastic cell
growth [16-21].

Ubiquitination of H2A is dynamic, as suggested by the
observations that global levels of uH2A vary during the
cell cycle [22-25]. Accordingly, the existence of several
mammalian H2A de-ubiquitinating enzymes (DUBs) has
recently been reported. These include members of two dis-
tinct protease families [26]. In particular, 2A-DUB belongs
to the JAMM/MPN+ family, while USP3, Ubp-M (USP16),
USP21 and USP22 are part of the USP (Ubiquitin Specific
Protease) family [17,24,25,27-29] (Table 1). In this

review we discuss new findings on how uH2A might reg-
ulate transcription, as well as the emerging roles of uH2A
in DNA damage signaling and cell cycle progression. The
focus will be on the lessons learned from the H2A DUBs.

uH2A in gene repression
The role of uH2A in transcription has been controversial
(reviewed in [9,10]). Only recently, the characterization
of the Polycomb repressive complex PRC1 as ubiquitin
ligase for H2A strongly linked this modification to silenc-
ing of developmental control genes and to X-inactivation.
Ring1A and Ring1B (RING1 and RNF2 in man), which
harbor a RING domain, are the active E3 ligase compo-
nents of the complex and are responsible for the deposi-
tion of bulk monoubiquitinated H2A ([11-14]; reviewed
in [15]) (Table 2). In agreement with a repressive role,
uH2A levels at Polycomb-repressed promoters decrease in
Ring1A/B deficient cells and this is accompanied by an
induction of expression of target genes [11,13]. In addi-
tion to PRC1, Ring1B has been found in separate repres-
sive complexes containing E2F-6 [30] and the Fbxl10
(JHD1B) and BcoR corepressors [31,32], respectively.

Using different approaches, recent work shows that DUBs
for uH2A play functional roles in gene activation, provid-
ing independent evidence that uH2A antagonizes tran-
scription. In this section we will briefly summarize the
findings with respect to gene expression regulation
obtained with the H2A DUBs Ubp-M (USP16), USP21,
2A-DUB, and USP22 [24,25,27-29] (Table 1). This will be
followed by a more detailed discussion of the potential
effects of uH2A on different phases of transcription.
Finally, clues to the mechanistic aspects of uH2A-medi-
ated repression that arise from these and other studies will
be presented.

Table 1: Mammalian H2A deubiquitinating enzymes (DUBs)

DUB Domain structure Substrate Interactors Process Ref.

USP3 ZnF-UBP, UCH H2A, H2B n.d. DNA damage response; S-
phase progression

[17]

USP16/UbpM ZnF-UBP, UCH H2A n.d. Transcription of HoxD10; G2/
M transition

[24,33]

USP21 UCH H2A n.d. Transcription [25]
USP22 ZnF-UBP, UCH H2A, H2B SAGA complex Transcriptional coactivator 

with Myc, AR, ER, GR; G1/S 
transition

[28,29]

2A-DUB/KIAA1915/MYSM1 SANT, SWIRM, JAMM/MPN+ H2A p/CAF, Trip5/KIF11, Rbm10 Transcriptional coactivator 
with AR

[27]

Abbreviations: ZnF-UBP, Zinc Finger-Ubiquitin Binding Domain; UCH, Ubiquitin C Terminal Hydrolase domain; AR, Androgen Receptor; ER, 
Estrogen Receptor; GR, Growth hormone Receptor; 2A-DUB, H2A DeUBiquitinase; JAMM, JAB1/MPN/Mov34 metalloenzyme domain; MPN+, 
Mpr1, Pad1 N-terminal + domain; p/CAF, p300/CBP Associated Factor; n.d., not determined.
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H2A DUBs: novel insights into uH2A-mediated 
transcription inhibition
Ubp-M (USP16)
Extensive biochemical purification of a H2A de-ubiquiti-
nating activity from HeLa cells, identified Ubp-M as the
responsible enzyme [24]. In agreement, the in vitro activity
of Ubp-M towards uH2A had been reported before [33].
By double chromatin immunoprecipitation experiments,
in Ubp-M knockdown (KD) HeLa cells, Joo et al. showed
increased uH2A levels at the promotor of a homeotic
(Hox) gene, HoxD10, accompanied by gene repression.
Wildtype but not catalytic mutant Ubp-M could rescue
HoxD10 expression [24]. The in vivo relevance of Ubp-M
mediated Hox gene activation was suggested by the obser-
vation that injection of Ubp-M antibodies in Xenopus
embryos led to deregulation of HoxD10 expression and
defects in posterior development. This anterior-posterior
transformation phenotype is consistent with a Polycomb-
antagonistic function (reviewed in [15]). Altogether, these
data suggest that Ubp-M counteracts the role of Polycomb
proteins in Hox gene repression through H2A deubiquiti-
nation.

USP21
Nakagawa and colleagues used liver regeneration as a
model system [25]. Examining gene expression changes
after hepatectomy, the authors found that USP21 is upreg-
ulated. As liver regeneration is associated with a decrease
in global uH2A, USP21 was hypothesized to target H2A
for deubiquitination during this process. USP21 DUB
activity towards H2A was confirmed in vitro. Evidence for
a repressive role of uH2A came from in vitro transcription
assays, in which chromatin templates reconstituted with
uH2A inhibited transcript formation. In vivo, overexpres-
sion of USP21 in liver correlated with low levels of uH2A
and increased expression of a gene, Serpina6, which is
downregulated during normal hepatocyte regeneration.

