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Summary
Background Disease burden has been used to predict National Institutes of Health (NIH) funding but included
diseases with little underlying relationship. Here we focus on cancers to create a more appropriate model to allow for
more targeted scrutinization of funding allocation.

Methods An ecological study using NIH funding data (2008–2023) was performed. Inclusion of cancers was based on
their presence in the NIH Research Portfolio Online Reporting Tool and the 2021 Global Burden of Disease (GBD)
study. Disability-adjusted life years (DALY) were collected and to evaluate the impact of public interest, Google Trends
data was used. Multivariable linear regression determined appropriate funding based on disease burden and public
interest. To quantify how each cancer’s funding differed from model predictions residual values were used to
calculate the percent over/under funding.

Findings Fifteen cancers met inclusion criteria. Neuroblastoma had the greatest ratio of funding to DALYs per
100,000 people (US$14,000,000) while lung cancer had the lowest (US$300,000). Stomach cancer was the most
underfunded (197.9% [95% CI: 136.0%, 276.2%]) while brain cancer was the most overfunded (64.1% [95% CI:
53.8%, 72.1%]). Even at their lowest funding values in the study period brain, breast, and colorectal cancer all had
greater than 40% overfunding. Contrarily, the lowest annual funding for leukemia, uterine, and stomach cancer
received less than 150% of expected funding. Despite its overfunding brain cancer had an increase in DALYs in the
study period.

Interpretation Modeling by disease category demonstrated disparities in funding indicating the need for reevaluation
for possible funding inequities. The year-by-year approach taken in this study will drive the ability for future research
to better understand NIH funding decisions. Additionally, the role of public interest in research funding needs to be
further evaluated to ensure that popularity does not override disease burden, in funding decisions.
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Introduction
The National Institutes of Health (NIH) is an important
source of funding for researchers with roughly US$45
billion in grants being distributed in 2022.1 It has set
categories for funding using the Research, Condition,
and Disease Categorization (RCDC) system to data mine
for keywords of disease, conditions, and topics.2 For
each keyword category, funding allocation is based on
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the requests and recommendations of the scientific
community and NIH staff.3 It is inevitable that under
the current framework, certain pathologies will not
receive research funding representative of their disease
burden. Within the RCDC reporting system, the NIH
did not include disease burden metrics, such as
disability-adjusted life year (DALY), years of healthy life
lost due to disability (YLD), or years of life lost (YLL).
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Research in context

Evidence before this study
We searched PubMED for studies using disease burden to
predict NIH funding using a regression analysis. The following
keywords were searched: (“disease burden” OR “incidence” OR
“mortality” OR “prevalence” OR “disability-adjusted life years”
OR “years of life lost” OR “years lived with disability” OR
“advocacy” OR “lobbying” OR “popularity” OR “Google
trends”) AND (“funding” OR “National Institute of Health”).
Additionally, given our interest in assessing the public’s role in
cancer funding, we used the Google search engine to identify
material that pertained to advocacy and lobbying of cancer
funding. Articles published prior to September 15, 2024 were
included.
A majority of studies only used a single year of data which led
to inconsistent conclusions. Furthermore, all the studies
included a wide array of unrelated diseases. Analyzing disease
burden and research funding trends over a multiple year
period for a single disease category would provide more
actionable data to identify inequities in funding based on
disease burden.

Added value of this study
Our study sets a new standard for the methodological rigor
required to ascertain inequities in funding allocation for
various pathologies. We identified several cancers with over/
underfunding that requires further scrutinization. We also
demonstrated the impact public interest can have on disease

funding, signifying the importance of including this
parameter in future analyses. Our longitudinal approach
enabled a robust analysis of cancer trends and whether NIH
funding matched disease burden variations. In addition, our
model depicted cancer funding inequities. Thus, we supplied
the initial equity warnings for funding allocations and set the
stage for future studies to devise the best funding strategies
for research and innovation.

Implications of all the available evidence
The trends we identify within this study provide actionable
data for health experts and policymakers. Swift reevaluation is
required across several of the included cancers. The present
study provides a multitude of potential starting points for
future researchers to further analyze our findings on an
individual grant-level analysis. This study also acts as a primer
for future research to further explore the funding disparities
we identified as well as the temporal effects NIH funding can
have on disease burden. Furthermore, this study should act as
a precedent for future studies to model potential NIH funding
inequities using a single disease category. Given our
identification of the correlation between public interest and
NIH funding, the need for more transparency behind funding
decisions becomes paramount. While advocacy and lobbying
for disease funding can have positive effects, the findings of
this study indicate funding agencies must be diligent in
funding diseases equitably.
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These metrics can inform budget appraisers for each
funding category and explain any current disparities.

