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Virotherapy is a novel treatment for cancer, which may be delivered as a single agent or in combination with other therapies.
Research studies indicated that the combination of viral therapy and radiation therapy has synergistic antitumor effects in
in vitro and in vivo. In this paper, we proposed two models in the form of partial differential equations to investigate the
spatiotemporal dynamics of tumor cells under virotherapy and radiovirotherapy. We first presented a virotherapy model and
solved it numerically for different values of the parameters related to the oncolytic virus, which is administered continuously.
The results showed that virotherapy alone cannot eradicate cancer, and thus, we extended the model to include the effect of
radiotherapy in combination with virotherapy. Numerical investigations were carried out for three modes of radiation delivery
which are constant, decaying, and periodic. The numerical results showed that radiovirotherapy leads to complete eradication of
the tumor provided that the delivery of radiation is constant. Moreover, there is an optimal timing for administering radiation,
as well as an ideal dose that improves the results of the treatment. The virotherapy in our model is given continuously over a
certain period of time, and bolus treatment (where virotherapy is given in cycles) could be considered and compared with our
results.

1. Introduction

Cancer is a complex disease, and its complexity causes it to
resist conventional therapies [1]. Accordingly, the combina-
tion of different cancer therapies emerged as one of the novel
strategies that are aimed at improving the outcome (killing
cancer). The principle of combination therapies consists of
the use of various attack mechanisms that prevent cancer
from resisting treatment [2]. Recently, oncolytic viruses have
been vigorously investigated as an anticancer treatment. Vir-
otherapy is used either as a single agent or in combination
with different conventional cancer therapies such as chemo-
therapy [3] and radiation therapy [4].

Virotherapy destroys tumor cells through a mechanism
different from radiation therapy. Although the mechanisms
of oncolytic viruses are not entirely obvious, these viruses
have the ability to selectively target, replicate in, and destroy
cancer cells [5]. In contrast, the radiation therapy destroys
the cancer cells by directly damaging the DNA or indirectly,
by forming oxygen radicals which disturb cellular pathways

[2]. Furthermore, the combination of these two therapies
leads to synergistic relationships, as radiation may enhance
viral uptake, viral gene expression, and viral replication [4].

Numerous research studies have demonstrated that the
combination of oncolytic viruses and radiotherapy leads to
promising therapeutic results that are not attainable by
monotherapy [6–9]. For example, the study by Bieler et al.
[7] determined that utilizing the oncolytic adenovirus dl520
in conjunction with radiation therapy resulted in an increase
in viral replication. They concluded that the combination of
radiation and dl520 achieved the inhibition of tumor growth
by 89% after 32 days from the beginning of treatment. This is
significantly more effective than giving each treatment
separately, where the tumor growth was inhibited by dl520
and radiation by 45% and 52%, respectively. Another exper-
imental study carried out by Dilley et al. [8] indicated that the
oncolytic adenovirus CG7870 and radiotherapy, when com-
bined, lead to increased antitumor efficacy with lower doses.
Furthermore, their results showed that this combination
resulted in a significant mean tumor volume that is 34% of
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the baseline, 39 days after treatment. However, when consid-
ering CG7870 and radiation as separate treatments, the mean
tumor volume reached 121% and 126% of the baseline,
respectively.

Establishing mathematical models is an effective tool to
gain more insights concerning combined treatments. Dingli
et al. [10] developed a mathematical model in the form of
ordinary differential equations (ODEs), for cancer radiovir-
otherapy treatment. This model has equilibrium points
showing complete and partial eradication of cancer in addi-
tion to therapy failure. In addition, Tao and Guo [11] gener-
alized the model in [10] by considering the spatiotemporal
distribution of tumor cells. By numerical simulations, they
concluded that radiovirotherapy is more effective than vir-
otherapy alone. They also indicated that there is an optimal
timing of radioiodide administration and an optimal dose
of the radioactive iodide that could achieve favorable results
with this treatment.