2A-DUB
2A-DUB was identified as a positive regulator of androgen
receptor (AR) transactivation activity on a reporter gene
and it was characterized as a histone H2A DUB in vitro and

in vivo [27]. 2A-DUB is unique among the uH2A proteases
identified so far, harboring a JAMM/MPN+ domain, and
SANT and SWIRM domains, frequently found in DNA and
chromatin-associated proteins [26,27]. Knockdown of
2A-DUB resulted in the attenuation of dihydrotestoster-
one-induced gene expression in a prostate cancer cell line,
confirming an AR-coregulatory role for the endogenous
protein. 2A-DUB is associated with the p/CAF histone
acetyl transferase. This led to the investigation of a possi-
ble link between histone acetylation and H2A deubiquiti-
nation. It was found that histone acetylation (in vitro) and
p/CAF (in vivo) facilitated H2A de-ubiquitination (Figure
1A). However, p/CAF did not apparently affect 2A-DUB
binding with the promoter, suggesting that 2A-DUB is not
directly recruited by p/CAF. Instead, p/CAF dependent
acetylation may, directly or indirectly, influence 2A-DUB
activity.

USP22
H2B is the only histone known to be ubiquitinated in S.
cerevisiae [34]. Monoubiquitinated H2B (uH2B) is highly
dynamic and sequential ubiquitination and deubiquitina-
tion are required for efficient transcription (reviewed in
[10]). A DUB capable of de-ubiquitinating H2B, Ubp8, is
present in the yeast SAGA coactivator complex. Two recent
papers show that the mammalian counterpart of the
SAGA complex contains an Ubp8 homolog, the DUB
USP22 [28,29], which is also conserved in Drosophila [35].
In addition to H2B, USP22 de-ubiquitinates H2A in vitro
[29]. As for Ubp8, an activating role of USP22 has been
reported. Recruitment of the SAGA complex to target
genes is known to be dependent on sequence specific tran-
scription factors [36,37]. Accordingly, Zhang and col-
leagues showed that USP22 was recruited to myc target
genes in a myc-dependent fashion [28].

Does uH2A affect specific steps of transcription?
RNA polymerase II- mediated transcription can be subdi-
vided in three phases: initiation, elongation and termina-
tion. These phases are associated with distinct histone
modifications as well as specific phosphorylation patterns
of the heptad repeats of the C-terminal domain (CTD) of

Table 2: Mammalian H2A E3 ubiquitin ligases

E3 ligase Domain structure Substrate Interactors Process Ref.

Ring1A/RING1,  Ring1B/
RNF2

RING H2A PRC1; E2F-6; Fbxl10/BcoR 
complexes

Repression of 
transcription

[11-14, 30-32,86,87]

RNF8 FHA, RING H2A/H2AX n.d. DNA damage response; 
G2/M transition

[18,19,54,55,63,84,85]

2A-HUB/KIAA0675/
hRUL138/DZIP3

RING H2A N-CoR, HDAC1, HDAC3 Repression of specific 
chemokine genes

[40]

Abbreviations: PRC1, Polycomb Repressive Complex 1; Fbxl10, F-box and leucine-rich repeat protein 10 (JHD1B); BcoR, BCL6 co-repressor; 
RNF8, Ring Finger protein 8; FHA, forkhead-associated phosphopeptide-binding domain; N-CoR, Nuclear receptor Co-Repressor; HDAC, Histone 
De-Acetylase; n.d., not determined.
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Crosstalk between monoubiquitinated H2A (uH2A) and other histone modificationsFigure 1
Crosstalk between monoubiquitinated H2A (uH2A) and other histone modifications. Functional implications in 
transcription regulation (A-C), DNA damage response (D) and cell cycle progression (E) are illustrated. A. H3/H4 acetylation 
stimulates de-ubiquitination of uH2A by 2A-DUB in vitro, linking these modifications in the regulation of transcription. B. uH2A 
prevents H3K4 methylation by MLL3 in vitro. This is possibly one of the mechanisms by which uH2A negatively affects tran-
scription initiation. C. Elevated global levels of uH2A correlate with low phosphorylation of linker histone H1, as observed 
upon knockdown of one of the H2A DUBs, 2A-DUB. Phosphorylation of H1 is thought to favor enhanced chromatin dissocia-
tion of this histone. uH2A might, by promoting/stabilizing H1 association with the nucleosome, diminish chromatin dynamics, 
thereby negatively affecting transcription. D. Histone phosphorylation and ubiquitination synergize in DNA damage signaling 
upon ionizing radiation (IR). Upon IR, phosphorylation of H2AX leads to recruitment and phosphorylation of MDC1. Phospho-
rylated MDC1 recruits RNF8 through its FHA domain. RNF8 subsequently polyubiquitinates H2A and H2AX. Also, TIP60-
dependent acetylation of H2AX on K5 favors H2AX polyubiquitination upon IR. E. uH2A inhibits H3 S10 phosphorylation by 
AuroraB kinase in vitro, providing a potential mechanism for regulation of G2/M transition in vivo. The labels "Ub", "Ac", "Me" 
and "P" refer to monoubiquitination, acetylation, di- and trimethylation, and phosphorylation respectively.
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the largest subunit of RNA polymerase II. Initiation is
associated with H3K4 di- and trimethylation and CTD ser-
ine 5 phosphorylation (s5pCTD), while H3K36 trimethyl-
ation and CTD serine 2 phosphorylation (s2pCTD)
correlate with elongation [38]. In vitro and in vivo
approaches were undertaken to address if uH2A affects
transcription initiation or elongation.

