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Introduction. Glioblastoma (GBM) is one of the most frequent primary intracranial malignancies, with limited treatment options
and poor overall survival rates. Alternated glucose metabolism is a key metabolic feature of tumour cells, including GBM cells.
However, due to high cellular heterogeneity, accurately predicting the prognosis of GBM patients using a single biomarker is
difficult. Therefore, identifying a novel glucose metabolism-related biomarker signature is important and may contribute to
accurate prognosis prediction for GBM patients. Methods. In this research, we performed gene set enrichment analysis and
profiled four glucose metabolism-related gene sets containing 327 genes related to biological processes. Univariate and
multivariate Cox regression analyses were specifically completed to identify genes to build a specific risk signature, and we
identified ten mRNAs (B4GALT7, CHST12, G6PC2, GALE, IL13RA1, LDHB, SPAG4, STC1, TGFBI, and TPBG) within the
Cox proportional hazards regression model for GBM. Results. Depending on this glucose metabolism-related gene signature, we
divided patients into high-risk (with poor outcomes) and low-risk (with satisfactory outcomes) subgroups. The results of the
multivariate Cox regression analysis demonstrated that the prognostic potential of this ten-gene signature is independent of
clinical variables. Furthermore, we used two other GBM databases (Chinese Glioma Genome Atlas (CGGA) and
REMBRANDT) to validate this model. In the functional analysis results, the risk signature was associated with almost every step
of cancer progression, such as adhesion, proliferation, angiogenesis, drug resistance, and even an immune-suppressed
microenvironment. Moreover, we found that IL31RA expression was significantly different between the high-risk and low-risk
subgroups. Conclusion. The 10 glucose metabolism-related gene risk signatures could serve as an independent prognostic factor
for GBM patients and might be valuable for the clinical management of GBM patients. The differential gene IL31RA may be a
potential treatment target in GBM.
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1. Introduction

Glioblastoma (GBM), which has an annual incidence of 3.22
per 100,000, remains the most common and aggressive pri-
mary adult brain tumour [1, 2]. Standard therapeutic regi-
mens include maximal safety surgical resection, followed by
radiotherapy and chemotherapy. Moreover, targeted ther-
apy, immunotherapy, and tumour treating fields (TTFs) are
also widely used in the treatment of GBM [3, 4]. Despite
applying the best standard of care, patients diagnosed with
GBM usually face a dismal prognosis, with a survival time
of fewer than two years for most patients [5]. More recently,
many types of research have shown that altered metabolism
in cancer cells is crucial for cancer growth and progression
[6–8]. Among them, studies on glucose metabolism have
attracted most attention and mainly involve four aspects:
the tricarboxylic acid cycle (TCA cycle), glycolysis, gluconeo-
genesis, and glycogen synthesis [9–11]. The TCA cycle plays
a central metabolic role in ATP production and is frequently
dysregulated in cancer [12]. Aerobic glycolysis (Warburg’s
effect), one of the hallmarks of cancer, indicates that cancer
cells produce lactate after absorbing glucose as a substrate
for oxidative phosphorylation, even under normoxic condi-
tions [13]. Gluconeogenesis can antagonize aerobic glycolysis
in cancer via several enzymes, which also play a role in signal-
ling transduction, cell proliferation, and the stemness of can-
cer cells [10]. Glycogen maintains glucose homeostasis and
contributes to key functions related to aggressiveness and
survival of cancer cells [11]. In GBM, the number of genes
associated with glycolysis has been suggested to correlate
with tumour proliferation, invasion, angiogenesis, and che-
motherapy/radiotherapy resistance [14–17]. In addition, pre-
vious research has revealed a correlation between GBM
glycolysis and clinical outcomes [18]. However, glucose
metabolism-related gene signatures, which may more effec-
tively predict patient prognosis, are still lacking in GBM.