Studies investigating the burden of disease cate-
gories, incidence, prevalence, mortality, YLL, and DALY,
showed that only DALY was a predictor of funding
dispersal.4,5 However, this finding is inconsistent and is
likely related to year-to-year changes.6 Nevertheless,
DALY measures have been a staple of previous studies
and have shown funding disparities for a wide variety of
diseases.7,8

Our model is unique as it compares cancers across
two variables (DALYs and Google searches) to project
annual NIH funding over a sixteen-year interval. Eval-
uation of funding over an extended period enables the
formation of contextual hypotheses to describe funding
disparities and the impact of NIH funding. We also
quantify overall funding disparities amongst cancers
and assess the effect of public interest on NIH funding
allocations. The goal of our study was to identify inap-
propriately funded cancers that require individual grant-
level scrutinization.
Methods
This cross-sectional epidemiological study used the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines.9 This study did not
require institutional review board approval since all in-
formation is publicly available and no patients were
involved. To determine which cancers were included in
the analysis, a survey of the 2021 Global Burden of
Disease (GBD) study was performed.10 Neoplasms
category in the GBD study was queried and results are
shown in Supplementary Table S1. The GBD study
quantifies burden of disease, one measure of which is
DALYs. The 2021 GBD study estimates DALYs from
1990 through 2021 using data from disease registries,
surveys, and open-source databases. To calculate
DALYs, YLD is first calculated using disability weights
which measure how disease outcomes affect the level of
health.11 YLL is calculated by multiplying estimated
deaths by predicted life expectancy based on de-
mographic factors.12 DALYs is then a summation of
YLD and YLL.

To determine funding, the NIH Research Portfolio
Online Reporting Tool (RePORT) was used. NIH
RePORT is an online repository of NIH funding sorted
by disease.2 This is done using RCDCs which group
funding efforts based on keywords within project de-
scriptions. Collection of this data began in 2008; how-
ever new categories have been added and thus have
fewer years of data. As outlined in Supplementary
www.thelancet.com Vol 45 May, 2025
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Table S1, all cancers included in the GBD study were
evaluated for matching RCDC categories to allow a link
between disease burden and NIH funding.

Google Trends13 data, using the Glimpse14 extension,
was included to determine the relationship between
public interest and NIH funding. This extension tracks
the number of searches that relate to a keyword.
Glimpse has been used as a measure of public interest
in prior studies.15–18 The keywords inputted for each
cancer are shown in Supplementary Table S1. Con-
struction of keywords prioritized simple keywords to
enable “the best matching” to all possibly related search
terms.

Assuming that NIH funding is predicated upon
disease burden and/or public interest, there is a need to
lag these variables. Following a prior study’s precedent,
a lag of two years was considered appropriate.7 Given the
GBD study includes data through 2021 and NIH Report
includes data from 2008 to 2023, DALYs were collected
from the years 2006–2021 and the same was done for
Google Searches. DALY estimates were calculated as
rates per 100,000 persons including only patients within
the United States. Google searches were collected as
total counts of searches. All NIH funding values were
inflation-adjusted to represent a dollar value represen-
tative of January 1st, 2024.19 For cancers that did not
have NIH funding data available for the entire period
(2008–2023) DALYs and Google search values were
included from two years before the first reported fund-
ing amount.

Data analysis
GBD provides annual DALY estimates with a 95%
confidence interval (CI). Given the stability of the pro-
vided CIs, we averaged DALY point estimates, and a CI
was calculated based on the standard error of the mean
(SEM). Hodgkin and non-Hodgkin lymphoma data were
combined. Lymphoma data combination was done on a
year-by-year basis. Point estimates were summed.
Standard error (SE) was calculated based on the original
CIs. The square root of the summed squared SEs were
calculated and multiplied by 1.96 to obtain a new 95%
CI. DALYs were graphed with the original 95% CIs
determined by the 2021 GBD study.10

To assess the effect of DALYs and Google searches
on funding, univariable linear regression was per-
formed. Three data points from each cancer were used.
The year with the highest and lowest NIH funding was
found for each cancer and was paired with the inde-
pendent variable from two years prior, resulting in a
two-year lag. The third data point was the cancer’s
average NIH funding and the average of DALYs or
Google searches. This approach mitigated factors like
autocorrelation while capturing data variability. Sample
size was comparable to previous studies.6,7 Univariable
linear regression assessed if both DALYs and Google
searches met an α < 0.2 to validate their inclusion in
www.thelancet.com Vol 45 May, 2025
multivariable regression. Multivariable regression was
performed using DALYs and Google searches as pre-
dictors of NIH funding. Multicollinearity was assessed
using variance inflation factor (VIF) with an a priori
limit of 5 considered acceptable. The model met this
requirement (VIF = 1.5).