First, uH2A engagement in the initiation step of transcrip-
tion is supported by in vitro studies by Nakagawa and col-
leagues [25]. GAL4-VP16 driven transcription was assayed
on reconstituted chromatin templates using Drosophila
nuclear extracts as a source of RNA polymerase II. As pre-
viously mentioned, uH2A inhibited transcription if the
chromatin template was assembled before addition of the
RNA polymerase. On similarly reconstituted chromatin
templates, the authors showed that uH2A prevents H3K4
di- and trimethylation by the methyltransferase MLL3,
and that USP21-mediated deubiquitination could relieve
this inhibition (Figure 1B). Importantly, chromatin
assembled with a specific mutant of histone H3 (H3K4R),
allowed initiation despite the presence of uH2A. Under
these conditions, elongation occurred normally, suggest-
ing that uH2A does not inhibit transcription per se, but
that it might rather act by preventing H3K4 methylation,
and thereby transcription initiation (Figure 2A).

In vivo support for this conclusion came from the study of
Zhu et al. on 2A-DUB [27]. Expression of the PSA gene is
induced upon stimulation of the AR. The authors exam-
ined chromatin changes at the PSA promoter, upon AR
activation, through detailed ChIP experiments. AR activa-
tion resulted in a decrease of uH2A accompanied by
increased levels of S5pCTD at the promoter and, there-
fore, increased transcription initiation. All these events
were 2A-DUB dependent. Although the levels of H3K4Me
were not examined, this study suggests that uH2A limits
initiation in vivo as well.

Second, the link between uH2A and transcription elonga-
tion was examined in two recent papers on H2A E3
ligases, Ring1A/B and 2A-HUB [39,40].

Stock and colleagues examined chromatin changes at
genes that are derepressed upon conditional deletion of
Ring1A and B and global loss of H2A monoubiquitina-
tion in mouse ES cells [39]. The promoters of these genes
have been shown to associate with histone marks charac-
teristic of both active (H3K4Me) and inactive (H3K27Me,
uH2A) chromatin and are therefore referred to as bivalent
[39,41,42], reviewed in [43]. Stock et al. showed that in
wildtype cells, low-level transcription of the 5' region of
the coding region of these genes was detectable. This
result indicates that transcription was initiated, despite
the presence of Ring1A/B and uH2A (Figure 2B). Indeed,

at these promoters, S5pCTD RNA polymerase was present
at levels comparable to actively transcribed genes. Given
that RNA polymerase II was shown to associate with
regions downstream of the promoter upon Ring1A/B
deletion, the data support a model in which Ring1B-
dependent uH2A hinders transcription at the stage of
elongation (Figure 2C).

The involvement of uH2A in transcriptional events down-
stream of initiation is further supported by the characteri-
zation of a novel RING-type E3 ligase for H2A, 2A-HUB
[40] (Table 2). Knockdown of 2A-HUB stimulates elonga-
tion but not initiation of transcription of one of its target
genes, RANTES. uH2A is mainly present at the promoter
of RANTES, as opposed to its distribution over both pro-
moter and exonic regions at bivalent genes. As a conse-
quence, in the case of RANTES, uH2A might regulate the
transition of initiation to elongation, a process referred to
as promoter escape.

In conclusion, it is still unclear at which stage uH2A
affects the transcription cycle. It is of note that current data
have been obtained in different in vivo and in vitro sys-
tems. For example, uH2A inhibits H3K4 methylation in
vitro, whereas these marks, by definition, coexist at biva-
lent promoters in ES cells in vivo. This suggest that the
strict inhibition of H3K4 methylation by uH2A observed
in vitro is somehow circumvented at bivalent promoters in
vivo, allowing initiation. If this interpretation holds true,
it would predict that there might be different categories of
target genes, regulated by dedicated mechanisms. In addi-
tion, we can envisage that, in vivo, uH2A may act as a
"landing platform" for recruitment of, yet to be isolated,
regulatory proteins containing ubiquitin binding
domains (Figure 2C). The identification of such proteins
will be pivotal to the understanding of uH2A-mediated
regulation. Finally, it cannot be excluded that effects of the
DUBs and E3 ligases targeting H2A on transcription
phases are partially independent of their enzymatic func-
tion.

Histone crosstalks and chromatin dynamics
Work on the DUBs USP21 and 2A-DUB, suggest that
uH2A may affect post-translational modifications on
other histones, including H3K4 methylation (as discussed
before) and H1 phosphorylation [25,27] (Figure 1B and
1C). Such "trans-histone" cross-talk between uH2B and
H3 methylation has been well characterized [10]. We have
previously discussed how uH2A negatively affects H3K4
methylation. Here we will report on the uH2A-H1 inter-
play. Also, we will present findings pointing to a distinct
mechanism, involving the histone chaperone FACT.