In this study, we first identified all glucose metabolism-
related gene sets. Then, gene set enrichment analysis (GSEA)
was performed to screen out the hallmark gene sets in 167
GBM patients with entire mRNA expression data from The
Cancer Genome Atlas (TCGA) database. We described 327
mRNAs significantly related to glucose metabolism and
established a ten-gene risk signature that can forcefully pre-
dict patient outcomes. Notably, the glucose metabolism-
related risk signature could independently determine
patients in the high-risk group with poor prognosis. Finally,
we further explored the underlying mechanisms and the dif-
ferentially expressed genes between two groups mentioned
above, and the results demonstrated that the risk signature
was related to almost every step of cancer progression, such
as adhesion, proliferation, angiogenesis, drug resistance,
and even an immune-suppressed microenvironment. More-
over, we found that IL31RA expression was significantly dif-
ferent between the two groups.

2. Materials and Methods

2.1. Clinical Information and Genome Expression Data of the
Samples. The transcriptional profile and clinical data of

patients with low-grade glioma (LGG) and GBMwere down-
loaded from the TCGA database online (https://
cancergenome.nih.gov/). Clinical data, which contains the
total number of patients (n = 696, including 529 LGG
patients and 167 GBM patients), gender, age, Karnofsky’s
Performance Status (KPS) score, radiotherapy, chemother-
apy, IDH status, and MGMT promoter methylation status,
was collected for the study. Validation reports from the
Repository for Molecular Brain Neoplasia Data (REM-
BRANDT, microarray) and Chinese Glioma Genome Atlas
(CGGA, microarray) datasets were downloaded from Glio-
Vis (http://gliovis.bioinfo.cnio.es/).

2.2. GSEA. Gene set enrichment analysis (GSEA) was used to
examine whether the identified sets of genes demonstrated
significant differences between the two groups [19]. The
expression levels of all mRNAs in LGG and GBM were ana-
lysed using GSEA 4.0.3. Normalized p values (p < 0:05) and
normalized enrichment scores (NESs) were referenced to
select functions to investigate in further analysis. Gene set
variation analysis (GSVA) was performed to study biological
processes and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways associated with the glucose metabolism-
related risk signature [20]. We used the R package “limma”
to select ten associated gene sets with differences between
the high-risk group and the low-risk group in the TCGA
dataset (GBM HGU133A), and an adjusted p value < 0.05
was considered statistically significant.

2.3. Prognostic Potential Analysis. The associations between
the mRNA expression level and patient overall survival
(OS) were calculated using a univariate Cox model. The
mRNAs with p values less than 0.05 were considered statisti-
cally significant using univariate Cox analysis. Afterward, a
multivariable Cox analysis was used to evaluate the weight
of mRNAs as independent predictors of survival. To reduce
the test error, significant factors in the univariate analysis
were selected for the multivariate analysis. These analyses
were completed through the R package “survival.”

2.4. Statistical Analysis. The candidate genes were classified
into risk (hazard ratio ðHRÞ > 1) and protective (0 < HR < 1)
types. Based on the multivariate Cox regression analysis
results, a prognostic risk score formula was established using
a linear combination of the expression levels multiplied by
the regression coefficients. The risk score formula is indicated
as follows: risk score = the expression of gene 1 × β1 + the
expression of gene 2 × β2 +⋯+the expression of gene n × βn.
We divided 167 patients with GBM into high-risk and low-
risk subgroups using the median risk score as the cutoff value.
Kaplan-Meier (KM) curves and the log-rank test were used to
validate the prognostic potential and significance of the risk
score. We used Student’s t-test to compare the differential
expression of the optimal genes between LGG and GBM tis-
sues. All of the statistical analyses were completed using SPSS
19.0 and R 3.6.3 software. The chi-square test was performed
to assess the relationships between the risk score and clinical
variables, and a Bonferroni correction was used to adjust the
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threshold of the significance of p values within multigroup
comparisons [21].

