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Multiple‑trait QTL mapping 
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Abstract 

Background:  The application of genomic selection to sheep breeding could lead to substantial increases in profit-
ability of wool production due to the availability of accurate breeding values from single nucleotide polymorphism 
(SNP) data. Several key traits determine the value of wool and influence a sheep’s susceptibility to fleece rot and fly 
strike. Our aim was to predict genomic estimated breeding values (GEBV) and to compare three methods of combin-
ing information across traits to map polymorphisms that affect these traits.

Methods:  GEBV for 5726 Merino and Merino crossbred sheep were calculated using BayesR and genomic best linear 
unbiased prediction (GBLUP) with real and imputed 510,174 SNPs for 22 traits (at yearling and adult ages) including 
wool production and quality, and breech conformation traits that are associated with susceptibility to fly strike. Accu-
racies of these GEBV were assessed using fivefold cross-validation. We also devised and compared three approximate 
multi-trait analyses to map pleiotropic quantitative trait loci (QTL): a multi-trait genome-wide association study and 
two multi-trait methods that use the output from BayesR analyses. One BayesR method used local GEBV for each trait, 
while the other used the posterior probabilities that a SNP had an effect on each trait.

Results:  BayesR and GBLUP resulted in similar average GEBV accuracies across traits (~0.22). BayesR accuracies were 
highest for wool yield and fibre diameter (>0.40) and lowest for skin quality and dag score (<0.10). Generally, accuracy 
was higher for traits with larger reference populations and higher heritability. In total, the three multi-trait analyses 
identified 206 putative QTL, of which 20 were common to the three analyses. The two BayesR multi-trait approaches 
mapped QTL in a more defined manner than the multi-trait GWAS. We identified genes with known effects on hair 
growth (i.e. FGF5, STAT3, KRT86, and ALX4) near SNPs with pleiotropic effects on wool traits.

Conclusions:  The mean accuracy of genomic prediction across wool traits was around 0.22. The three multi-trait 
analyses identified 206 putative QTL across the ovine genome. Detailed phenotypic information helped to identify 
likely candidate genes.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Merino sheep are traditionally bred for wool. The value 
of a sheep’s fleece depends on many characteristics 
including fleece weight, fibre diameter, staple strength 
and length, crimp (or curvature), wool color, and dust 
penetration [1]. Flystrike, particularly around the breech 
region, is an important disease of Australian sheep, which 
costs the industry $280 million annually [2]. There are 

attempts to select for resistance to breech flystrike but 
direct selection for this trait is not easy to implement in 
ram breeding flocks because breeding animals are valua-
ble and managed to reduce incidence of flystrike. Several 
easily assessed or measured indicator traits associated 
with breech flystrike are available, namely breech wool 
cover, breech skin wrinkle, dags, wool colour and fleece 
rot [3, 4].

Genetic variation for these traits is well documented. 
Estimated heritabilities and correlations for wool traits in 
Merino sheep are reported in the literature [5, 6]. Genetic 
correlations between many wool traits including greasy 
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fleece weight and staple length are positive and moderate 
to high [7] but there are significant antagonisms between 
some traits. For instance, unfavourable correlations exist 
between fleece weight and fibre diameter, fibre diameter 
and staple strength, and wrinkle score and fleece weight 
[8]. Thus, individual causal polymorphisms are likely 
to have pleiotropic effects on multiple traits, possibly 
because they operate through physiological mechanisms 
that affect wool growth generally. Genetic correlations 
between measurements at yearling and adult ages for the 
same trait are moderate to high and range from 0.6 to 0.9 
for fleece weights and are higher for fibre diameter [9].

Genomic prediction is an attractive approach for sheep 
breeders because estimated breeding values (EBV) can 
be calculated from DNA marker data (genomic selec-
tion [10]) when animals are too young to be measured for 
some phenotypes. In several cases, non-linear Bayesian 
methods, such as BayesR, result in more accurate EBV 
than genomic best linear unbiased prediction (GBLUP) 
because they give more weight to markers that are close 
to the causal polymorphisms [11].

Genome-wide association studies (GWAS), which 
use similar data to genomic selection, have been widely 
used to map causal variants in livestock and humans 
[12, 13]. Both genomic selection and GWAS are usually 
performed one trait at a time, which limits their power 
to detect single nucleotide polymorphisms (SNPs) that 
are associated with multiple traits and hence to study 
patterns of pleoitropy. Bolormaa et  al. [14] showed that 
a novel multi-trait analysis, which combines the results 
from a single-trait GWAS for 56 individual body compo-
sition traits in sheep, increased the power to detect plei-
otropic quantitative trait loci (QTL). However, precise 
mapping of QTL may be difficult in such GWAS studies 
because SNPs that are at a long distance from the QTL 
can be identified as associated with the QTL due to long-
range linkage disequilibrium (LD) between SNPs in live-
stock. Genomic selection models, especially non-linear 
models, which fit all SNPs simultaneously, tend to be less 
affected by this problem, and map causal variants or QTL 
more precisely than GWAS [11]. Ideally, we would like to 
find a common set of SNPs with a maximum power to 
map QTL, to show their pleiotropic effects and to esti-
mate breeding values.

Although multi-trait BLUP genomic selection meth-
ods are available, they become cumbersome when the 
number of traits is very large. Here, we present three 
approximate multi-trait analyses that use the results 
from single-trait BayesR and GWAS analyses as data to 
identify the SNPs that are closest to pleiotropic QTL. We 
applied these methods for 22 traits (each measured at 
two ages) that describe wool production and quality (i.e. 
measured and visually assessed wool traits), and indicator 

traits associated with susceptibility to breech flystrike on 
5726 sheep with genotypes for 510,174 SNPs.

Methods
Phenotype data and traits
The Merino and Merino crossbred animals used in this 
study were sourced from the Information Nucleus (IN) 
flock of Cooperative Research Centre for Sheep Industry 
Innovation (Sheep CRC) [15, 16]. In total, 7191 animals 
were available with phenotype records on 22 traits each 
measured at two ages (“yearling”; 150 < days < 550 days, 
and “adult”; ≥550 days), including wool production and 
quality traits and breech flystrike indicator traits. Trait 
definitions, numbers of records for each trait, raw means 
and standard deviations based on the phenotyped ani-
mals and number of genotyped animals are in Table 1. A 
complete description of the design, methods and analyses 
of wool production and quality assessments is in Hatcher 
et al. [17].

Prior to shearing at each IN site, the sheep were 
assessed for a series of visual wool scores, including 
staple structure (SSTRC), staple weathering (WEATH), 
wool character (CHAR), fleece rot (FLROT), dust pen-
etration (DUST), and greasy colour (GCOL), and visual 
breech traits including breech cover (BCOV), crutch 
cover (CCOV), and dag (DAG) [18]. Each assessment 
was based on a five-point system in which low scores 
represent desirable attributes and high scores rep-
resent undesirable attributes. A mid-side wool sam-
ple (75  to  85  g) was taken from the right side of each 
animal using an electric handpiece. The samples were 
measured in a commercial laboratory (AWTA Lim-
ited, Melbourne, Vic., Australia) for a range of wool 
traits. Ten staples from each mid-side sample were ran-
domly sub-sampled to measure staple length (SL) and 
staple strength (SS). The remainder of each mid-side 
sample was weighed, washed in hot water with deter-
gent, rinsed in cold water twice, spun and oven-dried 
at 105 °C. The oven-dried weight was recorded and the 
16% regain used to calculate the washing yield (YLD). 
A Shirley Analyser (AWTA Limited, Melbourne, Vic., 
Australia) was used to card the dried scoured sample 
before conditioning at 20  °C and 65% relative humid-
ity for 24  h, after which 2-mm snippets were sampled 
via mini-coring. The snippets were measured for mean 
fibre diameter (FD), FD coefficient of variation (FDCV) 
and mean fibre curvature (CURV) by Sirolan™ Laser-
scan (AWTA Limited). The washed carded sample was 
further subsampled and measured for various tristimu-
lus values (T units) that are routinely used to describe 
aspects of clean colour (X, Y, Z and Y–Z), where X refers 
to reflected red light, Y to reflected green light and Z 
to reflected blue light. With wool, the Y value indicates 
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brightness, with increasing values indicating increas-
ing brightness, and the difference between the Y and Z 
values (Y–Z) indicating wool yellowness [19]. An addi-
tional visual breech score, i.e. breech wrinkle (BRWR), 
was scored post shearing [18]. Not all sheep were meas-
ured for all traits.