All data was log-transformed. Scatter plots (linearity),
Q-Q plots and Shapiro–Wilk test (normality), Residual
vs. fitted value plots and Breusch–Pagan (hetero-
scedasticity), and Breusch-Godfrey (autocorrelation)
evaluated assumptions of linear regression. Adjusted R2

were obtained and 95% CIs were calculated using non-
parametric bootstrapping with 1000 resamples sum-
marized at the 2.5th and 97.5th percentiles. Calculation
of coefficient 95% CIs used SEs of the coefficient
calculated from the model.

Predicted values were calculated using multivariable
linear regression. The remainder of the dataset was log-
transformed and added to the multivariable linear
equation. 95% CIs of predicted values were calculated
from the standard error of estimate of the predictions.
CIs were calculated by multiplying standard error of
estimate of the predictions by 1.96 (assuming
normality). Predictions and CIs were back-transformed
using exponentiation. Using actual funding minus
predicted, we calculated percent over/underfunding by
dividing the difference by actual funding. The same
procedure was done with the CIs. Positive percentages
indicated overfunding and negative percentages indi-
cated underfunding. Given the estimative nature of
DALYs, sensitivity testing was performed. We modeled
two multivariable regressions (one for upper and lower
CIs as estimated by the 2021 GBD study) using the
methods described above.

Joinpoint regression determined temporal trends of
DALYs and Google searches (response variables) across
time. Log link function was applied, and constant vari-
ance was assumed. Breusch–Pagan tests were used to
evaluate heteroscedasticity. Two models of Google
searches (prostate: P = 0.031 and pancreatic: P = 0.040)
were significant. Ordinary least squares method was still
used given evaluation of residual vs. fitted plots showed
little evidence of heteroscedasticity (Supplementary
Fig. S1). Joinpoints were determined by finding trends
that resulted in a significant change (P < 0.05). A join-
point could not occur within two data points of another
or two points from the beginning or end of the available
data. The maximum number of joinpoints are outlined
in Supplementary Table S2.20 Model selection was done
using weighted Bayesian information criterion (BIC).21

The model with the lowest weighted BIC was chosen.
Annual percent change (APC) was calculated between
joinpoints and average annual percent change (AAPC)
was calculated for the entire period. APC was calculated
as the exponential of the slope of the fitted regression
minus one multiplied by 100 to represent a percentage
change. AAPC was determined by averaging the APCs
3

http://www.thelancet.com


Articles

4

which were weighted based on duration.22 Uncorrelated
error models were used. For sensitivity analysis, we fit
the error models with first-order autocorrelation of 0.3.23

APC and AAPC CIs were estimated using the empirical
quantile method with 1000 resamples summarizing
results at the 2.5th and 97.5th percentiles.24

The role of institution-specific funding is shown
proportionally based on total funding. R (version 4.3.3)
was used for all analysis except joinpoint regression
which was done using Joinpoint Regression Program
Statistical Research and Applications Branch, National
Cancer Institute (Version 5.2.0.0). P values < 0.05 were
considered statistically significant. NIH funding values
were presented as United States dollars with standard
deviation (SD). DALYs were presented as a count per
100,000 people with 95% CI. Google searches were
presented as total counts with SD. In the Supplementary
materials, cancers were stratified into three groups
based on average funding.

Role of funding source
No funding.
Results
Fifteen cancers were included in the study. On average,
breast cancer was highest (US$929.6, SD = US$97.0),
and stomach cancer was lowest (US$43.3, SD =
US$10.1) funded. Breast cancer had the highest funding
throughout but there was annual variability regarding
the lowest-funded cancer (Supplementary Fig. S2). Lung
cancer contributed the greatest average DALYs (1200.2
[95% CI: 1151.0, 1249.4]) and was the greatest across all
NIH fundinga

[SD] ($ Millions)
DALY [95% CI]
(per 100,000 people)

Go
[SD

Breast cancer 929.6 [97.0] 437.6 [431.2, 444.0] 10

Lung cancer 406.2 [111.1] 1200.2 [1151.0, 1249.4] 4

Brain cancer 405.2 [49.7] 173.5 [170.3, 176.8] 1

Colorectal cancer 387.2 [25.8] 502.6 [500.3, 504.8]

Prostate cancer 359.0 [53.2] 248.8 [242.5, 255.1] 3

Lymphoma 316.6 [30.6] 198.9 [193.6, 204.2] 4

Pancreatic cancer 233.6 [52.2] 328.2 [316.2, 340.3] 1

Ovarian cancer 184.5 [22.8] 126.0 [122.5, 129.6] 2

Leukemia 170.3 [79.2] 202.9 [198.7, 207.1] 3

Cervical cancer 140.0 [17.6] 68.9 [67.9, 69.9] 2

Liver cancer 133.5 [32.0] 146.1 [135.2, 157.0] 1

Neuroblastoma 70.0 [31.9] 5.0 [4.8, 5.2]

Esophageal cancer 54.9 [8.2] 141.3 [137.8, 144.8]

Uterine cancer 49.2 [14.2] 74.4 [68.3, 80.6]

Stomach cancer 43.3 [10.1] 108.6 [107.7, 109.5] 1

Values represent available funding data from 2008 to 2023, DALY and Google search da
SD = Standard Deviation. aInflation adjusted to January 2024.