2.5. Exploration of the Differentially Expressed Genes of the
Signature. Median risk scores were used to divide patients
into a high-risk group and a low-risk group. Differential gene
expression analysis of the two groups was carried out using
the EdgeRmethod, and a volcano map was drawn.We down-
loaded the transcriptome data and clinical data of glioma
patients from the TCGA database (https://cancergenome
.nih.gov) and CGGA database (http://www.cgga.org.cn/).
Survival times and survival statuses were extracted. A KM
curve was used to analyse survival differences between
patients with high and low expression levels of differentially
expressed genes. We also detected the immunohistochemis-
try of the differentially expressed genes in the tumour tissues
and normal brain tissues of 20 glioma patients.

2.6. Immunohistochemistry. The slices (paraffin sections) of
normal brain tissues and tumour tissues were used for immu-
nohistochemistry analysis. Briefly, the slices were dewaxed,
gradient dehydrated with alcohol, washed with standard
method, repaired with water bath in antigen repairing solu-
tion and cooled with tap water. Then, the slices were blocked
by normal goat serum solution (SAP-9100, ZSGB-BIO, Bei-
jing, China). Then, the slices were dealt with the anti-
IL31RA (K008474P, Solarbio, Beijing, China) and goat anti-
rabbit IgG, and the slices were washed with standard
methods, respectively. After that, the slices were dripped with
Streptomyces ovalbumin protein labelled with horseradish
peroxidase, and the slices were color developed with DAB
(ZLI-9017, ZSGB-BIO, Beijing, China). Hematoxylin (ZLI-
9610, ZSGB-BIO, Beijing, China) was used for counterstain-
ing. Finally, the pathologist observed and interpreted the
stained tissues under a light microscope.

3. Results

3.1. Glycolysis and Gluconeogenesis-Related Gene Set
Differences Significant between LGG and GBM Samples. The
mRNA expression and clinical data of all patients were
obtained from TCGA. We found all glucose metabolism-
related gene sets (n = 19) in the Molecular Signatures Data-
base (MSigDB) version 7.1 to represent well-defined glucose
metabolism states or processes. GSEA was performed to
identify whether the gene sets showed significant differences
between the LGG and GBM samples. Ultimately, we found
that four gene sets, including GO_GLYCOLYTIC_PRO-
CESS, HALLMARK_GLYCOLYSIS, KEGG_GLYCOLYSIS_
GLUCONEOGENESIS, and REACTOME_GLYCOLYSIS,
were significantly enriched with normalized p values < 0.05
(Figure 1). We then selected the four gene sets, which con-
tained 327 specific genes for further analysis.

3.2. Glucose Metabolism-Related Gene-Based Prognostic
Model. To identify novel genetic biomarkers associated with
the outcomes of patients with GBM, we applied univariate
Cox proportional hazards regression to 327 genes that were
enriched in the four gene sets mentioned above. Twenty-
seven genes were significantly correlated with OS (p < 0:05)

and were included in a stepwise multivariate Cox regression
analysis. Among the 27 genes, some were not significant in
multivariate regression, and it was common in regression
analysis because the potential correlation within variables
may cause the p value to not be significant in multivariable
Cox regression analysis. However, we still accept the predic-
tive ability of these 27 genes. According to the Akaike infor-
mation criterion [22], we achieved a compromise between
variables and the accuracy of the regression model during
the regression variable selection. Ultimately, ten independent
genes (B4GALT7, CHST12, G6PC2, GALE, IL13RA1,
LDHB, SPAG4, STC1, TGFBI, and TPBG) (Table 1) were
selected via multivariable Cox regression analysis in R.
Finally, a gene-based prognostic model was established to
evaluate the survival risk of each patient as follows: risk
score = expression of B4GALT7 × 2:0604 + expression of
CHST12 × 1:4322 + expression of G6PC2 × ð−2:8374Þ +
expression of GALE × 1:4081 + expression of IL13RA1 ×
1:0801 + expression of LDHB × ð−3:2119Þ + expression of
SPAG4 × 0:3957 + expression of STC1 × 0:4413 + expression
of TGFBI × ð−1:4198Þ + expression of TPBG × 0:5223.
Then, the differential expression of the ten genes in LGG and
GBM samples was also investigated. Eight genes (B4GALT7,
CHST12, GALE, IL13RA1, SPAG4, STC1, TGFBI, and
TPBG) were significantly upregulated in GBM samples, and
two genes (G6PC2 and LDHB) were significantly upregu-
lated in LGG samples (p < 0:0001, Figure 2).