Genotype data
This study used the Ovine Infinium® HD SNP BeadChip 
that was developed under the auspices of the Interna-
tional Sheep Genomics Consortium (http://www.farmiq.
co.nz/)  and includes 606,006 high-density (HD) SNPs, 
and the Illumina 50  k Ovine SNP chip (Illumina Inc., 
San Diego, CA, USA) that includes 54,241 (50  k) SNPs. 
All SNPs were mapped to the OAR 3.1 build of the ovine 
genome sequence using SNPchiMp v.3 [20]. Sporadic 
missing genotypes for the HD SNP chip were filled using 
FImpute [21]. Quality control of genotypes, imputation 
of sporadic missing genotypes within each SNP chip, and 
imputation of the 50  k SNP genotypes to HD SNPs are 

described in [14, 22]. The details of the quality control are 
summarised below.

Stringent quality control procedures were applied to 
the SNP data, i.e. SNPs were excluded if the call rate per 
SNP (which is the proportion of SNP genotypes that have 
a GC (Illumina GenCall) score above 0.6) was less than 
95%, the minor allele frequency was lower than 0.01 or if 
departure from Hardy–Weinberg equilibrium (P < 10−5) 
was extreme. These criteria were applied on each batch 
of genotypes separately rather than to the whole data-
set. Furthermore, if the average call rate per individual 
was less than 90%, those animals were removed from the 
SNP data. The final set of genotyped animals used in this 
study included 5726 animals with phenotypic records for 
at least one trait: 690 animals were genotyped for 510,174 
SNPs, and the remaining 5036 animals were genotyped 
with the 50 k SNPs, which were imputed to 510,174 SNPs 
using a multi-breed population of 1735 animals. Cross-
validation within these 1735 HD genotypes revealed an 
average accuracy of imputation (correlation of imputed 

Table 1  Number of  records, their mean, standard deviation (SD), estimated heritabilities (h2), and  variance explained 
by sire-by-flock interaction for each trait at yearling (Y) and adult (A) ages based on the animals with phenotypic meas-
urements

GFW = greasy fleece weight; YLD = wool yield; SL = staple length; SS = staple strength; FD = mean fibre diameter; FDCV = fibre diameter coefficient of variation; 
mean fibre curvature (CURV); BRWR = breech wrinkle; BCOV = breech cover; CCOV = crutch cover; DAG = dag; SSTRC = staple structure, WEATH = staple weathering; 
CHAR = wool character; FLROT = fleece rot; DUST = dust penetration; GCOL = greasy colour; COL(Z, YZ,Y, and X) = wool clean colour: Z = reflected blue light; 
YZ = yellowness; Y = brightness; X = reflected red light; SKINQ = skin quality; s.f. = proportion of phenotypic variance explained by sire-by-flock interaction

Trait Phenotyped animals Genotyped 
animals

Trait Phenotyped animals Genotyped 
animals

Nb Mean SD h2 s.f. Nb Mean SD h2 s.f.

YGFW 5840 3.6 1.06 0.41 0.11 5365 AGFW 4446 5.4 1.77 0.54 0.06 4428

YYLD 5807 71.2 6.46 0.46 0.06 5334 AYLD 4460 74.0 6.02 0.44 0.06 4442

YSL 3859 85.3 15.7 0.62 0.03 3403 ASL 3405 98.9 16.8 0.66 0.04 3399

YSS 3862 30.9 11.6 0.38 0.02 3398 ASS 3397 34.8 10.9 0.38 0.04 3391

YFD 4375 17.3 1.92 0.84 0.04 3915 AFD 3389 18.8 2.70 0.98 0.02 3383

YFDCV 4460 19.3 3.07 0.60 0.02 3999 AFDCV 3425 18.0 2.83 0.55 0.01 3419

YCURV 5353 72.0 12.0 0.63 0.03 5335 ACURV 4437 72.4 12.7 0.72 0.00 4419

YBRWR 5127 2.2 0.95 0.46 0.03 4981 ABRWR 3899 2.2 0.90 0.35 0.06 3884

YBCOV 3826 3.5 0.90 0.22 0.04 3826 ABCOV 2389 3.2 0.98 0.04 0.12 2381

YCCOV 3726 3.5 0.85 0.26 0.05 3724 ACCOV 2418 3.3 0.87 0.37 0.07 2407

YDAG 3956 1.8 1.01 0.09 0.09 3955 ADAG 2762 1.7 0.92 0.04 0.06 2748

YSSTRC 5138 2.7 0.86 0.17 0.14 5127 ASSTRC 3174 2.7 0.94 0.34 0.11 3161

YWEATH 5137 3.1 1.04 0.02 0.16 5126 AWEATH 3174 3.0 1.12 0.13 0.07 3161

YCHAR 5138 2.7 0.86 0.26 0.07 5127 ACHAR 3174 2.7 0.91 0.28 0.05 3161

YFLROT 5027 1.8 1.26 0.20 0.06 5016 AFLROT 3396 1.9 1.43 0.16 0.06 3381

YDUST 5137 3.1 0.98 0.18 0.07 5126 ADUST 3174 2.9 1.15 0.04 0.13 3161

YGCOL 5138 2.5 0.79 0.29 0.08 5127 AGCOL 3174 2.6 0.86 0.20 0.05 3161

YCOLZ 2740 65.6 2.54 0.32 0.00 2738 ACOLZ 2700 65.2 2.42 0.26 0.06 2695

YCOLYZ 2728 8.1 0.78 0.50 0.04 2726 ACOLYZ 2697 8.4 0.77 0.40 0.07 2692

YCOLY 2740 73.8 2.43 0.21 0.00 2738 ACOLY 2708 73.5 2.17 0.19 0.05 2703

YCOLX 2739 69.6 2.24 0.22 0.00 2737 ACOLX 2708 69.4 1.99 0.20 0.04 2703

YSKINQ 1972 2.9 0.72 0.25 0.07 1972 ASKINQ 1798 2.6 0.76 0.07 0.07 1785

http://www.farmiq.co.nz/
http://www.farmiq.co.nz/
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empirical non-50  k genotypes) of 0.9871. Most sires of 
phenotyped animals were genotyped with the HD SNP 
chip.

Single‑trait genome‑wide association studies
Mixed models that fit fixed and random effects simul-
taneously were used to estimate heritabilities and the 
effects of SNPs associated with each of the traits were 
studied. Pedigree heritabilities were estimated based 
on all animals for which genotype and phenotype data 
were available. The pedigree file included 10,360 animals 
(including 785 sires and 3891 dams). The analysis was 
performed using the ASReml software [23]. The same 
mixed model was used for the GWAS, except that each 
SNP (SNPi, i =  1, 2, 3, …, 510,174) was added to the 
model as a fixed effect, one at a time, and tested for asso-
ciation with the trait:

where y is the vector of observed phenotypic values of 
the animals, 1n is an n × 1 vector of 1s (n = number of 
animals with phenotypes), μ is the overall mean, X, Z1, 
and Z2 are design matrices relating observations to the 
corresponding fixed and random effects, b is a vector 
of fixed effects (described below), a is a vector of poly-
genic additive genetic effects sampled from the distri-
bution N (0,Aσ

2
a), where σ2a is additive genetic variance 

and A is the additive relationship matrix constructed 
from the pedigree of the animals and their ancestors, 
q, s.f , and e are the vectors of random effects of breed 
(including Merino strains), sire-by-flock interaction, 
and residual error, respectively. Q is a matrix with 
breed and strain proportions calculated from pedigree 
(q ~ N (0, Iσ2q)) [24]; si is a vector of genotypes for each 
animal at the ith SNP and αi is the corresponding SNP 
fixed effect. The sire-by-flock interaction effect being 
significant (P  <  0.05), it was retained in the model. All 
models included contemporary group, flock, drop year, 
sex, birth type, and rearing type as fixed effects and 
age of measurement, age of dam and its squared value 
as covariates. Birth type (BT: single =  1, twin =  2, tri-
plet  =  3, and quadruplet  =  4) and rearing type (RT: 
single  =  1, twin  =  2, and triplet  =  3) were grouped 
together (BTRT). The significant interactions between 
fixed effects (including flock by BTRT, sex by BTRT, and 
BTRT by age of dam) were fitted in the model. SNPs 
were tested for significant association with particular 
traits at several significance thresholds, and the false 
discovery rate (FDR) [25] was calculated to account for 
the thousands of significance tests performed. Based 
on FDR, we chose stringent significance thresholds 
(P < 10−5 and P < 5 × 10−7) to minimise false discoveries 
(Table 2).

(1)y = 1nµ+ Xb+ siαi + Z1a + Z1Qq + Z2s.f + e,

Genomic prediction
Genomic prediction analyses were performed using two 
methods: GBLUP [26, 27], with the genomic relation-
ship matrix (GRM) constructed as described by [28] 
and BayesR [29]. Genomic EBV (GEBV) were estimated 
in GBLUP directly and calculated from SNP effects in 
BayesR.