Table 1: Average funding, disability adjusted life years, google searches and
years while the opposite was true for neuroblastoma (5.0
[95% CI: 4.8, 5.2]) (Supplementary Fig. S3). Breast
cancer had the greatest public interest recording an
average of 102,922,648.8, SD = 20,705,034.2 Google
searches with esophageal cancer generating the fewest
(3,949,404.0, SD = 434,454.3). Breast cancer consistently
had the greatest annual Google search counts
(Supplementary Fig. S4). Neuroblastoma had the
greatest funding ratio to DALYs (US$14,000,000) while
lung cancer had the lowest (US$300,000). Colorectal
cancer had the highest (US$60.7) and brain cancer had
the lowest (US$3.9 per Google search) ratio of funding
dollars per Google search (Table 1).

To determine if DALYs can independently predict
NIH funding, a univariable regression was performed
with assumption testing (Supplementary Fig. S5). The
regression was significant (P < 0.0001) with an R2 = 0.35
[95% CI: 0.06, 0.52]. The coefficient of Log DALYs was
0.49 [95% CI: 0.29, 0.69] and the intercept was 2.69 [95%
CI: 1.66, 3.73], P < 0.0001. Supplementary Fig. S6 shows
that the univariable regression of Google searches pre-
dicting NIH funding met assumptions. This model was
significant (P < 0.0001) with an R2 = 0.39 [95% CI: 0.14,
0.82]. The coefficient of Log Google searches was 0.64
[95% CI: 0.40, 0.87], and the intercept was −5.40 [95%
CI: −9.36, −1.45], P = 0.0090. As both univariable
models met inclusion criteria (α < 0.2), a multivariable
regression using DALYs and Google searches (inde-
pendent variables) and NIH funding (dependent vari-
able) was performed which met assumptions
(Supplementary Fig. S7). The regression was significant
(P < 0.0001) with an R2 = 0.47 [95% CI: 0.24, 0.85]. The
coefficient of Log DALYs was 0.29 [95% CI: 0.07, 0.51],
ogle Searches
] (Count)

Millions of
Dollars/DALYs
per 100,000 People

Dollar/Google
Search

2,922,648.8 [20,705,034.2] 2.1 9.0

1,329,546.5 [5,784,932.6] 0.3 9.8

0,341,742.3 [967,070.8] 2.3 3.9

6,372,840.0 [655,194.6] 0.8 60.7

2,769,447.3 [2,965,197.2] 1.4 11.0

1,120,357.5 [4,550,102.8] 1.6 7.7

9,023,394.8 [2,299,765.6] 0.7 12.3

0,109,181.3 [2,770,076.1] 1.5 9.2

8,045,355.9 [3,360,136.2] 0.8 4.5

2,338,145.7 [3,233,446.5] 2.0 6.3

5,583,726.1 [1,351,094.1] 0.9 8.6

4,172,551.4 [531,238.1] 14.0 16.8

3,949,404.0 [434,454.3] 0.4 13.9

4,064,790.2 [467,690.9] 0.7 12.1

0,705,192.5 [635,773.0] 0.4 4.0

ta from 2006 to 2021. CI: Confidence Interval, DALY: Disability Adjusted Life Years,

ratios among included cancers.

www.thelancet.com Vol 45 May, 2025
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P = 0.010. The coefficient of Log Google searches was
0.44 [95% CI: 0.17, 0.70], P = 0.0020 and the intercept
was −3.55 [95% CI: −7.50, 0.40], P = 0.078.

Back-transformation of the residuals are shown as
percent differences from actual funding in Fig. 1. When
considering each cancer’s highest annual funding value,
neuroblastoma was the most overfunded (74.4% [95%
CI: 50.0%, 86.9%]). Stomach cancer was the most
underfunded receiving 147.7% [95% CI: 95.7%, 213.4%]
less than predicted. At average funding value, stomach
cancer was the most underfunded (197.9% [95% CI:
136.0%, 276.2%]) while brain cancer was the most
overfunded, receiving 64.1% [95% CI: 53.8%, 72.1%]
Breast Cancer

Lung Cancer

Brain Cancer

Colorectal Cancer

Prostate Cancer

Lymphoma

Pancreatic Cancer

Ovarian Cancer

Leukemia

Cervical Cancer

Liver Cancer

Neuroblastoma

Esophageal Cancer

Uterine Cancer

Stomach Cancer

Maximum

Fig. 1: Percent error of residuals for years with maximum funding, average
compared to predicted while negative values indicate underfunding. The t
funding (Black), and minimum funding year (Red). Values represent res
Confidence Intervals (CI) were made by determining the uncertainty o
predictions. Following exponentiation these CIs were subtracted from the
represent CIs in the figure. For overfunding the theoretical maximum was
interpreted in the context of actual funding values. Cancers are presente

www.thelancet.com Vol 45 May, 2025
greater funding than predicted. At the lowest funding
values brain, breast, and colorectal cancer all showed
greater than 40% overfunding. Leukemia, uterine, and
stomach cancer all had funding levels that, even when
considering uncertainty, received less than 150% of
predicted funding. Sensitivity testing was performed
and results are summarized in Supplementary Table S3.
Substitution with the upper and lower DALY estimates
from the GBD study did not result in significant
aberrations.