3.3. Association between the Risk Score and Outcome of
Patients. The expressions of the ten genes were extracted
from the transcriptome and substituted into the ten-mRNA
signature, the risk scores for each patient with GBM were
then calculated and ranked in order of increasing risk scores
(Figure 3(a)) [23]. Figure 3(b) shows the risk score, OS (in
years), and life status of 167 patients in the GBM dataset,
ranked in order of increasing risk scores. Patients with
high-risk scores had higher death rates than patients with
low-risk scores. Then, the 167 patients in the entire GBM
dataset were classified into the high-risk group (n = 83)
and the low-risk group (n = 84) using the median risk score
as the threshold. The KM analysis showed a significant dif-
ference in the outcomes of patients in the high-risk group
and the low-risk group (log-rank test p < 0:001;
Figure 3(c)). Patients in the high-risk group had a signifi-
cantly worse survival than those in the low-risk group. To
evaluate the efficiency of the ten-mRNA signature in pre-
dicting prognosis, receiver operating characteristic (ROC)
curve analysis was carried out. The area under the curve
(AUC) for the ten-mRNA signature was 0.771, 0.847, and
0.713 for one-year, three-year, and five-year survival,
respectively (Figure 3(d)), demonstrating the reliable prog-
nostic performance of the ten-mRNA signature for predict-
ing survival in the entire dataset. To confirm that the gene
signature performs better than the single gene biomarkers,
we performed KM and ROC curve analyses, and the results
supported our hypothesis. When the ten genes were each
taken as a separate biomarker, their prognostic performance
was not better than that of the ten-mRNA signature
(Figure 3(e)).

3BioMed Research International

https://cancergenome.nih.gov
https://cancergenome.nih.gov
http://www.cgga.org.cn/


3.4. The Risk Score Calculated through the Ten-mRNA
Signature Is an Independent Prognostic Indicator. To investi-
gate whether the risk score and clinical variables can predict
patient survival, we performed univariate and multivariate
Cox proportional hazards analyses, which included risk
score, gender, age, KPS score, radiotherapy, chemotherapy,

IDH status and MGMT promoter methylation status as cov-
ariables, to evaluate the potential of these indicators in the
patient cohort. The results demonstrated that risk score
(HR: 2.357; 95% confidence interval [CI]: 1.734–3.204; p <
0:001), age (HR: 2.576; 95% CI: 1.515–4.379; p < 0:001),
radiotherapy (HR: 0.298; 95% CI: 0.160–0.555; p < 0:001),
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Figure 1: GSEA results of the enrichment plots of four gene sets (GO_GLYCOLYTIC_PROCESS, HALLMARK_GLYCOLYSIS, KEGG_
GLYCOLYSIS_GLUCONEOGENESIS, and REACTOME_GLYCOLYSIS) that were significantly differentiated in LGG and GBM samples
based on TCGA.
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chemotherapy (HR: 0.488; 95% CI: 0.267–0.892; p = 0:020),
IDH status (HR: 0.229; 95% CI: 0.056–0.943; p = 0:041),
and MGMT promoter methylation status (HR: 0.539; 95%
CI: 0.316–0.920; p = 0:023) were associated with patient sur-
vival in the univariate analysis. Additionally, risk score, age,
and radiotherapy had dominant independent prognostic
value both in the univariate analysis and in the multivariate
analysis (p < 0:05), which proves that the prognostic value
of the ten-gene signature is significant for survival prediction.
These results demonstrated that the risk score was powerful
in predicting the prognosis of patients with GBM (Table 2).