The C-terminal tail of H2A, containing the K119 ubiquiti-
nation site, can reach the linker histone H1 in nucleo-
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somes [4]. Immunoprecipitation of nucleosomes
containing wt or its ubiquitination mutant, K119R,
revealed that H1 preferentially associated with wt H2A,
suggesting that ubiquitination of H2A facilitates interac-
tion with H1 [40]. In agreement, this has been shown in
vitro [44]. H1 can be phosphorylated: a modification
linked to enhanced H1 dynamics and chromatin dissoci-
ation [45]. Zhou and colleagues reported that a global

increase in uH2A, in 2A-DUB knock down cells, was asso-
ciated with a decrease in phosphorylated H1 [40]. Knock-
down of Ring1B had the opposite effect. Altogether, these
findings suggest that uH2A hinders H1 eviction from
chromatin, which is generally associated with an open
chromatin conformation favorable to transcription (Fig-
ure 1C).

Models for regulation of transcription by monoubiquitinated H2AFigure 2
Models for regulation of transcription by monoubiquitinated H2A. A. uH2A inhibits RNA polymerase II initiation in 
vitro through a crosstalk with H3K4 methylation. uH2A prevents H3K4 methylation by the MLL3 histone methyltransferase. 
The enzymatic removal of ubiquitin from H2A by USP21 can positively influence H3K4 methylation by the methyltransferase. 
This would allow H3K4 methylation, which is a prerequisite for initiation of gene transcription. B. At bivalent promoters uH2A 
and H3K4 Me coexist. At these promoters, transcription initiation occurs despite the presence of uH2A. C. uH2A might 
inhibit transcription elongation or the transition from initiation to elongation by preventing association of the FACT elongation 
factor. In addition, uH2A might regulate elongation by recruiting inhibitory factors and/or affecting higher order chromatin 
association.
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Finally, a functional link between uH2A and the histone
chaperone FACT (FAcilitates Chromatin Transcription)
has been proposed [40]. The FACT complex has been
shown to facilitate elongation, presumably by removal of
H2A/H2B dimers, thereby enabling RNA polymerase II
movement through chromatin [46]. Chromatin associa-
tion of FACT at the RANTES gene is stimulated by 2A-
HUB knockdown, with concomitant decrease in uH2A.
Biochemically, it was shown that FACT associates mostly
with non-ubiquitinated H2A. A possible conclusion is
that uH2A prevents FACT association. H2A deubiquitina-
tion would allow FACT to bind and to promote elonga-
tion. More detailed biochemical analysis is required to
shed light on the mechanistic implications of uH2A-FACT
interplay. An important implication of the 2A-DUB and
2A-HUB studies from the Rosenfeld lab is that ubiquitina-
tion of H2A may impact on nucleosome dynamics (as
also discussed in the section on the DNA damage
response), as well as on higher order chromatin structure.

In summary, the discussed studies highlight a positive role
of H2A DUBs in gene expression. In addition, albeit with
some redundancy [27-29], it seems that Ubp-M, USP21,
USP22 and 2A-DUB participate in the regulation of spe-
cific transcriptional programs (Table 1). To understand
how DUBs regulate transcription and how specific their
activities are, important questions are i) where, along the
chromosomes, do these enzymes bind and ii) which
genes do they regulate. Gene expression profiles and
genome-wide identification of the in vivo DNA binding
sites of the DUBs (by ChIP on ChIP, Chip-Seq or DamID
techniques) will be needed and will require extensive
effort in the next years. Because of the difficulty in devel-
oping highly specific antibodies to uH2A, an additional
challenge will be to map the chromosomal regions con-
taining uH2A. Finally, integration of these data with avail-
able genome-wide chromatin association data on histone
modifications and crucial chromatin modifiers, including
histone E3 ligases, methyltransferases, demethylases and
remodeling enzymes, will likely lead to further insight
into the intricate cross talk between histone modifica-
tions.

uH2A: a marker for DNA damage?
Genome integrity is maintained by the functional inter-
play between DNA repair processes and DNA damage
checkpoint pathways, responsible for arresting the cell
cycle to allow faithful repair [47]. Histone modifications
play a crucial role both in DNA damage response (DDR)
as well as DNA repair. They can act by i) facilitating DDR
signaling or ii) influencing chromatin folding/organiza-
tion. This second mode is mainly achieved by controlling
the binding of effector proteins, among which chromatin
remodeling factors, capable of altering histone-DNA con-
tacts [48].

Evidence is accumulating that histone ubiquitination is
part of the response to DNA damage. Studies in S. cerevi-
siae suggest a role for ubiquitinated H2B in checkpoint
activation upon UV challenge [49] and in the formation
of DNA double-strand breaks (DSBs) at some chromo-
somal loci during meiosis [50]. In mammalian cells,
increased monoubiquitination of H2A, H3, and H4 was
shown upon UV irradiation [16,21,51]; reviewed in [52].
The recent characterization of two novel histone modifi-
ers, the DUB USP3 and the E3/E2 ligase complex RNF8-
Ubc13, supports a broader role of uH2A in genome main-
tenance [17-19,53-55]. Here we will discuss the involve-
ment of uH2A in the response to ionizing radiation (IR)
emerging from these studies.