Applying the multivariable linear regression equa-
tion to all the data yields the results in Fig. 2. Amongst
the top five funded cancers (listed in descending order
Underfunded Overfunded

Average Minimum

funding, and minimum funding. Positive values indicate overfunding
hree values presented are the maximum funding year (Blue), average
idual (actual funding–predicted funding) divided by actual funding.
f predicted values based on the standard error of estimate of the
actual funding. These values were then divided by actual funding to
100% overfunded. Therefore percent funding discrepancies should be
d in descending order based on average NIH funding dollars.
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2023
43

[14, 62]

18
[-23, 46]

68
[58, 76]

55
[27, 72]

13
[-12, 33]

18
[-12, 40]

19
[-5, 38]

11
[-11, 28]

4
[-27, 27]

16
[-14, 38]

13
[-8, 30]

75
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-71
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2022
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7
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8
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-7
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-81
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-195
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2020
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[22, 67]

15
[-27, 44]

66
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58
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14
[-13, 34]

10
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13
[-12, 33]

25
[5, 40]

-23
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-12
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45
[-7, 72]
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54
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-31
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··

2016
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[8, 63]

-4
[-59, 32]

63
[53, 71]

58
[29, 75]

24
[2, 40]

26
[3, 44]

-1
[-30, 22]

7
[-17, 26]

-32
[-75, 0]

-18
[-59, 13]

-48
[-83, -19]

23
[-50, 60]

··

-17
[-70, 20]

··

2015
42

[9, 64]

3
[-49, 36]

64
[53, 72]
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[38, 78]

32
[12, 47]

28
[5, 46]

3
[-25, 24]

-15
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11
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1
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2013
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-34
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0
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-20
[-65, 13]

-69
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21
[-51, 59]

··

-45
[-109, -1]

··
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[20, 69]

-45
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[0, 41]

8
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10
[-14, 28]
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-3
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-56
[-94, -26]

21
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-31
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··

2011
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-56
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Fig. 2: Annual funding discrepancies from predicted values. Values represent actual funding–predicted funding divided by actual funding.
Positive values indicate overfunding (blue values) compared to predicted while negative values indicate underfunding (red values). Confidence
Intervals (CI) were made by determining the uncertainty of predicted values based on the standard error of estimate of the predictions.
Following exponentiation these CIs were subtracted from the actual funding. These values were then divided by actual funding to represent CIs
in the figure. For overfunding the theoretical maximum was 100% overfunded. Therefore percent funding discrepancies should be interpreted in
the context of actual funding values. Cancers are presented in descending order based on average NIH funding dollars.
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in Fig. 2), lung cancer appears to be the only anomaly
which was limited to the years 2008–2014. The middle-
funded cancers (6–10) demonstrated similar trends with
leukemia showing a similar trajectory to lung cancer.
Amongst the lowest-funded cancers, there are limita-
tions given stomach and esophageal cancer have limited
data. Stomach cancer was most underfunded for all
years of available data.

Putting in context these funding trends, we display
DALY and Google search trends in Supplementary
Figs. S3 and S4. Joinpoint regression results are sum-
marized in Table 2. Lung cancer, which showed a cor-
rected underfunding trend, also demonstrated a
consistent decrease in DALYs. This decrease was most
evident from 2014 to 2019 (APC = −2.5% [95%
CI: −2.9%, −2.2%], P < 0.0001). Liver cancer had the
largest percent increase of DALYs over the study period
(AAPC = 3.0% [95% CI: 2.8%, 3.1%], P < 0.0001). This
increase was most pronounced at its two earlier join-
points (2006–2011 & 2011–2017) which coincided with
liver cancer being underfunded. Neuroblastoma had the
largest overall decrease in DALYs (AAPC = −1.9% [95%
CI: −2.0%, −1.7%], P < 0.0001) and was consistently
overfunded (Fig. 2). Google trends showed larger per-
centage changes compared to DALYs. Most cancers had
an overall decrease in Google searches. This was most
apparent for breast and lung cancer (Table 2). Sensitivity
analysis showed the results were relatively consistent
when adjusting for possible autocorrelation
(Supplementary Table S4).