Jenner et al. [12] introduced a mathematical model con-
sisting of three nonlinear ODEs describing the interaction
between tumor cells and oncolytic virus therapy. In this
paper, we will develop these ODEs by considering the spatial
variation and diffusion of cancer cells. Thus, we include a dif-
fusion term for the tumor cell density as well as virus density
(we assume that viruses diffuse into cancer). In addition, we
will add a term describing the elimination of free viruses
due to the infection of tumor cells. This is based on the
assumption that when a virus infects a cancer cell, it becomes
inactive and cannot infect other cancer cells [13]. Thus, it
cannot be considered as a part of the free virus population.
In addition to this model, we will introduce another model
where we include the effect of radiotherapy in combination
with virotherapy. The aim of this paper is to predict the out-
come of two phases of treatments where virotherapy is given
alone for a certain period of time (Model 1, Phase I); then
immediately afterwards, radiotherapy is introduced in con-
junction with virotherapy (Model 2, Phase II). Thus, the
two models will be solved numerically with different values
for the parameters along with various doses of radiation
(Model 2) to determine the optimal strategy that can produce
the ideal results for the treatment. This paper is organized as
follows: In Section 2, we present a model for virotherapy and
solve it numerically with different values for the parameters,
where the virus is delivered to the tumor continuously. In
Section 3, we extend the virotherapy model by including
the effect of radiotherapy. Afterwards, we numerically study
it with three modes of the radiation delivery which are con-
stant, decaying, and periodic (similar to the model in [14]).
Section 4 will conclude with a discussion and suggestions
for further research.

2. Phase I: Virotherapy Treatment

2.1. Model Description. To further understand the effects of
viral therapy on tumor growth, we present a model describ-
ing the dynamic interactions between tumor cells and viral
therapy. Our model is formulated in terms of partial differen-
tial equations (PDEs) that take into consideration the spatio-

temporal variation of tumor cells. This model represents
Phase I of the treatment for cancer.

We assume that tumor cells depend on the closest blood
vessel. For simplicity, we assume that the region is cylindri-
cally symmetric, and thus, the variables depend on time t
and radial distance r. Moreover, we estimate the radius of this
region supported by the blood vessel to be rb/

ffiffiffiffiffiffiffiffiffi
BVF

p
, where

BVF is the blood volume fraction [15, 16] and rb is the radius
of the blood vessel. Regarding the viruses, they reach the
tumor via the blood vessel and diffuse into it with no flux at
the boundary. Furthermore, viruses are given continuously
with a constant concentration v0 for a certain time interval
(for example by using nanotechnology [17]). Also, we con-
sider no flux for the uninfected and infected tumor cells at
the blood vessel wall and at the boundary of the cylinder.

Suppose that when oncolytic viruses reach the tumor
through the blood vessel, they diffuse into it and infect some
of the cells. Therefore, the tumor cells can be divided into
uninfected and infected cells. We assume that the tumor is
aggressive which means that it replicates proportional to its
size (uninfected cancer cells grow exponentially). To model
the movement of uninfected and infected tumor cells, we
include a diffusion term in their equations. In addition to
this, viruses replicate inside the infected tumor cells, which
causes lysis to them. This leads to the release of new virus
particles, which infect other tumor cells. As a result of this,
we assume that viruses are removed after infecting cancer cell
in addition to dying naturally. Note that we assume that each
cancer cell needs one virus to infect it, and thus, κ in the third
equation in (1) is equal to 1.

Based on the aforementioned assumptions, we obtain the
following system of PDEs:

∂x
∂t

=D1∇
2x + r1x − βxv,

∂y
∂t

=D1∇
2y + βxv − δy,

∂v
∂t

=D2∇
2v + bδy − κβxv − αv,

ð1Þ

with the following homogenous initial conditions and
boundary conditions:

x r, 0ð Þ = x0,
y r, 0ð Þ = y0,
v r, 0ð Þ = v̂0,

ð2Þ

∂x
∂r

rb, tð Þ = ∂x
∂r

rbffiffiffiffiffiffiffiffiffi
BVF

p , t
� �

= 0,

∂y
∂r

rb, tð Þ = ∂y
∂r

rbffiffiffiffiffiffiffiffiffi
BVF

p , t
� �

= 0,

v rb, tð Þ = v0,
∂v
∂r

rbffiffiffiffiffiffiffiffiffi
BVF

p , t
� �

= 0:

ð3Þ
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The physical variables in our model consist of the follow-
ing: x = xðr, tÞ is the density of uninfected tumor cells, y = y
ðr, tÞ is the density of infected tumor cells, and v = vðr, tÞ is
the density of free viruses.

Table 1 gives a summary of all the model parameters and
their description, values, and units.