IR induces the re-localization of DNA damage signaling/
repair factors into IRIF (IR-induced nuclear foci). Beside
protein accumulation, IRIF reflect chromatin rearrange-
ments and histone post-translational modification at
double-stranded DNA breaks (DSBs) [56,57]. Phosphor-
ylation of the histone H2A variant H2AX (γH2AX) by
ATM (ataxia telangiectasia mutated), ATR (ATM and
Rad3-related), and DNA-PK (DNA-dependent protein
kinase) checkpoint kinases is an early event in response to
DNA damage and represents the most robust histone
modification upon IR [47]. γH2AX is instrumental for effi-
cient accumulation and retention of several mediators/
repair factors, including MDC1, BRCA1, 53BP1 and ATM,
at the chromatin surrounding the lesion [58,59].

Several ubiquitination events take place at DSBs repair
sites, as illustrated by the local accumulation of ubiquiti-
nated substrates at IRIF [53,60-62]. However, only
recently, immunofluorescence studies, with an anti-uH2A
antibody, detected accumulation of uH2A at γH2AX-con-
taining nuclear foci early upon global IR as well as local,
laser-mediated microirradiation [17,19]. Which species of
ubiquitinated H2A accumulate at DSBs? Immunopurifica-
tion of endogenous or ectopically expressed H2A or H2AX
revealed an increase in oligo and poly-ubiquitinated spe-
cies in cells exposed to high IR doses [18-20,53]. Huen et
al. showed that H2AX was predominantly di-ubiquiti-
nated upon IR. Notably, H2AX di-ubiquitination was
dependent on its S139 phosphorylation site, suggesting
that phosphorylation is a prerequisite for ubiquitination
[18]. As to the ubiquitination site, it is still unclear
whether in addition to the canonical lysine 119, ubiquiti-
nation of other lysines may participate in the DSB
response [18,20]. These studies suggest that IR-induced
ubiquitin marks on H2A/H2AX comprise a variety of
ubiquitinated species, which differ from the steady state
uH2A.
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How is the histone ubiquitin mark set during the IR-
response?
Four independent studies recently identified RNF8 as the
E3 ligase responsible for H2A/H2AX ubiquitination in the
response to DSBs [18,19,54,55]. RNF8 rapidly accumu-
lates at DSBs upon IR, concomitantly with early IRIF
markers, namely γH2AX, ATM, the MRN complex, and the
mediator protein MDC1 [19]. The presence of a phospho-
threonyl-binding FHA domain together with a RING fin-
ger domain enable RNF8 to link phosphorylation with
ubiquitination signaling at IRIFs (Figure 1D). The data
presented by the four laboratories are consistent with a
signaling cascade starting from phosphorylation of H2AX
by ATM (Figure 3). This step is well known and allows
direct recruitment of MDC1 and its subsequent phospho-
rylation by ATM [59]. Through its FHA domain, RNF8 can
in turn bind to phospho-MDC1 at DSBs, where it cata-
lyzes polyubiquitination events, among which H2A and
H2AX ubiquitination (Figure 3A). At IRIF, RNF8 likely
acts in concert with the ubiquitin conjugating enzyme
Ubc13, a previously reported interactor of RNF8 [18,53-
55,63]. At last, RNF8-Ubc13-dependent ubiquitination is
required for recruitment and retention of BRCA1 and
53BP1 at DSBs [18,19,54,55] (Figure 3B). Besides histone
ubiquitination, ubiquitin signaling at IRIF likely com-
prises a complex variety of ubiquitination events, as also
suggested by the partial requirement of a second E3 ligase
activity, BRCA1, for efficient ubiquitin accumulation
[60,62]. These may include amplification of the ubiquiti-
nation signal on histones or other substrates, as well as
autoubiquitination of the E3 enzymes as autoregulatory
mechanism [64,65]. In agreement, both RNF8 and BRCA1
can promote auto-ubiquitination and ubiquitination of
histones in vitro [19,63,66,67].

These studies revealed an exciting link between ATM sign-
aling and ubiquitination of histone H2A and H2AX at
double strand breaks. If uH2A is directly involved in
recruitment of DDR factors at IRIF remains to be estab-
lished.

Mechanisms of uH2A-mediated DDR
The ubiquitin-interacting-motif (UIM)-containing pro-
tein Rap80 is a good candidate for fulfilling a ubiquitin
receptor function at IRIF. Rap80 was initially shown to
recruit the Rap80-ccd98/abraxas-BRCA1 complex to ubiq-
uitin-conjugates at DSBs [61,68,69] (Figure 3B). More
recently, it was demonstrated that accumulation of Rap80
at IRIF is dependent on functional RNF8-Ubc13 proteins
[18,19,54,55]. In vitro and in vivo Rap80 displays preferen-
tial binding to lysine63-isopeptide-linked tetraubiquitin
polymers, and to a lesser extent to K6-linked chains [61].
Importantly, Rap80 ubiquitin binding properties fit well
with the findings that i) chain formation through lysine
63 has been previously shown to regulate, among others,