Validation populations used for BayesR and GBLUP
The same validation populations were used for both 
methods. All 5726 genotyped and phenotyped ani-
mals were assigned to two groups (straightbred MER 
and crossbred MER) according to their breed using the 
breed proportions (Q) of animals, which were derived 
from pedigree [24]. Of the 5726 individuals, 3883 were 
straightbred MER (QMER > 0.90) and 1843 were crossbred 
MER (0.25  <  QMER ≤  0.90). All crossbred MER animals 
and the straightbred animals that had sires in common 
with crossbred MER were in all training sets but not in 
the validation set. The remaining straightbred MER indi-
viduals were split into five sets by allocating all offspring 
of randomly selected sires to one of the five datasets (five-
fold cross-validation approach). In this way, no animal 
used for validation had paternal half-sibs in the training 
population. Thus, the analysis was performed five times 
using each data fold in turn as a validation group and the 
remaining fourfolds as the training population (i.e. four-
folds plus crossbred MER from above).

GBLUP
GEBV were predicted using Model (1), but no single SNP 
effect (si) was fitted and a was replaced by g, where g is a 
vector of GEBV ~N (0,Gσ2g), where σ2g is the genetic vari-
ance and G is the genomic relationship matrix (GRM). 
For a SNP to be included in the GRM, its minor allele 
frequency had to be higher than 0.005, once genotypes 
(real and imputed) were combined in the whole dataset. 
Validation animals were included in the GRM but had 
unknown phenotypes in the calculation of GEBV.

BayesR
The BayesR method [29] assumes that SNP effects are 
from a mixture of four normal distributions with the var-
iance of each distribution equal to 0, 0.01, 0.1 or 1% of 
the genetic variance. Gibbs sampling was used to sample 
from the posterior distributions of the parameters, run-
ning 40,000 iterations with 20,000 iterations of burn-in, 
which were averaged across five parallel chains. Since 
the BayesR software used in this study does not allow 
fitting a full-model, residuals were calculated by adjust-
ing the phenotypes for fixed effects, breed effects, and 
the sire-by-flock interaction effect using ASReml [23]. 
These residuals were then used as phenotypes in the 
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analysis. The BayesR analysis fits the effects of all SNPs 
and a residual polygenic effect, the latter with a covari-
ance structure that is proportional to the numerator rela-
tionship matrix (A). The SNP effects from BayesR were 
then used to calculate GEBV for animals in the validation 
sets.

Estimation of the accuracy of GEBV
For each validation population, the accuracy of genomic 
prediction was calculated as the correlation between 
GEBV and the adjusted phenotype corrected for fixed 
effects, which was divided by the square root of the her-
itability of the trait (h2) that was estimated by using the 
8-generation pedigree of all recorded animals. Thus, we 
report accuracy as the estimated correlation between 
GEBV and true breeding values.

Multi‑trait analyses to identify pleiotropic QTL
To identify the pleiotropic genomic regions that control 
a wide range of wool traits, we used three approximate 
multi-trait analyses: (1) multi-trait GWAS (multi-GWAS) 
following the procedure described by Bolormaa et  al. 

[30]; (2) approximate BayesR posterior probability of SNP 
effects across traits (multi-PP); and (3) the linear combi-
nation of local GEBV that were derived from BayesR esti-
mates of SNP effects within 250-kb windows across all 
traits for a total of 9813 windows (multi-LGEBV).

Multi‑GWAS
Multi-trait analyses were performed following the pro-
cedure in Bolormaa et al. [30] based on SNP effects that 
were estimated from 44 individual single-trait GWAS. 
The multi-trait χ2 statistic was calculated as: multi-trait 
χ2 = t ′iV

−1ti, where ti is a vector of the signed t-values 
of the effects of the ith SNP for the 44 traits and V−1 is 
the inverse of the 44 × 44 correlation matrix where the 
correlation is calculated over the 510,174 estimated SNP 
effects (signed t-values) between each pair of traits. The 
power of QTL detection was investigated by comparing 
the FDR [25] from the multi-trait test with the FDR from 
the single-trait GWAS. To avoid testing a large number of 
closely-linked SNPs, only the SNPs with the most strin-
gent P values (P < 5 × 10−7) within each 1-Mb window 
were selected from the multi-trait analysis. These SNPs 

Table 2  Number of  significant SNPs (P  <  10−5 and P  <  5 ×  10−7) and  their false discovery rates (FDR, %) for  each trait 
from the single-trait GWAS

a  Trait names see Table 1
b  For empty cells, FDR are not available or are higher than 100%

Traita P < 1 × 10−5 P < 5 × 10−7 Traita P < 1 × 10−5 P < 5 × 10−7

Nb SNPs FDR Nb SNPs FDRb Nb SNPs FDR Nb SNPs FDRb

YGFW 69 7.4 7 3.6 AGFW 304 1.7 157 0.2

YYLD 122 4.2 75 0.3 AYLD 113 4.5 59 0.4

YSL 68 7.5 26 1.0 ASL 39 13.1 3 8.5

YSS 56 9.1 31 0.8 ASS 39 13.1 15 1.7

YFD 202 2.5 36 0.7 AFD 295 1.7 69 0.4

YFDCV 97 5.3 31 0.8 AFDCV 109 4.7 47 0.5

YCURV 105 4.9 22 1.2 ACURV 103 5.0 8 3.2

YBRWR 50 10.2 23 1.1 ABRWR 15 34.0 2 12.8

YBCOV 3 2 12.8 ABCOV 6 85.0 1 25.5

YCCOV 19 26.9 1 25.5 ACCOV 45 11.3 19 1.3

YDAG 11 46.4 0 ADAG 5 1 25.5

YSSTRC 41 12.4 2 12.8 ASSTRC 19 26.9 1 25.5

YWEATH 5 0 AWEATH 8 63.8 2 12.8

YCHAR 46 11.1 15 1.7 ACHAR 28 18.2 5 5.1

YFLROT 22 23.2 1 25.5 AFLROT 75 6.8 12 2.1

YDUST 15 34.0 0 ADUST 10 51.0 1 25.5

YGCOL 25 20.4 2 12.8 AGCOL 21 24.3 0

YCOLZ 28 18.2 5 5.1 ACOLZ 25 20.4 0

YCOLYZ 7 72.9 1 25.5 ACOLYZ 28 18.2 0

YCOLY 22 23.2 3 8.5 ACOLY 20 25.5 0

YCOLX 24 21.3 4 6.4 ACOLX 23 22.2 0

YSKINQ 9 56.7 0 ASKINQ 7 72.9 0



Page 6 of 22Bolormaa et al. Genet Sel Evol  (2017) 49:62 

(P < 5 × 10−7) were assumed to be near QTL that affect 
wool traits and were also examined as likely candidate 
gene positions.

Multi‑PP
The posterior probability that a SNP had no effect on 
any trait was calculated as a product of posterior prob-
abilities that a SNP had no effect on any individual trait. 
We use 1 minus this probability to approximate the prob-
ability that a SNP has an effect on at least one trait i.e.: 
ppeffect�=0 = 1−�(ppeffect=0). We retained SNPs with a 
ppeffect�=0 higher than 0.3.

Multi‑LGEBV
GEBV in the 9813 non-overlapping 250-kb windows 
(local GEBV) for each animal were calculated based on 
the BayesR effects of all SNPs in the window. A high vari-
ance of local GEBV in a window, means that the window 
includes a QTL for that trait [11]. For each of the 250-
kb windows (segments), the covariance of local GEBV 
between each pair of the 44 traits was standardized for 
the variability of each trait as follows:

where covLGEBV(y,x) is the covariance of local GEBV 
between trait y and trait x and σy and σx are the pheno-
typic standard deviations of trait y and x. If a window 
contains a single QTL, we expect this covariance matrix 
to be dominated by one linear combination of traits rep-
resenting the QTL effect. Therefore, we carried out a 
principal component (PC) analysis of the 44 × 44 covari-
ance matrix and examined the highest eigenvalue. This 
eigenvalue is the variance, in phenotypic standard devi-
ation units, of the linear combination of traits with the 
largest variance. Across all 9813 windows, the 120 win-
dows with the highest eigenvalues of the first PC (PC1) 
were arbitrary selected as containing a QTL.