It should be noted that our model is similar to the one
in [12], where the new addition of terms involves the
reduction of free virus density due to the infection of
tumor cells. We have also incorporated the spatial varia-
tion of the variables due to the diffusion of the drug and
cancer cells.

2.2. Numerical Solution. In this section, we solve the model
(1) with initial conditions (2) and boundary conditions (3)
numerically. Additionally, we vary the parameters to deter-
mine the key parameters that can improve the outcomes of
virotherapy treatment. We discretize in space and time and
use the fourth-order Runge-Kutta Method [19] for the time
discretization and the finite difference method [20] for the
space discretization. The numerical simulations are carried
out by using the values of the parameters as given in
Table 1. The initial conditions and boundary conditions are
chosen as follows:

x r, 0ð Þ = 0:5 × 106,
y r, 0ð Þ = 0,

v r, 0ð Þ = 0,

∂x
∂r

rb, tð Þ = ∂x
∂r

rbffiffiffiffiffiffiffiffiffi
BVF

p , t
� �

= 0, ð4Þ

∂y
∂r

rb, tð Þ = ∂y
∂r

rbffiffiffiffiffiffiffiffiffi
BVF

p , t
� �

= 0,

v rb, tð Þ = 0:5 × 106,
∂v
∂r

rbffiffiffiffiffiffiffiffiffi
BVF

p , t
� �

= 0,

ð5Þ

where rb = 0:01 and BVF = 0:05. Moreover, the initial
conditions have the unit cell/mm3 (for x and y) or virus/mm3

(for v). The no flux boundary has the unit (cell/mm3)/mm.
In the numerical simulations, we calculate the ratio of the

viable (uninfected) tumor mass to its initial mass M0 (nor-
malized cancer mass). We integrate the density x at each time
step over the cylindrically symmetric domain surrounding
the blood vessel as follows:

f x tð Þ = 1
M0

ð2π
0

ðrb/ ffiffiffiffiffiffiffi
BVF

p

rb

x r dr dθ = 2π
M0

ðrb/ ffiffiffiffiffiffiffi
BVF

p

rb

x r dr, ð6Þ

where V = π½ðrb/
ffiffiffiffiffiffiffiffiffi
BVF

p Þ2 − ðrbÞ2� and M0 = x0V .
First, we simulate the model and display the changes in

the density of the variables for different times as shown in
Figures 1(a)–1(c). The plots illustrate the densities x, y, and
v, respectively, after the second, fourth, and sixth day of the
treatment, where the treatment is administered for 30 days.
The success of the treatment is judged based on its capability
to eliminate tumor cells. Our focus then is on the examina-
tion of the viable tumor cells and what will happen to them
as other cells deteriorate and eventually die. The temporal
variation curve of the ratio of the viable tumor mass to its ini-
tial mass for the whole treatment is shown in Figure 1(d). The

Table 1: The parameters and their description, values, and units for models (1) and (7).

Parameter Description Value Units Reference

D1 Diffusion coefficient of tumor cells 10−8 mm2/h Estimated

r1 Tumor growth rate 0.02 1/h [18]

β Infection rate of the virus 7/10 × 10−9 mm3/h virus [18]

δ Death rate of infected tumor cells 1/18 1/h [18]

D2 Diffusion coefficient of viruses 5 × 10−7 mm2/h Estimated

b Burst size of free virus 50 Viruses/cell [18]

κ Consumption rate of the virus 1 Virus/cell Estimated

α Clearance rate of the virus 0.008 1/h Estimated

a1
Rate of which the uninfected tumor cells

become irreparably damaged
0.01 1/h Estimated

a2
Rate of which the infected tumor cells

become irreparably damaged
0.01 1/h Estimated

γ Death rate of damaged cells 0.01 1/h Estimated

rb Radius of the blood vessel 0.01 mm Estimated

BVF Blood volume fraction 0.05 — [16]

v0 Value of v at the blood vessel wall 0:5 × 106 Viruses/mm3 Estimated

tr The time where Phase II begins 120 h Estimated
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simulation shows that for 30 days of treatment, the tumor grows
in the beginning of the treatment. Then, after approximately
seven days, the viruses overcome this growth and limit the
tumor mass. Afterwards, the tumor mass decreases to reach
small values (approximately 7% of its original mass). This
reduction will result in a decrease in the viruses, and thus, we
observe a recurrence of the tumor, which will in turn cause an
increase for the viruses. The latter will again reduce the tumor.
This oscillatory behavior where cancer decreases, regrows, and
decreases was also observed in themathematical models studied
in [21, 22]. Finally, after approximately 30 days, the tumor mass
is reduced to about 55% of its original mass.