Signaling network at Ionizing Radiation Induced Nuclear Foci (IRIF)Figure 3
Signaling network at Ionizing Radiation Induced Nuclear Foci 
(IRIF). A. Early after IR, damaged DNA triggers ATM activation, which 
consequently phosphorylates H2AX near the break sites and MDC1. 
RNF8 is recruited to IRIF through binding to phosphorylated MDC1. 
RNF8 locally ubiquitinates H2A, H2AX and possibly other yet unidentified 
proteins ('X'). B. RNF8-dependent ubiquitin conjugation is required for 
recruitment of 53BP1 and BRCA1. BRCA1 is present in a protein complex 
containing BARD1, Abraxas/CCDC98, BRCC36 and RAP80. Ubiquitin 
binding by RAP80 is required for BRCA1 recruitment. However, the 
nature of the ubiquitinated substrate RAP80 binds to (histones or other 
proteins), is still unclear. In addition to BRCA1, ubiquitination allows 
recruitment of 53BP1 (which binds to methylated H3/H4) through a yet 
unknown mechanism. C. IRIF disassembly may involve dephosphorylation 
of γH2AX by PP2A. The DUB USP3 is a candidate to remove conjugated 
ubiquitin at IRIF.
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DNA repair processes [60], ii) ubiquitin foci at IRIF form
most efficiently through K63-linked polyubiquitination
[61] and iii) Ubc13 is the only E2 able to catalyze polyu-
biquitination through K63 [70], and it is an E2 partner for
RNF8 [63]. Although these evidences are consistent with
Rap80 linking RNF8-Ubc13 ubiquitylation at IRIF to the
DDR mediator BRCA1, studies addressing the potential
direct binding of Rap80 to ubiquitinated H2A/H2AX are
still needed.

It is important to note that other mechanisms may exist
through which H2A ubiquitination could affect DDR.
One plausible possibility is that uH2A/H2AX may facili-
tate a more global alteration of the chromatin, known to
occur at DSBs [57,71], allowing exposure of other histone
marks. This mechanism might be relevant for 53BP1 relo-
calization to IRIF, as suggested by the findings that 53BP1
binds to methylated histones [72,73] and that its recruit-
ment is independent from Rap80 [18,19,55,68]. Interest-
ingly, Ikura and colleagues reported enhanced mobility of
H2AX at sites of microirradiation and a rapid release of
polyubiquitinated H2AX from the chromatin [20]. H2AX
ubiquitination and histone release was dependent on
TIP60 and on its acetylation target, H2AX K5 (Figure 1D).
Drosophila Tip60 can acetylate H2Av (the Drosophila
H2AX) and promotes its exchange with unphosphor-
ylated H2Av [74]. This work suggests a mechanism by
which ubiquitination might promote histone dynamics/
removal.

Removal of uH2A mark at DSBs: a role for USP3?
The mechanisms by which the chromatin post-transla-
tional modifications are cleared, the protein assemblies
are disassembled, and the checkpoint is turned off after
completion of repair is an intriguing open question. Work
form our group recently showed that USP3, previously
identified as a DUB [75], displays deubiquitination activ-
ity both towards uH2A as well as uH2B in vivo [17]. USP3
appears to be engaged in DDR in two majors ways: in the
response to IR and during normal S-phase progression (as
discussed below). Upon IR, IRIF containing uH2A, ubiq-
uitin, and γH2AX persist in USP3 knockdown cells [17].
Previously published results demonstrated that dephos-
phorylation and removal of H2AX is needed for efficient
repair and resumption of the cell cycle [76-78]. In agree-
ment, USP3 knock down cells are significantly delayed in
G2/M transition. Together, these data suggest that
removal of ubiquitination marks at the chromatin sur-
rounding DSBs is necessary to coordinate IRIF disassem-
bly, γH2AX dephosphorylation and cell cycle recovery
(Figure 3C). Unlike in S. cerevisiae [77,78], dephosphor-
ylation of H2AX by the phosphatase PP2A is thought to
occur on the chromatin, given that this enzyme localizes
to IRIF [76]. If and how USP3 crosstalks with PP2A, for
example by affecting recruitment or activity of the latter, is

currently unknown. Although USP3 seems to favor deu-
biquitination of substrates (among which uH2A) at IRIF,
we could not detect local accumulation of USP3 at those
foci (unpublished results). This may be a consequence of
the fact that USP3 rapidly releases its chromatin substrate
upon catalysis as determined by Fluorescence recovery
after photobleaching (FRAP) and co-immunoprecipita-
tion [17]. Also, it is possible that USP3 DUB activity may
be required 'off the chromatin" or may be indirect. Isola-
tion of USP3 interacting partners and potential additional
substrates, as well as addressing if and how USP3 is regu-
lated, is needed to gain a better understanding of the
molecular mechanism of USP3-mediated DDR.

A JAMM domain containing DUB, BRCC36, may also play
a role at DSBs: it is part of the BRCA1 A complex (together
with RAP80 and Abraxas), localizes to IRIF and positively
regulates BRCA1/BARD1 E3 ligase [55,61,79,80]. How-
ever, BRCC36 role at IRIF is not clear and its activity
towards ubiquitinated histones has not been investigated.