After selecting the 120 top 250-kb windows, we fur-
ther investigated which SNP, in each of the selected 
windows, was most highly associated with the PC1 of 
the (co)variance matrix (the ‘best’ SNP). To identify the 
best SNP, a pseudo trait (SLC), which consisted of the 
linear combination of local standardised GEBV and the 
PC1 eigenvector across the 44 traits, was calculated for 
each animal at each of the selected 250-kb windows 
using the following formula: SLC = y′x, where y′ is the 
transpose of a vector of the local GEBV that are stand-
ardised (divided) by the phenotypic standard deviation 
of each trait (1 × 44) in the corresponding 250-kb win-
dow, and x is the eigenvector of the PC1 (44 × 1), which 
was calculated based on the covariance matrix of the 
standardised local GEBV among 44 traits. Since not all 

t(y,x) =
covLGEBV(y,x)

σyσx
,

animals were measured for all traits, the missing local 
GEBV were replaced by the mean of local GEBV across 
all animals, for which measurements for that particular 
trait were available in order to calculate a linear combina-
tion of the 44 traits. This resulted in a SLC for each ani-
mal in each of the 120 chosen windows, which were now 
used as a pseudo-trait in GWAS within each window to 
identify the “best” SNP that tagged variation within the 
segment. The model used in this GWAS was as follows: 
SLC ∼ mean+ SNPi + animal+ error, where animal and 
error were fitted as random effects and SNPi was fitted 
as a fixed effect, one at a time (the phenotypes used to 
calculate SLC had already been corrected for other fixed 
effects, breed effect, and sire-by-flock interaction effect 
prior to BayesR). After performing this new GWAS, the 
SNP with the highest F value within each of the corre-
sponding 250-kb windows was chosen as the best SNP to 
tag the QTL.

Validation of SNP effects
Predicting missing phenotypes
The multi-trait validation of SNP effects (i.e. using the 
linear index approach [30]) requires complete data for all 
traits at the individual level. For animals without records 
for a particular trait, missing phenotypes were predicted 
using a multiple regression approach. This multiple 
regression used phenotypes that were already corrected 
for fixed effects, breed effect, and sire-by-flock interac-
tion effect. The multiple regression procedure uses the 
phenotypic (co)variance matrix between the 44 traits 
based on all animals (training and validation popula-
tion), which was estimated using the available pheno-
typic values. Next, the phenotypic (co)variance matrix 
was inverted. Then, separately for each animal, traits with 
phenotypes were ordered before traits with missing phe-
notypes. Again, for each animal, the missing phenotypes 
(yn) were then predicted using the following formula:

where ym is a vector of the traits measured on a particu-
lar animal, Unn is the inverse of phenotypic covariance 
matrix between 44 traits with a missing record, and Unn 
is the inverse of phenotypic covariance matrix of the 
traits with and without a missing record.

Validation populations for single‑trait and multi‑trait 
analyses
To enable validation of SNP effects in independent ani-
mals, the 5726 animals with full phenotypic data (includ-
ing the predicted phenotypic values) were divided into 
training and validation populations. The same cross-val-
idation approach was used as described in the genomic 

ŷn = −
(

Unn
)−1

Unmym,
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prediction section above, except that crossbred animals 
were not excluded from validation sets. Then, one of the 
five divisions was randomly used as a validation popula-
tion and the other four divisions as the training popula-
tion. Only one 4:1 division (i.e. 4649 training animals: 
1077 validation animals, out of 5726 genotyped animals) 
was tested for each of the traits studied.

Validation of SNP effects from the single‑trait analysis
The GWAS for all traits were performed separately in 
the training and validation populations. SNPs with a sig-
nificant effect in the training population were validated 
in the validation population for the five traits that dis-
played the largest number of significant associations. We 
counted the number of SNPs for which the effect was in 
the same direction in both the validation and training 
populations.

Selection of top SNPs from each of the three multi‑trait 
methods in the training population
The single-trait BayesR analyses for all traits were also 
performed using only the training population (4649 ani-
mals). Then, the three multi-trait analyses described in 
the previous section (multi-GWAS, multi-PP, and multi-
LGEBV) were repeated in the validation set to validate 
the top SNPs from each multi-trait analysis in the train-
ing population.

Use of a linear index in multi‑trait validation
The top SNPs in each of the three multi-trait analyses 
(i.e., three different lists of SNPs) in the training popula-
tion were validated separately in an independent set of 
validation animals. A linear index (yI) was calculated for 
each putative QTL (from each of the three methods) and 
for each animal. It summarised the information across 
the 44 traits (22 traits at two ages) and was calculated 
using the following formula [30]: yI = b′C−1y, where b′ 
is the transpose of a vector of the estimated SNP effects 
(not t values) on the 44 traits (1 × 44), which were esti-
mated from only the training population, C−1 is the 
inverse of the 44 × 44 (co)variance matrix among the 44 
traits calculated from the estimated effects of the 510,174 
SNPs, only in the training population, and y is a 44 × 1 
vector of the phenotype values (adjusted for fixed, breed 
and sire-by-flock effects) for 44 traits for each animal in 
the validation sample. This resulted in a linear index (yI) 
for all putative QTL where, for each QTL, each animal 
had a linear index summary “phenotype”. Then, GWAS, 
in which each yI was treated as a new trait, were per-
formed using the following model:

yI = mean+ SNPi + animal+ error,

where animal and error were fitted as random effects and 
SNPi was fitted as a fixed effect, one at a time, for signifi-
cant SNPs (P  <  10−5 for each 1 Mbp) discovered in the 
training population. After performing the GWAS, the 
significance (P < 0.05) and the consistency of the direc-
tion of effects (positive or negative) for the selected sig-
nificant SNPs were compared between the training and 
validation populations.

Identification of the most likely candidate genes
The genes that were located 50 kb upstream and down-
stream of the best SNP were identified using UCSC 
Genome Bioinformatics (http://genome.ucsc.edu/) and 
Ensembl (http://www.ensembl.org/biomart/). If there 
was more than one gene, we retained only the gene that 
was located nearest to the SNP or the particular gene 
with a known effect on wool or hair.

Results
Single‑trait GWAS
The number of significant SNPs for each trait is in 
Table 2.

Genomic prediction
 Using BayesR, mean accuracies of genomic predic-
tion of 0.21 and 0.23 were obtained across wool traits at 
yearling and adult ages, respectively (Table 3). Accuracy 
tended to increase with Th2, with T being the number of 
phenotypes in the training set (Fig. 1, R2 = 0.34). GBLUP 
provided very similar mean accuracies (0.21 and 0.22 at 
yearling and adult ages, respectively). However, BayesR 
tended to result in higher accuracies than GBLUP for 
traits that had a large number of significant SNPs in the 
single-trait GWAS (Tables 2, 3; Fig. 2).  

Multi‑trait analyses for the identification of pleiotropic QTL
Multi‑GWAS
The multi-trait analyses using GWAS identified many 
narrow regions that contained more than one signifi-
cant SNP (e.g. on chromosomes OAR3, 6, 7, 13, 19, and 
25, OAR for Ovis aries chromosome; Fig. 3a). Combining 
the single-trait GWAS in a multi-trait analysis resulted in 
563 and 263 significant SNPs at significance thresholds 
of P  <  10−5 and P  <  5 ×  10−7, respectively. This corre-
sponded to a FDR of 0.9 and 0.1% (respectively), which 
was lower than for any individual trait tested in the sin-
gle-trait GWAS (Table 2). In order to avoid testing a large 
number of closely-linked SNPs, we identified 64 SNPs 
that were significant at P  <  5  ×  10−7 and which were 
separated from each other by at least 1  Mb. Figure  4a 
compares the multi-GWAS with five single-trait GWAS 
for a region around 59.0 Mb on OAR3. These five traits 

http://genome.ucsc.edu/
http://www.ensembl.org/biomart/
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(AFDCV, YBWR, YFD, YFDCV, and YSL) were those for 
which the number of significant SNPs (P < 5 × 10−7) was 
largest in the single-trait GWAS (Table 2).

Multi‑PP
One hundred and two SNPs had an approximate multi-
trait posterior probability (pp) higher than 0.3 (Fig. 3b), 
among which two SNPs had a ppeffect �=0 higher than 0.05 
for four traits, 11 for three traits, 34 for two traits and 
the remaining 55 SNPs for one trait. Thus, although 
the multi-trait pp was calculated using all traits, the pp 
for the 102 identified SNPs was mainly influenced by 
between one and four traits. For example, Fig. 4b com-
pares the multi-pp of SNPs on OAR3 around 59.0  Mb 
with the pp for the five traits YSL, YFD, YFDCV, 
AFDCV, and YBRWR. Two SNPs that were 39 kb apart 
had a high pp i.e. higher than 0.82 (Fig. 4b) and were in 
high LD (r2 =  0.44), which indicates that they may tag 
the same QTL. There is another SNP with a multi-trait 

pp ≈  0.5 that is located 0.5  Mb upstream of these two 
SNPs.

Multi‑LGEBV
Local GEBV, using only the SNPs within a 250-kb win-
dow, were calculated for each animal using the BayesR 
estimates of SNP effects. The variance of local GEBV 
for each window and trait was calculated. A high vari-
ance indicates that within the 250-kb window there is a 
QTL for that trait. The highest percentage of variance of 
local GEBV was equal to 1.9% of the phenotypic variance 
for yearling staple length (YSL), which indicates that we 
did not detect QTL with very large effects for any of the 
traits. Figure 4c shows the variance for five traits for four 
windows around OAR3:59 Mb.