2.2.1. Parameter Analysis. In this section, we discuss the
changes in the viable cancer mass by varying the parameters
in the model. The focus here is on the key parameters that are

relevant to the oncolytic viruses. Specifically, we vary the viral
infection rate (β), the virus burst size (b), and the clearance
rate of viruses (α). All the other parameters remain the same
as in Table 1.

To begin with, we vary β, which is the viral infection rate.
Figure 2(a) illustrates the time variation curves of the ratio of
the viable tumor mass to its initial mass by varying the values
of β as indicated in the legend. We found that the increase in
the viral infection rate reduces f x. In addition, the treatment
takes a shorter time to control the tumor mass and this is the
desired result of virotherapy. Next, we vary the virus burst
size (b). Figure 2(b) shows the temporal evolution curves of
the ratio of the viable tumor mass to its initial mass with
varying values of b. It should be pointed out that the increase
in the virus burst size means that there are more new viruses
resulting from the lysis of infected tumor cells. Thus, we
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(d) The ratio of the uninfected cancer mass to its initial mass

Figure 1: Numerical simulations of (1) with the conditions (4) and (5) and parameter values from Table 1 (t is given in hours). For (a)–(c), the
variables are plotted after the second, fourth, and sixth day of the treatment as indicated in the legend. In (d), the temporal evolution curve of
the ratio of the uninfected cancer mass to its initial mass is plotted for a treatment that lasted 720 hours (30 days).
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found that the largest value of b leads to a better outcome of
virotherapy. Also, as b increases, new viruses are produced at
a large number. This may take a long time and thus affects
the death rate of infected cells by making it slower. This case
is not considered in the simulations as δ is assumed to be
constant for all values of b. On the other hand, if we decrease
the value of b to a very small number, for example, b = 2, then
virotherapy becomes similar to chemotherapy where it is
consumed by cancer cells. Thus, the oscillation disappears
as shown in Figure 3 unlike Figure 2(b). This shows that vir-
otherapy alone (even with large values of b) is insufficient as
there is always the risk of growing back of small residuals as
shown in Figure 2(b). As for the viral clearance rate, we note
in Figure 2(c) that the ratio of the viable cancer mass to its
initial mass increases for large values of α. This is as a result
of insufficient viruses to inhibit tumor growth.

From the simulations above, we conclude that virotherapy
alone is not sufficient to eradicate all tumor cells. This is
because at the end of the simulation in Figures 1(d) and 2,

the normalized cancer mass becomes drastically small but
then grows back. This means that it is not eradicated. We con-
sider cancer to be eradicated if the normalized mass becomes
very small and does not grow back. Since this did not happen,
it is necessary to incorporate another treatment with virother-
apy. The next section will investigate radiovirotherapy as a
second phase of the treatment, and thus, the spatiotemporal
dynamics of tumor cells under combination treatment
between virotherapy and radiotherapy will be considered.

3. Phase II: Radiovirotherapy Treatment

After Phase I of the treatment has been implemented, Phase
II which consists of radiovirotherapy commences. In this
way, the initial treatment starts with just virotherapy, which
continues until time tr . Thereafter, radiotherapy is intro-
duced to supplement the virotherapy treatment. This is done
because the numerical results in the previous section show
that virotherapy alone is not enough to eliminate cancer.
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Figure 2: The ratio of the uninfected cancer mass to its initial mass of (1), (4), and (5) is plotted for different values of the parameters as shown
in the legend (the other parameters are taken from Table 1).
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Here, we provide a model that includes a combination of
treatments against tumor, and this approach incorporates
the use of virotherapy combined with radiotherapy. In partic-
ular, we extend the virotherapy model (1) by including the
effects of radiotherapy on both types of tumor cells. Conse-
quently, we insert a new physical variable that represents the
density of all tumor cells that are irreparably damaged by radi-
ation and these cells are removed from the body (u = uðr, tÞ).
Thus, themathematical model consists of the following system
of four PDEs with parameters as described in Table 1:

∂x
∂t

=D1∇
2x + r1x − βxv − a1R tð Þx,

∂y
∂t

=D1∇
2y + βxv − δy − a2R tð Þy,

∂u
∂t

= a1R tð Þx + a2R tð Þy − γu,

∂v
∂t

=D2∇
2v + bδy − βxv − αv:

ð7Þ

After solving the first model (1) numerically at each time
step until time t = tr (Phase I ends), and these solutions
become initial values for the second model (Phase II starts),
thus, we have the following initial conditions for (7):

x r, trð Þ = xr ,
y r, trð Þ = yr ,
u r, trð Þ = ur ,
v r, trð Þ = vr ,

ð8Þ

where xr, yr, and vr are solutions of model (1) at time t = tr.
The protocol for administering radiation must be chosen

before solving (7) numerically. There are several kinds, which
include constant, linear control (proportional to the size of
tumor), feedback control (proportional to the ratio of cancer
to healthy tissue), and periodic deliveries [23]. In this case, we
examine three types of deliveries: constant, decaying, and

periodic radiation (similar to the model in [14]). In practice,
constant radiation can be carried out by using a temporary
brachytherapy, in which radioactive material is placed inside
a catheter for a specific period of time then it is withdrawn
from the body. Thus, the radioactive material stays in the
body and omits a constant dose of radiation without decay-
ing, and then, it is withdrawn. Regarding the decaying radia-
tion, it can be employed by a permanent brachytherapy,
where radioactive material is implanted in the tumor site;
then after several months, the radiation dose emitted from
the source decreases and vanishes. Thus, in this case, radia-
tion decays over time. Regarding the periodic radiation, it
can be executed by an external beam radiation, which uses
a machine to direct high-energy rays towards the tumor site
[24]. In this way, three modes of R ðtÞ are utilized as follows:

(i) R ðtÞ = R, constant

(ii) R ðtÞ = β1e
−α1t , decay

(iii) R ðtÞ = β2 + α2 sin ωt, periodic

3.1. Numerical Solution. In this section, we first solve the
model (1) with conditions ((4) and (5)) for Phase I. The solu-
tion will be calculated for 5 days (tr = 120 hours), unless oth-
erwise stated. After that, we solve model (7) numerically
(using the same numerical method as (1)) with the boundary
conditions given in (5) and initial conditions (8) for Phase II.
The initial condition for u is chosen to be uðr, trÞ = 0. The
values of the parameters are as given in Table 1. In all simu-
lations, we calculate f x ðtÞ from (6), where the initial mass is
M0 = xrV (the mass of the uninfected cancer cells at the
beginning of Phase II). We also discuss three protocols for
the administration of radiation, which are constant, decay-
ing, and periodic radiation as follows:

R tð Þ =
2, constant,
2 e−0:01 t , decay,
1 + sin 2t, periodic:

8>><
>>:

ð9Þ
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Figure 3: Numerical simulations of (1) with the conditions (4) and (5) and parameter values from Table 1 with b = 2. (b) is the same as (a) for
t = 580 − 720 hours.
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The goal of comparing the result of these three modes of
radiation is that oncologists might prefer a certain kind of
radiation delivery for a specific reason, perhaps for being
practical. Thus, in the following simulations, we give an
insight about the outcome of each kind of protocol by using
mathematical modeling. Of course, all of these results need
validation by experiments and clinical trials.

Figure 4 represents time evolution of the viable cancer
mass to its initial mass for constant, decaying, and periodic
radiation doses, respectively (red curves). The radiovirother-
apy began after 5 days of virotherapy. For comparison, the
blue curves represent the result for virotherapy alone (after
giving virotherapy for 5 days, radiation is not introduced
and instead virotherapy continues until the end of the simula-
tion). The numerical results show that the combination of
radiotherapy with virotherapy is more effective in reducing
the mass of the cancer than virotherapy alone. Specifically,
constant radiation combined with virotherapy eliminates can-
cer unlike virotherapy. This shows that the effects of radiother-
apy on the tumor depend on the type of radiation delivery.
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Figure 4: The ratio of the uninfected cancer mass to its initial mass is plotted after day 5 from the beginning of virotherapy alone. The red
curve represents radiovirotherapy with three types of radiation delivery: constant, decaying, and periodic delivery, whereas the blue curve
means that virotherapy continues without radiotherapy.
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Figure 5: The effects of three different modes of radiation on the
ratio of the uninfected cancer mass to its initial mass.
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Figure 5 shows the numerically calculated value of the
ratio of the viable cancer mass to its initial mass with vir-
otherapy in combination with three types of radiation
delivery as indicated in the legend. In the beginning of
the simulation, the constant and decaying cases both have
the same result (since RðtÞ at the beginning is equal to 2);
then, the constant case has a better result (since for the
decaying radiation R ðtÞ becomes less than 2). For the
periodic case, it eventually catches up with the constant
case after R ðtÞ reaches the value of 2. The tumor decreases
to approximately 1% of its original mass in about 6 days
and continues decaying with constant radiation. For the
periodic and decaying radiation, the tumor decreases to
small values after approximately 6 days but then regrows
to larger values for the decaying radiation compared to
the periodic radiation.