In summary, the discovery of novel E3 ligase (RNF8) and
DUB activities (USP3) for H2A provides us with valuable
tools to address ubiquitin-mediated signaling at the chro-
matin. We can envision several experimental approaches
towards the elucidation of the molecular mechanism(s)
of uH2A/uH2AX-mediated DDR. These include: i) bio-
chemical characterization of the E3 (RNF8, BRCA1) and
DUB activities (USP3, others?) on nucleosomes; ii) iden-
tification of the IR-induced ubiquitination site(s) on
H2A/H2AX; iii) isolation of uH2A/uH2AX binding pro-
teins; iv) definition of the extent of the ubiquitin mark
around the DSB. Also, a proteomic approach towards the
characterization of the complex mixture of ubiquitinated
proteins and ubiquitin receptors at the chromatin will
potentially reveal novel players in DDR.

uH2A and cell cycle
Histone modifications play a pivotal role in the regulation
of chromatin packaging during cell cycle progression.
During G0-G1/S transition, repressive histone marks need
to be removed to allow expression of S-phase genes
[30,81]. Genome-wide chromatin rearrangements occur
in S-phase, in order to provide accessibility to the replica-
tion machinery and to restore the epigenetic landscape on
the newly synthesized DNA (reviewed in [82]). Finally,
chromatin condensation and decondensation is needed
during mitosis and cell division (reviewed in [5]).

As most of histone marks, ubiquitination is cell cycle reg-
ulated. uH2A was initially reported to be reduced in rest-
ing (G0) and differentiated cells [22]. Later, Vassilev et al.
described a monoclonal antibody able to recognize
uH2A. Using this antibody, the authors reported that non-
proliferating cells displayed lower levels of uH2A than
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their proliferating counterparts. In addition, partial co-
localization of uH2A with PCNA replication foci was
detected, suggesting a role for uH2A in cellular prolifera-
tion/DNA replication [83]. Interestingly, a link between
uH2A and (aberrant) cell growth is emerging also in vivo.
Dynamic changes in uH2A were observed in a liver regen-
eration model and in primary prostate tumors compared
to normal tissues [25,27]. In proliferating cells, uH2A is
present throughout the cell cycle, but it is down-regulated
during G2/M transition and is not present on condensed
chromosomes [23,24].

H2A-DUBs: specific roles in cell cycle regulation?
Among the DUBs targeting H2A, USP22, Ubp-M and
USP3 have been connected to cell cycle progression. Con-
sistently, knockdown of these enzymes resulted in growth
impairment in different human cell lines, albeit in differ-
ent ways: i) upon shRNA-mediated knock-down of
USP22, both p53 deficient H1299 cells and normal
human fibroblast accumulated in G1 [28]; ii) USP3-
depleted U2OS cells showed a strong delay in S-phase
progression and a low mitotic index [17]; iii) stable Ubp-
M knockdown in HeLa cells resulted in a decrease in the
proportion of cells in G2/M [24]. The potential impact of
the two other H2A DUBs, 2A-DUB and USP21, on cell
cycle progression has not been investigated yet [25,27].

As discussed before, uH2A is functionally linked to tran-
scription regulation and DNA damage signaling path-
ways. Does uH2A affect cell proliferation through
transcriptional regulation of cell cycle genes or DDR acti-
vation, or through direct mechanism(s)? The data suggest
that both indirect and direct mechanisms may be relevant.

First, USP22 has been characterized as a transcriptional
co-activator in the context of the SAGA complex (see also
the previous paragraph on transcription) [28,29]. Conse-
quently, it is possible that the USP22 inhibitory effect on
G1/S transition is dependent on its transcriptional activ-
ity. In addition, USP22 is required for Myc-driven tran-
scription and transformation. Given that USP22, as well
its Drosophila homolog Nonstop, appear to regulate a
large subset of genes, gene expression analysis and genetic
studies will be required to identify the key USP22-target
genes involved in cell cycle progression [28,29,35].

Second, data by our group point to a distinct mechanism
by which USP3 may affect cell cycle. S-phase delay in
USP3-KD cells is accompanied by spontaneous γH2AX
foci, accumulation of DNA breaks and full activation of an
ATM- and ATR-mediated checkpoint response [17]. Spe-
cific phenotypes were observed upon USP3 KD, including
i) reduced ability to incorporate BrdU, witnessing
impaired DNA synthesis, ii) the presence of single-
stranded DNA coated by replication protein A (RPA), iii)

activation of the ATR-Chk1 pathway. These features are
consistent with USP3 KD cells undergoing replication
stress and suggest that S-phase delay and G2/M arrest are
intimately linked to DDR activation in these cells. Wheter
USP3 acts directly affecting the DNA replication process/
machinery, or rather through uH2A-mediated DDR sign-
aling, is presently the subject of investigation. Persistence
of γH2AX and uH2A DNA damage foci in USP3 KD cells
upon thymidine-induced replication stress, as well as
upon exogenous DNA damage (as discussed before), sup-
ports the participation of USP3 in ubiquitin (uH2A)-
mediated signaling (F. Nicassio and E. Citterio unpub-
lished results). Finally, the observation that γH2AX foci, in
USP3-depleted cells, coincide with the onset of S-phase
suggests that DNA replication is required for DDR activa-
tion (F. Nicassio and E. Citterio unpublished results).
Investigating how USP3 influences replication dynamics
will possibly contribute to the understanding of USP3/
uH2A role at replication forks and its functional interplay
with the S-phase checkpoint.