For each of the 9813 windows, a PC analysis yielded 44 
eigenvalues and eigenvectors. A high first eigenvalue indi-
cates a window that contains a QTL. We selected the 120 
windows with the highest eigenvalues as windows that 
potentially contain a QTL (Fig. 3c). The distribution of the 
log10 of the first eigenvalues for 120 segments with the high-
est first eigenvalue is in Fig. 5a. If within the window, there is 
a single QTL that has an effect on multiple traits, we expect 
that the first eigenvector will explain most of the variance 
and that the other eigenvalues will be low. We selected 120 
segments with the highest first eigenvalues across all 9813 
segments and in 112 of these 120 selected segments, the 
PC1 explained more than 90% of the total variance. The 
distribution of the proportion of variance explained by PC1 
eigenvalues across the 9813 windows is in Fig. 5b.

Figure 4c shows the first eigenvalues for four segments 
on OAR3. The second segment (58.75–59.25 Mb) had the 
highest eigenvalue, but the segment to its left had a high 
variance of local GEBV for YFD in spite of a lower first 
eigenvalue. This suggests that the first segment contains a 
more pleiotropic QTL while the second segment contains 
a QTL that affects YFD mainly.

In order to identify the SNP that is closest to the QTL 
(best SNP), for each of the 120 segments, we performed 
a new GWAS by using the eigenvector of PC1 as a new 
trait and fitting each SNP, one at a time, within each 
segment. Thus, the dependent variable was the linear 
combination of traits as defined by the first eigenvec-
tor. By this process, we selected the top SNPs (with the 
highest F value) in each of the top 120 segments. For 
example, Fig.  4d shows the eigenvalues (×103) of the 
four neighboring windows at around 59.0 Mb on OAR3 
and the F values of the SNP effects (×10−3) for PC1 in 
the corresponding windows. The second segment had a 
high eigenvalue that explains 98% of the total variance 
and three SNPs (circled in blue, orange and green) were 
most highly associated with the first eigenvector for 
this segment. The first segment had a comparably lower 

Table 3  Average accuracies of  GEBV of  the fivefold cross-
validation populations using BayesR and GBLUP methods 
for each trait at yearling (Y) and adult (A) ages

SE standard error of average accuracy of GEBV
a  Trait names see Table 1
b  Average accuracy across traits

Traita Accuracy (SE) Traita Accuracy (SE)

BayesR GBLUP BayesR GBLUP

YGFW 0.28 (0.011) 0.24 (0.027) AGFW 0.39 (0.024) 0.33 (0.015)

YYLD 0.33 (0.026) 0.30 (0.021) AYLD 0.42 (0.042) 0.37 (0.029)

YSL 0.27 (0.024) 0.23 (0.012) ASL 0.23 (0.033) 0.22 (0.040)

YSS 0.24 (0.026) 0.16 (0.029) ASS 0.28 (0.028) 0.28 (0.039)

YFD 0.35 (0.015) 0.31 (0.015) AFD 0.41 (0.033) 0.28 (0.021)

YFDCV 0.23 (0.029) 0.19 (0.021) AFDCV 0.30 (0.029) 0.22 (0.048)

YCURV 0.24 (0.015) 0.20 (0.009) ACURV 0.27 (0.018) 0.21 (0.011)

YBRWR 0.27 (0.027) 0.24 (0.018) ABRWR 0.19 (0.030) 0.23 (0.021)

YBCOV 0.13 (0.035) 0.14 (0.046) ABCOV 0.10 (0.079) 0.16 (0.054)

YCCOV 0.22 (0.037) 0.25 (0.041) ACCOV 0.22 (0.042) 0.19 (0.029)

YDAG 0.18 (0.093) 0.19 (0.081) ADAG 0.07 (0.102) 0.16 (0.090)

YSSTRC 0.25 (0.044) 0.31 (0.045) ASSTRC 0.19 (0.040) 0.20 (0.032)

YWEATH 0.24 (0.081) 0.29 (0.079) AWEATH 0.22 (0.098) 0.22 (0.102)

YCHAR 0.21 (0.024) 0.23 (0.019) ACHAR 0.08 (0.039) 0.15 (0.046)

YFLROT 0.28 (0.055) 0.30 (0.054) AFLROT 0.26 (0.036) 0.25 (0.041)

YDUST 0.19 (0.051) 0.23 (0.050) ADUST 0.45 (0.111) 0.49 (0.117)

YGCOL 0.15 (0.011) 0.19 (0.015) AGCOL 0.19 (0.031) 0.23 (0.040)

YCOLZ 0.11 (0.033) 0.13 (0.018) ACOLZ 0.14 (0.040) 0.17 (0.037)

YCOLYZ 0.18 (0.030) 0.18 (0.020) ACOLYZ 0.24 (0.033) 0.21 (0.028)

YCOLY 0.10 (0.038) 0.12 (0.026) ACOLY 0.16 (0.042) 0.15 (0.050)

YCOLX 0.12 (0.037) 0.11 (0.029) ACOLX 0.12 (0.069) 0.15 (0.059)

YSKINQ 0.11 (0.032) 0.15 (0.027) ASKINQ 0.04 (0.091) 0.09 (0.110)

Meanb 0.21 0.21 Meanb 0.23 0.22
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first eigenvalue but this eigenvalue explained 96% of the 
total variance and there is only one SNP (circled in yel-
low) that was associated with the first eigenvector for 
that segment. The third segment had an even lower first 
eigenvalue (explaining 68% of the total segment vari-
ance), which probably indicates that there is no QTL in 
that segment. However, we did observe one SNP that 
was highly associated with the first eigenvector (Fig. 4d), 
which illustrates one of the drawbacks of this method. 
Since local GEBV are calculated from SNP genotypes, 
there will always be one or more SNPs associated with 
the first eigenvector but it should not be interpreted as 
evidence for a QTL unless the first eigenvalue is high.

Comparison and combination of results from the three 
multi‑trait analyses
As described above, we selected 64 SNPs from the multi-
GWAS (most significant SNP (P  <  5  ×  10−7) in each 

1-Mb window), 102 SNPs with the highest multi-PP and 
120 from the analysis of local GEBV. Among these, 75 
SNPs overlapped across two or three analyses. Therefore, 
the total number of SNPs identified was 206. Of these 
206 SNPs, seven were identified by all three methods. 
In addition to these seven SNPs, 64 were identified by 
both local GEBV and multi-PP, and two by multi-PP and 
multi-GWAS (Fig. 6 and see Additional file 1: Table S1). 
Of the 64 top multi-GWAS SNPs, 55 were not among 
the top SNPs selected by the other two multi-trait meth-
ods. In fact, 50 of these 55 SNPs were in segments that 
did not have a high eigenvalue based on local GEBV, and 
the first eigenvalue explained less than 90% of the total 
variance. Thus, it is possible that these SNPs are at some 
distance from the causal variant, which is located in 
another segment. Conversely, among the SNPs that were 
identified by the multi-LGEBV and multi-PP analyses, 
38 (=9 + 13 + 16) were significant in the multi-GWAS 

Fig. 1  Relationship between BayesR accuracy and number of records (T) multiplied by heritability (h2)
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(P  <  10−5) although they were not the most signifi-
cant SNPs in their 1-Mb window, or failed to reach a 
P  <  5 ×  10−7. By adding these 38 SNPs to the 64 SNPs 
from the multi-GWAS, 20 (=7 + 13) are common to all 
three multi-trait approaches, nine in the multi-LGEBV 
and multi-GWAS and 18 (=2 + 16) in the multi-PP and 
multi-GWAS (Fig. 6).