3.5. Validation of the Risk Signature. We collected 237 GBM
samples in the CGGA dataset and 181 GBM samples in the
REMBRANDT dataset as two validation datasets to verify
the excellent performance of the risk signature model. The
KM survival curves indicated that patients with higher risk
scores had a poorer prognosis than those with lower risk
scores (Figure 4(a), CGGA, p < 0:05; and Figure 4(b), REM-
BRANDT, p < 0:05). The AUCs of the ROC curves for pre-

dicting the 1-, 3-, and 5-year survival of GBM patients in
the CGGA dataset were 0.589, 0.603, and 0.618, respectively
(Figure 4(c)), and those in the REMBRANDT dataset were
0.561, 0.614, and 0.593 (Figure 4(d)). These results showed
that the risk signature performed well in predicting the sur-
vival of the GBM patients.

3.6. Associations between the Risk Signature and Clinical
Variables. To explore the associations between the risk signa-
ture and clinical variables, we first present the distribution
trends of gender, age, KPS score, transcriptome subtype,
IDH1 status and MGMT promoter methylation status
between the low-risk and high-risk groups in the TCGA
database. As shown in Figure 4(e), the high-risk group
tended to have more patients older than 65 years, whereas
samples with IDH1 mutations were all included in the low-
risk group, and samples with different transcriptome sub-
types seemed to have distinct distributions in the two risk
groups. Meanwhile, there was no apparent difference
between the low-risk and high-risk groups in gender, KPS

Table 1: The detailed information of ten prognostic mRNAs which were selected via multivariable Cox regression analysis.

mRNA Ensemble ID Location β (Cox) HR (95% CI) p value

B4GALT7 ENSG00000027847 Chr5: 177,600,102-177,610,330 2.0604 7.8488 (0.8616-71.5017) 0.0676

CHST12 ENSG00000136213 Chr7: 2,403,489-2,448,484 1.4322 4.1879 (1.1431-15.3426) 0.0306∗

G6PC2 ENSG00000152254 Chr2: 168,901,223-168,910,000 −2.8374 0.0586 (0.0069-0.4932) 0.0091∗∗

GALE ENSG00000117308 Chr1: 23,795,599-23,800,754 1.4081 4.0882 (0.9346-17.8829) 0.0615

IL13RA1 ENSG00000131724 ChrX: 118,726,954-118,794,533 1.0801 2.9449 (1.1305-7.6718) 0.0270∗

LDHB ENSG00000111716 Chr12: 21,635,342-21,657,971 −3.2119 0.0403 (0.0020-0.7950) 0.0348∗

SPAG4 ENSG00000061656 Chr20: 35,615,829-35,621,094 0.3957 1.4853 (0.9105-2.4232) 0.1131

STC1 ENSG00000159167 Chr8: 23,841,929-23,854,806 0.4413 1.5547 (0.9410-2.5686) 0.0849

TGFBI ENSG00000120708 Chr5: 136,028,988-136,063,818 −1.4198 0.2418 (0.1027-0.5689) 0.0011∗∗

TPBG ENSG00000146242 Chr6: 82,362,983-82,367,420 0.5223 1.6858 (1.1448-2.4826) 0.0082∗∗
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score, and MGMT promoter status. To be more intuitive, the
chi-square test was used to verify the proportion differences
of each factor (age, gender, molecular subtypes, MGMT pro-
moter methylation status, and IDH1 status) between the low-
risk and high-risk groups (Table 3). The results demon-
strated that patients older than 65 years had more high-risk
proportions, patients with wild-type IDH1 GBM had more
high-risk proportions, and patients with GBM of the mesen-
chymal subtype had the highest high-risk proportions (Bon-
ferroni’s correction).