These results demonstrated that the dose of radiation is a
critical factor that affects the outcomes of radiotherapy and

virotherapy [9]. Therefore, we performed numerical simula-
tions to show the effects of the different doses of constant
radiation at four different timings (tr) when radiation is
administered. Figure 6 illustrates the start of radiotherapy
after the third, fifth, seventh, and ninth days (respectively)
from the beginning of virotherapy. Figure 6(a) represents
Phase II after 3 days of virotherapy (that is when cancer
was growing as shown in Figure 1(d)). The simulation in
Figure 6(a) shows that cancer is eradicated in a short time
for a high dose of radiation. If we increase tr to reach 5 days,
then also high radiation has the best result but the different
doses of radiation begin to have a similar effect on the nor-
malized cancer mass. Now when tr = 7 (that is when cancer
reaches its maximum value in Figure 1(d)), the three doses
of radiation have similar results and eradicate cancer in a
shorter time than the previous case. These three doses have
an almost similar result in eradicating cancer in a shorter
time than the previous case if tr = 9. These simulations show
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Figure 6: Plots of the ratio of the uninfected cancer mass to its initial mass with different doses of constant radiation as indicated in the legend
and four different timings tr for administering the radiation.
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that, if Phase II starts early (tr < 7), a high dose of radiation is
needed to overcome the growth of cancer. On the other hand,
any dose will be sufficient if Phase II starts after the seventh
day of virotherapy as cancer starts to decrease from the pre-
vious treatment.

4. Discussion and Future Research

Oncolytic viruses are a novel type for cancer treatment. These
viruses are currently being delivered alone or as a part of a
combination treatment regime with conventional therapies
such as radiotherapy. Research studies indicate that using
therapeutic viruses in combination with radiation therapy is
more effective than making use of virotherapy alone. As this
field of research is promising and needs more developing, in
this paper, we introduced systems of PDEs to simulate two
phases of treatments, which are virotherapy and radiovir-
otherapy. In phase I, virotherapy is given continuously for a
certain period of time, which may be clinically achieved
through nanovectored delivery. This kind of delivery is cho-
sen since in vivo experiments of a breast cancer mouse model
with different kinds of drug delivery show that there is a
threefold increase in response by using nanovectored drug
compared to a free drug delivery [16]. To model this phase,
we introduced a system of PDEs illustrating the spatiotempo-
ral dynamics between virotherapy and infected and unin-
fected cancer cells. The numerical simulations were carried
out for different values of the parameters related to virother-
apy, namely, burst size and infection and clearance rates of
the virus. These solutions showed that virotherapy alone is
not enough to eliminate cancer. Thus, we introduced phase
II of the therapy, which is radiovirotherapy. To model this
phase, we extended the previous system by incorporating
radiotherapy alongside virotherapy. Specifically, we added a
fourth equation representing damaged cancer cells due to
radiation. Phase II was studied numerically, which showed
that radiovirotherapy leads to a complete eradication of a
tumor provided that the radiation delivery is constant. It
was also concluded that a high dose of continuous radiation
with an early start of Phase II leads to killing cancer cells in
a short time. Although this is a desired result, dose escalation
is limited because radiation can cause severe damage to
healthy tissues [25].

Future research could include an investigation into the
damage caused from radiation on normal body tissue.
Another research point could be considering different deliv-
ery method for viruses, for example, giving the virus in cycles
[26]. This can be analyzed and compared to our results where
viruses are delivered continuously for a certain period of
time. Finally, validating these models by experiments and
patients’ data could be beneficial for oncologists to predict
the outcomes of treatments without patients’ suffering.
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The data used to support the findings of this study are
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