These results are illustrated in Fig.  4. The points that 
are circled in the same colour in Fig.  4a, b, d represent 
the same SNP. The second segment had the highest 

eigenvalue and explained 98% of the total variance of 
local GEBV in that segment. The SNPs circled in blue, 
orange, and green are those that were most highly associ-
ated with the first eigenvector (Fig. 4d) and had the high-
est multi-PP (Fig. 4b). These were also highly significant 
in the multi-GWAS (Fig.  4a). The SNP circled in blue 
(at 59,019,274  bp on OAR3) was identified by all three 
multi-trait methods (see Additional file 1: Table S1). In all 
three methods, the same traits (YSL, YBRWR, YFDCV, 
AFDCV) contributed to the multi-trait statistics, which 

Fig. 2  Relationship between number of significant SNPs (P < 10−5) and difference in accuracy between BayesR and GBLUP

(See figure on next page.) 
Fig. 3  Manhattan plot of multi-GWAS (a), multi-PP (b), and multi-LGEBV (c). Y axes are −log10 (P values) of SNPs for multi-GWAS, multi-trait posterior 
probabilities for multi-PP, and eigenvalues (×1000) of the first principal component (PC1) of 9813 250 kb-windows for multi-LGEBV. Numbers on 
the x axes represent the number of ovine chromosomes (OAR) excluding OARX. SNPs in red colour represent the top selected SNPs from each of the 
three multi-trait analyses [the highest eigenvalues of 120 windows from multi-LGEBV, multi-trait posterior probabilities of 102 SNPs from multi-PP, 
and 102 multi-GWAS SNPs including 64 top SNPs (P < 5 × 10−7) in 1-Mb intervals and 38 SNPs (P < 10−5)]
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supports the conclusion that this is a pleiotropic QTL 
with effects on at least these four traits. The first segment 
in Fig. 4 had a high variance of local GEBV for YFD, but 
when this trait was combined with the other 43 traits, 
the first eigenvalue was lower than that of the second 
segment. However, the SNP that is circled in yellow was 
associated with the first eigenvector, had a high multi-
PP and was significant (P  <  10−5) in the multi-GWAS. 
In all three analyses, this SNP was associated with YFD. 

In Bayes R, which generates the statistics for multi-PP 
and local GEBV, all SNPs are fitted simultaneously in the 
model. Thus, it is possible that the QTL tracked by the 
yellow circled SNP differed from the QTL tracked by the 
blue, orange and green circled SNPs. This hypothesis is 
supported by the traits that are affected by the SNP. Using 
the effect of each SNP on the 44 traits as estimated by the 
GWAS, it is possible to calculate the correlation between 
any pair of SNPs. Figure 7 displays the correlation among 

Fig. 4  Plots of various mapping approach statistics for the OAR3 region between 58.5 and 59.5 Mb. −log10 (P values) of SNP effects of five single-
trait GWAS and multi-GWAS (a), posterior probabilities of SNP for five single-trait BayesR and multi-PP (b), variance of local GEBV in 250-kb intervals 
for five traits (arbitrarily scaled) and eigenvalues of PC1 (×103) of multi-LGEBV (c), and eigenvalues of PC1 (×103) from multi-LGEBV and F values of 
SNP effects (×10−3) for PC1 (d). SNPs circled in green and orange are the two top SNPs from each of the three multi-trait methods in that particular 
window and the top SNPs in the adjacent window are circled in yellow
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SNP effects in this region of OAR3 as a heat map. It 
shows that all the other SNPs except that circled in yel-
low have highly correlated effects and presumably track 
the same QTL. In the multi-GWAS (Fig.  4a), another 
significant SNP at 58.72  Mb was observed, which was 
not detected in either of the other analyses presumably 
because it tracked the same QTL as the SNP at 59.0 Mb 
circled in blue, orange and green colours. Figure 8 illus-
trates two more straightforward examples where the 
same SNP was identified by all three methods. 

Validation of SNP effects
Validation of SNPs from single trait GWAS
The most significant SNPs (P < 10−5) in each 1-Mb win-
dow were tested in the validation population. Table  4 
shows the results for five traits, which were among those 
that had the largest number of significant associations 
(Table  2). The number of SNPs tested ranged from 14 
(YYLD) to 101 (YFD). The proportion of these SNPs that 
were significant at P < 0.05 in the validation population 
varied from 0.07 (=1/14 for YYLD) to 0.30 (=7/23 for 
AYLD). The percentage of these SNPs that had an effect 
in the same direction in both the validation and train-
ing populations varied from 57 to 86% (Table 4). In addi-
tion, when a significance level was also imposed on SNPs 
discovered in the validation population, the percentage 
of SNP effects in the same direction across training and 
validation populations increased from 75 to 100% (small 
numbers of SNPs were discovered in the relatively small 
validation population partly due to lack of power).

Multi‑trait validation using the linear index approach
Association between a SNP and its corresponding lin-
ear index was tested in the validation sample. The 105, 
77, and 120 top SNPs were selected from the multi-
GWAS (P < 5 × 10−7 in each 1-Mb window), multi-PP, 
and multi-LGEBV analyses, respectively, in the train-
ing population. These SNPs were tested in a GWAS 
in the validation population (see Table  5). Of the 105 
multi-GWAS SNPs that were significant in the train-
ing population, 70% had an effect in the same direction 
in both the training and validation populations and 16 
were also significant (P < 0.05) in the validation popula-
tion of which 88% had an effect in the same direction in 
both the validation and training populations (Table  5). 
The results were slightly better for the 77 SNPs selected 
by the multi-PP analysis: 19 out of these 77 SNPs were 
significant and all had an effect in the same direction 
in both the validation and training populations. Thus, 
the number of validated SNPs (with a significant effect 
in the same direction) was largest with the multi-PP 
approach (19) followed by multi-LGEBV (15) and multi-
GWAS (14 = 16 × 0.88).

Fig. 5  Log10 of the highest 120 PC1 eigenvalues (a) and proportion 
of variance explained by PC1 across 9813 windows (b)

Fig. 6  Venn diagram of the overlapping SNPs between the top SNPs 
selected by the three multi-trait analyses
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Examples of QTL with a similar pattern of effects 
across traits
If two QTL affect the same physiological pathway, one 
might expect that they have the same pattern of effects. 
We assessed the similarity of SNP effects by the corre-
lation between pairs of SNPs across the 44 traits. Two 
SNPs might have a similar pattern because they affect 
the same pathway or because they tag the same QTL. 
Among the 206 SNPs, strong correlations (>0.8) were 
mainly found among the SNPs located on the same chro-
mosome. For instance, six SNPs were on OAR3:59.0 Mb, 
three on OAR5:48.5  Mb, four on OAR6:37.5  Mb, five 

on OAR8:31.2  Mb, six on OAR13:62.9  Mb, three on 
OAR19:0.6  Mb, five on OAR23:44.3  Mb, and 11 on 
OAR25:35.3  Mb. Some of these were in high LD (e.g. 
LD estimates (r2) between three SNPs on OAR3 and 
OAR19 ranged from 0.50 to 0.95). It is likely that each 
of these clusters of highly correlated SNPs tag one major 
QTL. In a few cases, moderate correlations (0.6  to  0.8) 
existed between SNPs located on different chromo-
somes. For instance, the SNP at OAR3:59.0 Mb (near the 
FOXI3 gene) has a similar pattern of effects as the SNP 
at OAR6:37.5  Mb (near LCORL) and OAR23:44.2 and 
OAR25:35.3 (near MAT1A). In each case, there is an 

Fig. 7  Correlation matrix of the effects on 44 traits between the 16 top SNPs within the 58.5–59.5 Mb region on OAR3. Numbers on the right repre-
sent chromosome number and position in base pairs of these top SNPs
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allele that increases SL, SS and FD, but decreases FDCV. 
However, the SNPs differ in their effects on other traits, 
such as GFW, thus it is less likely that they act through 
the same pathway. Similarly, the SNP at OAR13:62.9 
(near RALY) and OAR15:72.6 (near ALX4) both have an 
allele that increases FD and FDCV.

Fig. 8  SNP effects estimated by three multi-trait analyses (multi-GWAS, multi-PP, and multi-LGEBV). a On OAR11 near the STAT3 gene. b On OAR15 
near the ALX4 gene. The top SNPs identified by these three methods are indicated by a red circle on each plot. Note that the scale of the y axis is dif-
ferent for each graph. The scale for multi-GWAS is −log10 of the P values to the corresponding F values of SNP effects, for multi-LGEBV is −log10 of P 
values to the corresponding of F values of SNP effects for PC1, which was divided by 1000, and for multi-PP is multi-trait ppeffect�=0

Table 4  Number of  significant SNPs (P  <  10−5) in  each 
1-Mb region in the training population that were also sig-
nificant in the validation population for the five individual 
single traits at two yearling (Y) and adult (A) ages

%-same = percentage of SNPs, which have an effect in the same direction in 
both the training and validation populations
a  P value in the validation population

P valuea Number 
of SNPs

%-same P valuea Number 
of SNPs

%-same

YGFW AGFW

0.05 2 100 0.05 7 100

All 20 75 All 41 80

YYLD AYLD

0.05 1 100 0.05 7 86

All 14 57 All 23 61

YSL ASL

0.05 3 100 0.05 4 75

All 24 67 All 27 74

YFD AFD

0.05 24 100 0.05 15 93

All 101 86 All 92 78

YCURV ACURV

0.05 6 100 0.05 2 100

All 30 83 All 28 82

Table 5  Validation of the top SNP effects from three multi-
trait analyses

%-same = percentage of SNPs, which have an effect in the same direction in 
both the training and validation populations
a  P value in the validation population

P valuea Number of SNPs FDR % %-same

SNPs from multi-GWAS

0.05 16 29.3 88

All 105 70

SNPs from multi-PP

0.05 19 16.1 100

All 77 75

SNPs from multi-LGEBV

0.05 15 36.8 100

All 120 74
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Identification of candidate genes
We searched for genes within 50-kb genomic regions 
up and downstream from each of the 206 SNPs selected 
from the three multi-trait analyses (see Additional file 1: 
Table S1) and identified many genes with known effects 
on wool and hair growth (Table 6). We also found strong 
effects for SNPs near the genes ALOX15, ANKS1B, 
ELOVL6, FASN, NCAPG, LCORL, FTL, and GK5, which 
are associated with growth, fatness and body composi-
tion in sheep and humans [14, 31–33].