3.7. Functional Analysis associated with the Risk Signature.
We used GSVA to investigate the biological processes and
KEGG pathways related to the risk signature. As shown in
Figure 4(f), several biological processes relevant to necrosis,
leukocyte migration involved in the inflammatory response,
positive regulation of macrophage chemotaxis, and regula-
tory T cell differentiation were enriched in the high-risk
group. Regarding KEGG pathways, the high-risk group was

positively correlated with apoptosis, focal adhesion, the
MAPK and JAK-STAT signaling pathways, the VEGF signal-
ing pathway, ABC transporters, and so on (Figure 4(g)). In
short, these results revealed that the risk signature was corre-
lated with almost every step of cancer progression.

3.8. Analysis Results of Differentially Expressed Genes in the
Risk Signature. The EdgeR method was used to analyse the
differentially expressed genes between the high-risk group
and the low-risk group, and then the volcano map was
drawn. The results showed that IL31RA, PODNL1, KRT8,
and other genes were positively correlated with the risk score
of the model (p < 0:05), with IL31RA showing the strongest
correlation, while JAZF1-ASI, FREM3, RHBG, and the rest
of the genes were negatively correlated with the risk score
of the model (p < 0:05) (Figure 5(a)). The transcriptome data
and clinical data of 691 and 313 patients with gliomas were
downloaded from the TCGA and CCGA databases, respec-
tively. The survival time and survival status of the patients
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Figure 3: The ten-mRNA signature related to the risk score predicts the overall survival of patients with GBM: (a) risk score distribution; (b)
survival status; (c) Kaplan-Meier survival curves showed the prognostic value of the risk signature between the low-risk group (n = 84) and the
high-risk group (n = 83); (d) ROC curves were used to assess the efficiency of the risk signature for predicting 1-, 3-, and 5-year survival; (e)
verifying that the prognostic value of the risk signature is better than that of each single biomarker with ROC curves.

Table 2: Univariable and multivariable analyses for each clinical feature.

Clinical feature
Univariate analysis Multivariate analysis

HR 95% CI of HR p value HR 95% CI of HR p value

Risk score (low-risk/high-risk) 2.357 1.734-3.204 <0.001∗∗∗ 1.822 1.252-2.651 0.002∗∗

Gender (female/male) 1.332 0.788-2.250 0.284 1.167 0.592-2.299 0.655

Age (<65/≥65) 2.576 1.515-4.379 <0.001∗∗∗ 2.270 1.274-4.044 0.005∗∗

KPS (<60/≥60) 0.983 0.964-1.002 0.082 0.984 0.960-1.009 0.215

Radiotherapy (untreated/treated) 0.298 0.160-0.555 <0.001∗∗∗ 0.348 0.131-0.926 0.035∗

Chemotherapy (untreated/treated) 0.488 0.267-0.892 0.020∗∗ 1.468 0.559-3.855 0.436

IDH status (wild/mutant) 0.229 0.056-0.943 0.041∗ 0.583 0.122-2.793 0.499

MGMT promoter status (unmethylated/methylated) 0.539 0.316-0.920 0.023∗ 0.879 0.457-1.689 0.698
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Figure 4: Continued.
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were extracted. The survival difference between patients with
high and low expression of IL31RA was analysed by a KM
curve. The results showed that IL31RA expression was nega-
tively correlated with survival time (p < 0:05) (Figures 5(b)
and 5(c)). Our immunohistochemical results showed that
IL31RA was positively expressed in tumour tissues but not
in normal brain tissues (Figure 5(d)).