The “cancer” category on the NIH reporter tool had
15,887.4 average annual grants from 2008 to 2023.
Breast cancer received the greatest number of grants
(Fig. 3A). All cancers received most of their funding
from the National Cancer Institute (NCI). The “can-
cer” NIH category received 81.8% of its funding from
the NCI. The National Institute of General Medical
Sciences (NIGMS) contributed the second most to
cancer funding (2.7% of total). Neuroblastoma
received the greatest proportion of its funding dollars
from the NCI (91.6%) while liver cancer received the
lowest proportion (69.0%) (Fig. 3B). Among the top
ten funded cancers, only the National Institute of
Neurological Disorders and Stroke (NINDS) funding
of brain cancer and the National Institute of Allergy
and Infectious Diseases (NIAID) funding of lym-
phoma exceeded 5% of a cancer’s funding
(Supplementary Tables S5 and S6). This was more
frequent amongst the lowest five funded cancers as
the National Institute of Diabetes and Digestive and
Kidney Diseases (NIDDK) funding of liver, esopha-
geal, and stomach cancer met this 5% threshold for
both the number of grants and dollars contributed
(Supplementary Table S7).
Discussion
Several studies attempted to quantify the predictors of
NIH funding.4–8 To our knowledge, no study has done a
year-by-year analysis of NIH funding on one category of
disease, across measures of disease burden and public
interest. The advantages of such an approach allow the
analysis of trends and speculation of causative factors in
a contextual framework.
www.thelancet.com Vol 45 May, 2025
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Cancer First Joinpoint Second Joinpoint Third Joinpoint Total

Joinpoint (Year) APC [95% CI] (%) P Value Joinpoint (Year) APC [95% CI] (%) P Value Joinpoint (Year) APC [95% CI] (%) P Value AAPC [95% CI] (%) P Value

DALY Breast cancer 2006–2013 −0.8 [−1.7, −0.5] 0.030 2013–2021 −0.3 [−0.5, 0.6] 0.28 – – – −0.5 [−0.7, −0.4] <0.0001

Lung cancer 2006–2014 −1.3 [−1.4, −1] <0.0001 2014–2019 −2.5 [−2.9, −2.2] <0.0001 2019–2021 1.4 [0.4, 2.2] 0.008 −1.3 [−1.4, −1.2] <0.0001

Brain cancer 2006–2010 0.5 [−0.4, 1] 0.14 2010–2016 1.3 [1.0, 1.9] 0.020 2016–2021 −0.3 [−0.8, 0.1] 0.084 0.5 [0.4, 0.6] <0.0001

Colorectal cancer 2006–2010 −0.5 [−1.5, 0.0] 0.082 2010–2021 0.1 [−0.1, 0.8] 0.078 – – – 0.0 [−0.1, 0.1] 0.57

Prostate cancer 2006–2013 −0.3 [−0.6, −0.1] 0.0020 2013–2021 1.8 [1.6, 2.0] <0.0001 – – – 0.8 [0.7, 0.9] <0.0001

Lymphoma 2006–2013 −1.5 [−1.9, −1.3] <0.0001 2013–2019 −0.8 [−1.1, −0.4] <0.0001 2019–2021 1 [0.0, 1.5] 0.056 −0.9 [−1.0, −0.8] <0.0001

Pancreatic cancer 2009–2013 1.4 [0.8, 1.6] <0.0001 2013–2016 2.2 [1.8, 2.4] <0.0001 2016–2021 1.2 [0.9, 1.3] <0.0001 1.5 [1.4, 1.5] <0.0001

Ovarian cancer – – – – – – – – – −1.1 [−1.2, −0.9] <0.0001

Leukemia 2006–2019 −0.9 [−1.3, −0.7] 0.020 2019–2021 0.2 [−0.8, 0.7] 0.86 – – – −0.7 [−0.9, −0.7] <0.0001

Cervical cancer 2006–2016 0.4 [−0.1, 0.9] 0.070 2016–2019 −2.6 [−3.2, 0.9] 0.21 2019–2021 −0.3 [−2.1, 0.8] 0.47 −0.3 [−0.5, −0.2] <0.0001

Liver cancer 2006–2011 4.3 [3.9, 5.6] <0.0001 2011–2017 3.0 [2.5, 3.5] <0.0001 2017–2021 1.2 [0.0, 1.8] 0.048 3.0 [2.8, 3.1] <0.0001

Neuroblastoma – – – – – – – – – −1.9 [−2.0, −1.7] <0.0001

Esophageal cancer – – – – – – – – – 1.2 [0.9, 1.5] <0.0001

Uterine cancer 2006–2013 3.0 [2.2, 3.3] <0.0001 2013–2017 4.8 [4.0, 5.8] <0.0001 2017–2021 1.4 [0.4, 2.1] 0.026 1.4 [0.4, 2.1] <0.0001