Third, H2A is globally de-ubiquitinated in the G2/M tran-
sition, which correlates with phosphorylation of H3 at
S10, a hallmark of mitosis [24]. Interestingly, Joo et al.
showed that Ubp-M is required for mitotic H2A de-ubiq-
uitination and that knockdown of UbpM results in G2/M
delay. In addition, in vitro experiments using reconstituted
nucleosomes reveal that uH2A inhibits H3 phosphoryla-
tion on serine 10 by AuroraB, at least in part by preventing
the binding of the kinase to nucleosomes (Figure 1E). De-
ubiquitination of H2A by UbpM relieves the inhibition of
AuroraB. Since H3S10 phosphorylation by AuroraB is
needed for chromosome condensation, these in vitro
results put forward the exciting possibility that Ubp-M-
mediated H2A deubiquitination may affect G2/M transi-
tion through a direct mechanism. Further investigation
will reveal if this is true in vivo.

Intriguingly, despite targeting the same substrate, H2A
DUBs display specificity in their roles in cell cycle regula-
tion. It is unknown whether this specificity is due to addi-
tional protein targets, besides H2A, or to other
mechanisms. Therefore, it will be interesting to assess if
different H2A DUBs can rescue each other defects in cell
cycle progression.

Finally, the H2A E3 ligases Ring1B and RNF8 are clearly
implicated in cell proliferation. Work by different groups
support a functional role for RNF8 in mitosis, showing its
requirement for mitotic exit [84,85]. Whether the effects
of RNF8 on mitosis are dependent on ubiquitination of
H2A remains to be investigated. As to Ring1B, its deletion
in mice is associated with gastrulation arrest and embry-
onic lethality [86]. Given that Ring1B deletion strongly
impact on expression of its target genes, it is difficult to
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distinguish between direct and indirect effects of Ring1B
on cell cycle progression [86,87]. Knockdown of Ring1B
results in cell cycle arrest in U2OS cells [11]. It will be
interesting to analyze this phenotype in more detail to
assess which phase of the cell cycle is affected.

Concluding remarks
Overall, the discussed data show that uH2A impacts on
several important aspects of cellular physiology. Although
recent work provides crucial insights, we are just starting
to decipher the role of uH2A. Intriguingly, despite the
common substrate, individual H2A DUBs seem to exhibit
distinct functional roles. In this regard, we will put for-
ward key questions concerning regulation of activity,
recruitment and substrate specificity, whose addressing is
predicted to greatly advance our knowledge of how DUBs
impact on the pleotropic function of H2A.

How is the activity of the H2A DUBs regulated? Interac-
tion with regulatory, non catalytic protein subunits and
posttranslational modifications have been shown to regu-
late DUB activity, including activity of USP7, USP1 and
USP28 [88-93]. Similar mechanisms may apply to the
H2A DUBs. USP22 displays in vitro H2A DUB activity only
in the context of SAGA, suggesting that other subunits of
the complex are important for the regulation of its activity
[27,29]. Phosphorylation of UbpM (USP16) and mono-
ubiquitination of 2A-DUB have been reported [24,27,33].
However, the functional significance of these observa-
tions remains to be elucidated.

How are H2A DUBs recruited to specific chromosomal
loci? As discussed before, in the case of USP22 and 2A-
DUB, local recruitment to their respective target genes has
been shown to depend on components of the protein
complexes they reside in (SAGA for USP22), as well as on
specific transcription factors [27-29]. The finding that two
DUBs, 2A-DUB and USP22 associate with HATs suggests
an important functional interplay between these classes of
enzymes. Biochemical purification of the other DUBs
(complexes) has yet to be performed.

Do H2A DUBs target additional substrates for deubiquiti-
nation? USP3 and USP22 are capable of deubiquitinating
H2B, in addition to H2A [17,28,29,35]. Moreover, USP22
may be required for deubiquitination of additional non-
histone proteins, as suggested by accumulation of other
ubiquitinated proteins upon loss-of-function of its Dro-
sophila homolog [94]. The ability to target more than one
substrate is not unprecedented among DUBs [90,93]. The
identification of putative additional key substrates is
essential for a better understanding of the function of the
H2A DUBs.

Finally, multiple observations suggest that H2A (de)ubiq-
uitination influences chromatin dynamics, in part
through the action of histone chaperones such as FACT
and Tip60 [20,27,40]. This may prove a common mode to
facilitate chromatin reorganization during transcription,
DDR and DNA replication, explaining the diversity of
processes that H2A DUBs and uH2A play a role in. It will
be important to examine the effect of ubiquitination of
H2A on histone mobility and to define how uH2A
impacts on the activities of chromatin remodeling com-
plexes/histone chaperones. The identification of the
DUBs and E3 ligases described in this review, as well as
potential novel ones will undoubtedly greatly facilitate
such analysis.
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