4. Discussion

Currently, cancer research on energy metabolism has
attracted much attention. In contrast to some other tumour
types, aberrant glucose metabolism is an important compo-
nent of GBM growth and chemoresistance [24]. Regulators
of GBM glucose metabolism have been demonstrated to be
useful tools for prognostication, diagnosis, and therapy
[25]. However, due to the high heterogeneity of GBM, it is
difficult for these biomarkers to independently and accu-
rately predict the survival rate of patients. Therefore, in this
study, we constructed a statistical model containing multiple
glucose metabolism-related genes and combined the function
of each gene to improve the prediction efficiency. This kind
of model has been confirmed in many other solid tumours
and is superior to a single biomarker in predicting tumour
prognosis [26–28].

Ten glucose metabolism-related biomarker genes
(B4GALT7, CHST12, G6PC2, GALE, IL13RA1, LDHB,
SPAG4, STC1, TGFBI, and TPBG) were found to be statisti-
cally and biologically significant in the discrimination of
LGGs from GBM in this study (Table 1). Among these bio-
marker genes, GALE encodes UDP-galactose-4-epimerase,
which catalyses two distinct but analogous reactions: the epi-
merization of UDP-glucose to UDP-galactose and the epi-
merization of UDP-N-acetylglucosamine to UDP-N-
acetylgalactosamine. GALE plays an important role in pro-
moting the development of human glioma [29]. IL-13 recep-
tor subunits α1 and α2 of the IL-13R complex are
overexpressed in GBM. Jing Han and his colleagues showed
that high IL-13Rα1 with or without IL-13Rα2 expression
was associated with poor prognosis in patients with high-
grade gliomas. Nevertheless, there was no correlation
between IL-13Rα1 and IL-13Rα2 mRNA expression. Their
findings have important implications in understanding the
role of IL-13R in the pathogenesis of GBM and potentially
other cancers [30]. Further, IL-13Rα2 and IL4Rmay also play
an important role in the polygenic prognostic risk signature
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Figure 4: Evaluating the efficiencies of the risk signature in the CGGA and REMBRANDT datasets. (a, b) Kaplan-Meier survival curves
showed the prognostic value of the risk signature in the CGGA dataset ((a) low-risk group, n = 118; high-risk group, n = 119; p < 0:05)
and REMBRANDT dataset ((b) low-risk group, n = 91; high-risk group, n = 90; p < 0:01). (c, d) ROC curves evaluated the efficiency of the
risk signature for predicting 1-, 3-, and 5-year survival in the (c) CGGA dataset and the (d) REMBRANDT dataset. Associations between
the signature risk score and clinical features. (e) The heat map shows the associations between the risk signature and clinical
characteristics (gender, age, KPS score, transcriptome subtype, IDH1 status, and MGMT promoter status) in the TCGA database.
Functional roles of the risk signature. (f, g) GSVA showed the (f) biological processes and the (g) KEGG pathways associated with the risk
signature.

Table 3: Associations between the signature risk score and clinical
features.

Clinical feature
Risk score

X2 pHigh-risk
n (%)

Low-risk
n (%)

Gender 0.011 0.917

Female 29(49.15%) 30(50.85%)

Male 54(50.00%) 54(50.00%)

Age 3.974 0.046∗

<65 47(43.93%) 60(56.07%)

≥65 36(60.00%) 24(40.00%)

KPS Fisher’s exact test 0.572

<60 3(42.86%) 4(57.14%)

≥60 55(47.01%) 62(52.99%)

Transcriptome subtype Fisher’s exact test <0.0001∗∗∗∗
Classical 20(38.46%) 32(61.54%)

Mesenchymal 54(73.97%) 19(26.03%)

Neural 4(57.14%) 3(42.86%)

Proneural 1(5.26%) 18(94.74%)

IDH1 status 7.669 0.006∗∗

Wild 78(52.35%) 71(47.65%)

Mutant 1(9.09%) 10(90.91%)

MGMT promoter status 1.271 0.260

Unmethylated 37(50.00%) 37(50.00%)