Stomach cancer – – – – – – – – – 0.0 [−0.9, 1.1] 0.91

Google Searches Breast cancer 2006–2010 −6.9 [−11.4, −4.4] <0.0001 2010–2021 −3.1 [−3.7, −1.4] 0.022 – – – −4.1 [−4.7, −3.5] <0.0001

Lung cancer 2006–2010 −9.7 [−17.9, −5.5] 0.0040 2010–2019 0.8 [−0.4, 7.2] 0.088 2019–2021 −6.5 [−14.6, −0.5] 0.034 −3.1 [−4.1, −2.2] <0.0001

Brain cancer 2006–2011 −2.3 [−7.8, 0.0] 0.056 2011–2018 4 [2.6, 8.6] <0.0001 2018–2021 −9.9 [−14.9, −5.6] <0.0001 −1.0 [−1.8, −0.4] 0.0060

Colorectal cancer 2006–2013 −4.2 [−7.9, −2.4] <0.0001 2013–2021 3.7 [2.1, 6.8] <0.0001 – – – 0.0 [−0.8, 0.7] 0.88

Prostate cancer 2006–2015 −2.9 [−5.5, −1.8] <0.0001 2015–2021 2.0 [−0.1, 6.9] 0.070 – – – −0.9 [−1.7, −0.2] 0.022

Lymphoma 2006–2014 −3.9 [−5.2, −3.0] <0.0001 2014–2019 7.6 [5.7, 10.9] <0.0001 2019–2021 −9.3 [−14, −3.4] <0.0001 −1.0 [−1.6, −0.5] <0.0001

Pancreatic cancer 2009–2016 −0.6 [−8.4, 1.6] 0.37 2016–2019 −0.6 [−8.4, 1.6] 0.016 2019–2021 −13.3 [−22.5, −2.7] 0.024 −0.2 [−1.9, 1.1] 0.62

Ovarian cancer 2006–2008 −12.8 [−17.2, −4.0] <0.0001 2008–2018 −0.7 [−1.4, 5.0] 0.62 2018–2021 −7.2 [−14.8, −2.7] <0.0001 −3.7 [−4.7, −2.7] <0.0001

Leukemia 2006–2008 −7.2 [−10.7, −1.2] 0.0020 2008–2021 −1.1 [−3.6, 1.6] 0.16 – – – −1.9 [−2.5, −1.1] <0.0001

Cervical cancer – – – – – – – – – −2.3 [−3.5, −1.2] 0.0020

Liver cancer 2006–2010 −7.0 [−10.2, −4.7] <0.0001 2010–2019 1.4 [0.8, 3.6] 0.0040 2019–2021 −5.7 [−9.8, −0.8] 0.006 −1.8 [−2.4, −1.3] <0.0001

Neuroblastoma 2009–2017 0.1 [−1.9, 12.8] 0.86 2017–2021 −8.5 [−23.1, −3.3] <0.0001 – – – −2.9 [−5.1, −0.2] 0.042

Esophageal cancer – – – – – – – – – −0.8 [−11.5, 12.1] 0.84

Uterine cancer 2006–2008 −9.3 [−12.8, −2.9] <0.0001 2008–2019 −1.2 [−1.6, 3.0] 0.35 2019–2021 −6.7 [−12.0, −2.1] <0.0001 −3.0 [−3.7, −2.3] <0.0001

Stomach cancer – – – – – – – – – −3.2 [−8.7, 3.1] 0.28

APC values represent percent change in specified time interval. AAPC is a weighted average of the calculated APC. Weighting was based on duration of APC. Esophageal and stomach cancer did not have enough data points to consider joinpoints
and thus only a total AAPC was calculated for those cancers. The number of joinpoints was determined based on the model with lowest weighted Bayesian information criterion. APC: Annual percent change, AAPC: Average annual percent change,
CI: Confidence Interval, DALY: Disability Adjusted Life Years.

Table 2: Joinpoint regression results for disability adjusted life years and google searches.
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Fig. 3: National institutes of health funding shown by A. Number of Grants per Year and B. Proportion of total grants and total funding from
the National Cancer Institute (NCI). Values represent funding data ranging from 2008 through 2023 although not all cancers have full data.
Cancers are presented in descending order based on average NIH funding dollars in descending order. NCI = National Cancer Institute.
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Like previous studies, we find that DALYs signifi-
cantly predicted NIH funding.4–8 The effect of incre-
mental DALY changes on NIH funding as quantified by
the beta coefficient was consistent with a prior study that
applied similar methods.7 Focusing on the presented
multivariable model, the beta coefficient of DALYs was
equal to 0.29 [95% CI: 0.07, 0.51]. Given the log scale,
this indicates that for every one percent increase in
DALYs, NIH funding would be expected to rise by
0.29%. Comparatively, the beta coefficient of log Google
searches was 0.44 [95% CI: 0.17, 0.70]. While this sug-
gests Google searches are more impactful in
determining funding levels, this must be taken into
context with the scaling and units of the original value.
As shown in Table 1, Google search values are in the
order of millions which is not the case for DALYs.
Therefore, evaluation of the beta values should be used
in the context that a one percent increase of DALYs
represents a much smaller true change.