Discussion
Genomic prediction
Our results show that the estimated GEBV accuracies 
are affected by trait, size of the training population, and 
statistical method used (GBLUP vs. BayesR). As expected 
from theory [34] in which Th2 is a critical parameter, 
traits with a high heritability and a large training popula-
tion tended to result in higher accuracies than those with 
an average heritability across populations (Fig. 1).

On average, BayesR and GBLUP resulted in similar 
GEBV accuracies but BayesR resulted in higher accuracy 
for traits (GFW, YLD, SL, SS, FD, FDCV, and CURV) for 
which there was a large number of significant SNPs in the 
GWAS. In an earlier study on the genomic prediction of 
wool and carcass traits using the 50 k SNP chip based on 
the same population, Daetwyler et al. [22] found no clear 
differences in accuracy between GBLUP and BayesR. 
Kemper et  al. [11] found that accuracy of across-breed 

genomic predictions for selection candidates that are less 
related to the training animals was higher with BayesR 
than with GBLUP and the use of BayesR mapped QTL 
more accurately than GBLUP in dairy cattle. Many other 
studies in cattle and humans have reported that BayesR 
results in more accurate GEBV than GBLUP, in particular 
for traits for which mutations of moderate effect are seg-
regating [29, 35–37].

There are few reports on the accuracy of genomic pre-
dictions in sheep [38–43]. Pickering et  al. [43] reported 
the accuracy of genomic predictions for health traits 
including dagginess for several New Zealand breeds 
(Romney, Coopworth, Perendale, Texel and three breed 
crosses). For the dagginess traits, they found that accu-
racies of genomic predictions ranged from 0.11 to 0.56 
for those breeds, while in our study an accuracy of 0.19 
was estimated for YDAG using GBLUP. Daetwyler et al. 
[38] (on the same population as used here but with fewer 
records) reported that accuracies of GEBV with 50  k 
SNPs ranged from 0.15 to 0.79 for wool traits in Merino 
sheep and from −0.07 to 0.57 for meat traits in all breeds 
studied. These accuracies were higher than those that we 
obtained for wool traits. Several factors may explain the 
difference between our results and those in these previ-
ous studies: (1) only 107 animals were included in their 
validation set resulting in accuracies with larger stand-
ard errors; (2) some animals in their validation set were 
closely related to animals in the training dataset, whereas 
we deliberately limited relationships between training 

Table 6  List of candidate genes with known effects on wool or hair growth

a  Not the nearest gene to the particular SNP with a significant effect, but is a gene with a known effect on wool or hair

Gene code Start and stop position of gene 
(bp)

Gene function References

ITGA6 OAR2:136,225,512–136,275,286 Surface markers for epithelial stem cells within hair follicles [56, 57]

ANTXR1 OAR3:38,977,681–39,235,539 Affects hair follicle growth and cycling; Alopecia [58, 59]

FOXI3 OAR3:58,986,758–58,990,671 Regulates multiple aspects of hair follicle development and homeostasis [47]

KRT86 OAR3:133,936,440–133,944,796 Maintains strength and elasticity of hair [59, 60]

WNT1a OAR3:137,053,186–137,056,187 Wnt/β-catenin signalling is necessary for hair follicle stem cell proliferation [61]

BMPER OAR4:62,662,041–62,917,582 BMP signalling controls the hair follicle cycle [49]

FRAS1 OAR6:92,393,951–92,908,337 Basement membrane protein; dermal-epidermal adhesion [62]

FGF5 OAR6:94,584,400–94,605,575 Induces regression of the human hair follicle; regulator of hair growth [63]

FGF7 OAR7:57,779,972-57,841,735 Regulates cell proliferation and cell differentiation and is required for normal regu-
lation of the hair growth cycle

[64]

STAT3 OAR11:41,903,051–41,934,839 Keratinocyte stem homeostasis; alters behaviour of hair follicle stem populations [65]

OVOL2a OAR13:37,399,961–37,424,537 Controls epithelial cell proliferation and differentiation in hair bulb and skin [66]

EIF2S2 OAR13:62,907,171–62,923,869 Inhibition of eIF4E protects against cyclophosphamide-induced alopecia [67]

ALX4 OAR15:72,556,058–72,606,253 Affects hair follicle growth and cycling; total alopecia (hair loss) [59, 68]

MAML2 OAR15:13,755,425–13,774,117 Modifies Notch signalling that controls a cell fate switch in hair follicle stem cells [69]

CUX1 OAR24:34,631,867–34,950,962 Essential for epithelial cell differentiation of the hair follicle in mice [70]

ACHEa OAR24:35,649,479–35,653,376 M4 muscarinic acetylcholine receptors play a key role in the control of murine hair 
follicle cycling and pigmentation

[71]
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and validation animals; and (3) we used within-strain 
GEBV (i.e., adjusted for genetic differences between 
Merino strains) whereas they computed GEBV accuracy 
in the overall population.

Our validation approach, in which the relationship 
between training and validation populations is mini-
mized, is relevant to the commercial use of genomic 
selection in which a sheep breeder relies on a training 
population that is not closely related to his own sheep. 
In our case, the average of the top 10% genomic relation-
ships that a validation individual has with animals in the 
training population was equal to 0.02. When validation 
animals are more related to the training animals, it is 
likely that the estimated genomic prediction accuracies 
will be higher.

The level of genomic prediction accuracy may also 
depend on the accuracy of imputation [44]. However, 
based on the imputation tests from 50 k to HD SNPs (not 
reported here), the mean imputation accuracy between 
imputed and real non-50 k genotypes on our HD data (as 
the proportion of correctly imputed genotypes for non-
HD SNPs) was higher than 0.98, which means that this 
is not a likely reason for the low prediction accuracies 
obtained with our data.

Overall, the accuracy of GEBV was low. The similar 
accuracies obtained with GBLUP and BayesR suggest 
that there are few QTL of moderate or large effect, which 
is supported by the single-trait GWAS results for many 
traits. Therefore, we investigated whether combining 
information from all traits could help to identify QTL for 
multiple traits.

Multi‑trait analyses
It is known that genetic correlations exist between many 
of the traits studied here and thus there must be QTL 
with effects on multiple traits. We used three multi-trait 
analyses to map these QTL. All three methods involve a 
degree of approximation, thus it is difficult to apply pre-
cise significance tests. However, the fact that there is 
agreement among the results of the three multi-trait and 
with the single-trait results supports the conclusion that 
they detect pleiotropic QTL. This is also supported by 
the rates of validated individual SNPs.

The multi-trait GWAS method used here was previ-
ously shown to increase the power of QTL detection [14, 
30]. In most 1-Mb intervals that we selected, the pat-
tern of the SNP effects is similar across traits, thus the 
high correlation among traits, which implies that there 
is probably only one major QTL within a given interval. 
The most significant SNP in a region varies from one 
trait to another due to sampling error even if there is only 
one QTL. Unless the errors for different traits are highly 
correlated, the multi-trait analysis reduces the sampling 

error, which results in a more precise localization of the 
QTL. However, because long range LD occurs in the 
ovine genome [45] a SNP that is located at a long dis-
tance from any QTL can still have a significant associa-
tion with the trait. Combining this with the large number 
of QTL that affect most complex traits, a SNP associated 
with one QTL may merge with those associated with 
another nearby QTL, which decreases our ability to map 
the QTL. To overcome this difficulty, methods that fit all 
SNPs simultaneously, such as the BayesR method [29] 
used here, have been advocated for QTL mapping.

In dairy cattle, Kemper et al. [11] showed that BayesR 
maps QTL more precisely than GWAS. A multi-trait 
BayesR analysis with 44 traits would impose a very large 
computational burden, thus we used two approximate 
methods (multi-PP and multi-LGEBV) to combine the 
results from 44 single-trait BayesR analyses. In the sin-
gle-trait BayesR analysis, high variance of local GEBV 
indicates the presence of a QTL in that 250-kb window. 
The equivalent multi-trait test is based on the first eigen-
value that is caused by one or more traits having a high 
variance of local GEBV. If there is more than one trait 
with a high variance and if the local GEBV are corre-
lated between different traits (as expected if there is only 
one QTL), the first eigenvalue increases. Windows with 
more than one QTL can occur but for 112 of the 120 win-
dows with the highest eigenvalues, the first eigenvalue 
explained more than 90% of the total variance, which 
indicates that windows with only one QTL predominated 
in our study. To identify the SNP that was located nearest 
to this QTL, we carried out a local GWAS using the local 
GEBV as a new trait.