Methylated 22(40.00%) 33(60.00%)
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tumour and normal tissues.
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due to their potential functional association with IL-13Rα1 in
the future. LDHB is a dehydrogenase and a critical switch
that regulates glycolysis and OXPHOS. It has been proven that
the expression of LDHB alone was not able to predict a differ-
ence in OS, but the concomitant expression of LDHB and
CCNB1 was able to identify medulloblastoma patients with a
significantly worse prognosis [31]. SPAG4 is a member of
the cancer testis (CT) gene family and to date, little is known
about its physiological function or its involvement in tumour
biology, but there is a research that it is a potential marker in
glioma [32, 33]. STC1 encodes a secreted, homodimeric glyco-
protein that is expressed in a wide variety of tissues and may
have autocrine or paracrine functions, STC1 is a novel nonca-
nonical NOTCH ligand and acts as a crucial regulator of stem-
ness in GBM [34]. Transforming growth factor-beta-induced
(TGFBI) is an exocrine protein that has been proven to pro-
mote the development of glioma, nasopharyngeal carcinoma,
bladder cancer and other tumours [35, 36]. In a recent study,
Guo Sk and colleagues showed that TGFBI was upregulated
in glioma cells and played a promoting role in the growth
and motility of U87 and U251 cells. Their results suggested
that TGFBI has the potential to be a diagnostic marker and
to serve as a target for the treatment of gliomas [37]. In addi-
tion, there is no research on B4GALT7, CHST12, G6PC2 and
TPBG in glioma. Although these genes can independently pre-
dict tumour prognosis to some extent, our results demon-
strated that the ten-mRNA signature has better prognostic
significance than the corresponding single biomarkers. More-
over, by using KM and ROC curve analyses of GBM, we veri-
fied our statistical results in the CGGA and REMBRANDT
datasets. We confirmed that the risk signature performed well
in predicting the survival of patients with GBM (Figures 4(a)–
4(d)). Therefore, this glucose metabolism-related gene signa-
ture can predict tumour prognosis more accurately and guide
treatment more comprehensively.

We also constructed a heat map to present the associations
between the risk signature and clinical characteristics in the
TCGA database. Our results indicated that elderly age, mesen-
chymal subtype, and wild-type IDH1 were significantly corre-
lated with higher risk scores (Table 3, Figure 4(e)). Consistent
with mainstream views, elderly patients, the mesenchymal
subtype, and wild-type IDH1 usually predict an unfavourable
prognosis [38, 39]. Moreover, by using GSVA to explore the
biological processes and KEGG pathways associated with the
risk signature, we noticed that the risk signature was correlated
with almost every step of oncogenesis and tumour progres-
sion, including adverse biological processes and signal trans-
duction pathways (Figures 4(f) and 4(g)). Currently, many
studies have elucidated the aggressive behaviours associated
with GBM glucose metabolism and attempted to find ways
to target GBM glucose metabolism, such as through Myc,
PGK1, SIRT3, and HK1 [40–43]. Therefore, our results once
again confirm the reliability of the risk score in predicting
the prognosis of GBM and provide new potential targets for
targeting glucose metabolism.

A few reports in the literature have recently implicated
the IL-31/IL31RA axis in cancer [44, 45]. However, the role
and mechanism of IL31RA in glioma progression are still
unclear. Our results show a significant difference in IL31RA

expression between the high- and low-risk groups, and the
TCGA/CCGA database shows that the higher expression of
IL31RA is significantly associated with the poor prognosis
of GBM patients. Moreover, we found that IL31RA expres-
sion was positive in tumour tissue but negative in normal
brain tissue. Therefore, IL31RA is expected to be a potential
therapeutic target in glioma.

5. Conclusions

In conclusion, we identified and validated a risk signature
with ten glucose metabolism-related genes associated with
the survival of patients with GBM, where higher risk scores
indicate unfavourable outcomes. Moreover, based on the sig-
nature, we found that a different gene, IL31RA, may be a
potential therapeutic target in GBM. Our findings may pro-
vide novel insights for GBM research and guidance for indi-
vidual therapy.
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