Our results regarding Google searches align with a
previous study’s findings that demonstrated Google
searches to be predictive of cancer funding in South
Korea.25 A causative explanation for this finding is that
the number of Google searches may directly indicate
www.thelancet.com Vol 45 May, 2025
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Articles
public interest. With increased public interest comes
greater awareness and the development of more
lobbying groups. One study found that advocacy was a
direct driver of NIH funding making the relationship of
Google searches and NIH funding compared to more
obvious measures of disease burden, reasonable.26

Similar to our findings, a separate study looking spe-
cifically at non-profit organizations and advocacy group
funding, found that the revenue of these organizations
was correlated with disease burden characteristics.27

Breast cancer had more than double the funding of
any other cancer. However, its average DALY value was
comparable to colorectal cancer which had an average
funding of less than US$400,000,000 annually. Consid-
ering Google searches, breast cancer once again more
than doubles any other cancer (Table 1). Both values for
breast cancer have been declining with the decline in
Google searches being far greater than that of DALYs.
These trends seem to indicate a strong relationship be-
tween public interest in breast cancer and its subsequent
funding. Colorectal cancer, on the other hand, did not
experience the same decline in its funding value despite
having a similar trend in Google searches from 2006 to
2013 (Table 2). This finding necessitates a closer look at
how lobbying efforts for breast cancer have changed.
Another outlier shown in Table 1 is neuroblastoma.
Despite contributing the fewest average DALYs, its
funding-to-disease burden ratio far outweighs all the
other cancers. This is shown in the regression models as
neuroblastoma demonstrated a trend of overfunding
particularly in more recent years (Fig. 2). Promisingly,
this overfunding coincided with a decrease in DALYs
greater than any other cancer (Table 2). The context of
this decrease should be noted in accordance with the low
value of DALYs contributed by this disease, therefore the
larger percentage drop does not represent a large overall
impact. Thus, neuroblastoma can be highlighted as a
cancer that requires further scrutiny.

Regarding overfunding, brain cancer, even at its
lowest annual funding value, still received greater than
predicted funding (Fig. 1). However, brain cancer DALY
trends increased moderately throughout the study
period (Table 2). This is unlike breast and colorectal
cancer, which also were overfunded at their minimum
funding values. Demonstrating that even with
increasing disease burden, brain cancer still was rela-
tively overfunded. Brain cancer needs to be further
evaluated because it receives large sums of funding
from non-NCI institutes (Fig. 3B & Supplementary
Table S5). The importance of this fact is predicated on
the need for coordination between funding agencies.
Given that brain cancer is funded disproportional to its
disease burden and public interest, there is a need to
evaluate the communication between institutions.
Stomach cancer was the only cancer that demonstrated a
clear pattern of underfunding regarding its highest,
average, and lowest NIH funding values (Fig. 1).
www.thelancet.com Vol 45 May, 2025
However, as shown in Fig. 2 there was a clear decrease
in its funding discrepancy from 2020 to 2021. This trend
has continued although at a slower pace. The number of
grants it has received is close to cancers of similar
funding and, given the limited time it has been included
as a RCDC category, more time is likely needed to clarify
the meaning of the trend (Fig. 3A).

A limitation of the model building is that DALYs and
Google searches do not comprise all the factors deter-
mining funding decisions. Therefore, there is inherent
model misspecification. Furthermore, the use of three
data points for each cancer which was necessary to avoid
deleterious transformations of the data further limits
the generalizability of this study. While the present
study quantified NIH spending, we did not organize the
investments into their respective areas of research, as
has been done previously.28 Lastly, this study evaluated
NIH funding which is not the only means of financial
investment into cancer research. While a previous study
analyzed other sources of funding among cancers, they
only did so for a single year, limiting the applicability of
their findings.27

Future studies should be performed to understand
NIH funding temporally by disease category, as com-
parisons across many different disease categories for a
single year yield results that are less actionable. We
conclude that brain, breast, and colorectal cancer had
greater funding than predicted while leukemia, uterine,
and stomach cancer received less than the expected
funding. This study provides steppingstones for future
studies to examine years of over/underfunding as
determined by this study, to uncover the rationale for
research funding of each respective cancer. Focusing on
a specific cancer would enable a more detailed analysis
of factors responsible for funding allocation including
identifying each disease’s funding sources (not just
NIH), modes of research being funded (e.g., basic sci-
ence, clinical, epidemiological), recent advancements,
and political lobbying efforts.
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