Since multi-LGEBV and multi-PP both used the out-
put from single-trait BayesR analyses, it is reassuring that 
they detected many common SNPs. In fact, of the 102 
SNPs found by multi-PP, 64 were also detected among 
the 120 best SNPs from the multi-LGEBV (Fig. 6). How-
ever, there was less agreement between multi-GWAS and 
the BayesR based methods. In particular, when we con-
sidered only the top multi-GWAS SNPs (P < 5 × 10−7) in 
each 1-Mb window, the multi-GWAS detected 64 SNPs, 
but only seven were found by the other two methods. 
Fifty-five of the SNPs detected by the multi-GWAS were 
not identified by the other two methods but 50 of them 
are located in the windows, which had a low eigenvalue 
of PC1 with PC1 explaining less than 90% of the total 
variance. Decreasing the threshold for the multi-GWAS 
to P < 10−5 (Fig. 6) improves the agreement between the 
multi-GWAS and the other two methods.

Validation of SNP effects
The proportion of SNPs that were confirmed in the vali-
dation set by the multi-trait methods was equal to that 
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obtained for the best single trait (fibre diameter) and 
higher than that for most single traits. Among the three 
multi-trait methods, multi-PP had the highest validation 
rate. This was unexpected since the two other methods 
used GWAS in both training and validation, whereas 
multi-PP did not use GWAS methods in the discovery 
process. However, a multi-PP can miss some QTL since 
it relies on finding individual SNPs with a high poste-
rior probability. In some cases, the evidence for a QTL is 
spread across many SNPs each with a low posterior prob-
ability, and thus the local GEBV variance is more likely to 
detect the QTL than the posterior probability.

Identification of QTL with similar patterns of pleiotropic 
effects
Stearns et al. [46] pointed out that the relative advantage 
of multivariate over univariate approaches varied with 
the level of genetic covariance between traits. In this 
study, some of the wool traits are genetically highly cor-
related. Previously, Bolormaa et al. [14] used a correlation 
matrix of pairs of SNP effects across 56 meat and body 
composition traits to perform a hierarchical cluster-
ing analysis. Using this approach, they identified at least 
four groups of QTL with similar patterns of pleiotropic 
effects on body composition (the population of sheep was 
similar to that used here). In our study on wool traits, 
the clustering analysis based on 206 SNPs was also done 
using GWAS SNP effects, but there were no clear-cut 
clusters of SNPs (results not shown).

Candidate genes
By exploiting pleiotropic effects for mapping QTL, we 
identified 206 putative QTL, which were close to 130 
genes (within a distance of 50 kb on either side of each 
SNP). In some cases, the known function of the candi-
date gene fits the observed phenotype well. Table 6 pro-
vides a list of candidate genes with known effects on 
wool or hair growth. For instance, SNPs that are located 
around 59.0  Mb on OAR3 and near the FOXI3 gene, 
are associated with multiple traits including wool qual-
ity and breech conformation traits (FDCV, SL, SS, FD, 
BRWR, BCOV, CCOV, and FLROT) at both ages. FOXI3 
regulates multiple aspects of hair follicle development 
and homeostasis and loss of FOXI3 impedes hair folli-
cle down-growth and progression of the hair cycle [47]. 
Shirokova et al. [47] showed that FOXI3 displays a highly 
dynamic expression pattern during hair morphogenesis 
and cycling. In mice, absence of FOXI3 results in a sparse 
fur phenotype and poor hair regeneration after hair 
plucking, and these effects are exacerbated with age due 
to impaired secondary hair germ activation leading to 
progressive depletion of stem cells. A SNP at 62.6 Mb on 
OAR4, which is located near (9.8  kb) the BMPER gene, 

was detected through multi-LGEBV and multi-GWAS 
(P = 2 × 10−4). Bone morphogenetic protein (BMP) sig-
nalling regulates hair follicle cycle and development [48–
51]. BMP signalling is a critical feature of the complex 
epithelial–mesenchymal cross-talk necessary to produce 
hair [50].

We also found significant SNPs (Table 7) close to genes 
(ALOX15, ELOVL6, FASN, NCAPG, and GK5) that are 
associated with variation in size, fatness and body com-
position in sheep, cattle and humans [7, 14, 32, 33]. This 
is not surprising since greasy fleece weight and fibre 
diameter have positive genetic correlations with yearling 
weight (0.23 and 0.17, respectively; [7]). The SNPs that 
are located within or near (<5 kb) ALOX15, FASN, FTL, 
and NCAPG were associated with GFW (up to |t| = 8.9), 
while the SNPs in ELOVL6 and GK5 had significant asso-
ciations with FD (up to |t| = 4.7). Another SNP with an 
effect of |t| = 4.3 for GFW is located at 37,559,817 bp on 
OAR6 with the nearest gene being LCORL (at 107  kb). 
Not surprisingly, the effects of SNPs in NCAPG and 
near LCORL were highly correlated (r > 0.8) in our data, 
which indicates that there may be only one QTL in this 
region [52–54]. Furthermore, we found that the LCORL 
SNP identified in our study (at OAR6:37,559,817  bp) is 
located 29  kb from the LCORL SNP that was detected 
in a multi-trait GWAS across carcass and growth traits 
(at OAR6:37,530,647  bp) [14]. The effects of these two 
SNPs are strongly correlated (r  >  0.8), which indicates 
that they may be in strong LD with the same underlying 
causal mutation with pleiotropic effects: i.e. simultane-
ously increasing carcass and skeletal weights and lean 
meat yield and decreasing dressing percentage, fatness, 
and muscling (i.e. CEMD), while increasing wool growth.

In a single-trait GWAS with the 50 K SNP chip in Chi-
nese Merino sheep, Wang et  al. [55] identified 28 SNPs 
that affect fibre diameter, fibre diameter coefficient of 
variance, and crimp and are located within 12 genes. 
However, we did not find any significant SNPs (P < 10−5) 
within these genes.

Application to wool quality improvement
The patterns of the effects of the QTL that we studied 
here indicate that they have various degrees of useful-
ness for selection. Some QTL have an allele with desir-
able effects on more than one trait and appear to be good 
targets for selection. For instance, the QTL on OAR11 
(located at the edge of the FASN gene) has an allele that 
increases greasy fleece weight, wool yield, and staple 
length and decreases fibre diameter. This pattern of qual-
ity (sheep with higher fleece, higher yield, longer staples, 
and finer wool) is desirable for sheep breeders and the 
wool industry because these traits affect the price paid 
for wool to the producer and the processing efficiency 
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and use of the wool in manufacturing. A SNP on OAR23 
at about 44.2  Mb had an allele that increases staple 
strength and decreases fibre diameter coefficient of vari-
ance, breech wrinkle, breech cover, crutch cover and dag, 
which is a valuable pattern for resistance to breech strike 
and would reduce the need for flystrike prevention strat-
egies such as mulesing and chemical treatment. SNPs 
on OAR3:137.1  Mb (KRT86), OAR3:133.9  Mb (WNT1), 
OAR8:89.0  Mb (MPC), and OAR12:49.9  Mb (RSC1A1) 
had an allele associated with better staple structure (sta-
ple with very fine bundles) and wool character (well-
defined crimp with low variation along the staple), which 
is a desirable pattern for wool manufacturing. Generally, 
for a given trait, SNPs showed a similar association at 
both of the ages at which the trait was measured. How-
ever, none of the associations explained a large fraction of 
the variance for any trait. Therefore, although incorpora-
tion of the identified QTL may not increase the accuracy 
of single-trait EBV, they may be useful to manage unfa-
vourable genetic correlations between traits.

Conclusions
For many wool traits, accuracy of genomic prediction 
was low (average over all traits  =  0.22), especially for 
traits with a low heritability, few records and for which 
few QTL were identified. In an attempt to identify more 
QTL for these traits, we examined three approximate 
multi-trait methods. As well as a multi-trait GWAS, we 
describe two new multi-trait methods based on single-
trait BayesR results. Collectively, these three methods 
mapped 206 putative QTL of which 20 were common 
to all methods. Sixteen genes that are located near a sig-
nificant SNP have known effects on hair growth and a 
further five significant SNPs are near genes that were pre-
viously reported for QTL for growth and body composi-
tion. Future research should examine whether genomic 
prediction accuracy can be increased by using the QTL 
identified in this paper.
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