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ABSTRACT

Development of tools to jointly visualize the genome
and the epigenome remains a challenge. chroGPS is
a computational approach that addresses this
question. chroGPS uses multidimensional scaling
techniques to represent similarity between epigen-
etic factors, or between genetic elements on the
basis of their epigenetic state, in 2D/3D reference
maps. We emphasize biological interpretability,
statistical robustness, integration of genetic and
epigenetic data from heterogeneous sources, and
computational feasibility. Although chroGPS is a
general methodology to create reference maps
and study the epigenetic state of any class of
genetic element or genomic region, we focus on
two specific kinds of maps: chroGPSfactors, which
visualizes functional similarities between epigenetic
factors, and chroGPSgenes, which describes the epi-
genetic state of genes and integrates gene expres-
sion and other functional data. We use data from the
modENCODE project on the genomic distribution of
a large collection of epigenetic factors in
Drosophila, a model system extensively used to
study genome organization and function. Our
results show that the maps allow straightforward
visualization of relationships between factors and
elements, capturing relevant information about
their functional properties that helps to interpret
epigenetic information in a functional context and
derive testable hypotheses.

INTRODUCTION

Understanding how genomic information is translated into
cellular functions constitutes a main challenge in Biology.
The eukaryotic genome exists as chromatin, a nucleopro-
tein complex composed by DNA, regulatory RNAs and a
variety of histone and non-histone proteins that are often
modified and regulate expression of the genetic informa-
tion contained in DNA (1–3). Chromatin contains both
genetic information encoded in the DNA sequence and
epigenetic instructions that, residing in DNA-associated
factors and modifications, regulate its expression. Full
understanding of the functional content of the genome
requires description of the epigenetic information con-
tained in chromatin or, in other words, the epigenome.

In recent years, after sequencing the genomes of several
model organisms, large amounts of data have been
gathered regarding different aspects of genome function-
ing, from gene expression and non-coding RNAs to the
genomic distribution of epigenetic factors, namely DNA
methylation, histone modifications and chromatin
associated proteins. There are also numerous databases
describing gene functions and interactions. Tools to
analyze, visualize and integrate genomic data at a func-
tional level are available. However, integrating experimen-
tal results and databases on epigenetic factors and genetic
elements in a user-friendly manner, amenable to the non-
specialist, remains a challenge [reviewed in (4)]. In this
context we developed chroGPS, a global chromatin pos-
itioning system to integrate and visualize the associations
between epigenetic factors and their relation to functional
genetic elements in low-dimensional maps.

chroGPS belongs to the family of dimensionality reduc-
tion techniques that have proven successful in analyzing
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genomic data (5–9). The basic rationale is to measure
similarity between epigenetic factors or between genetic
elements on the basis of their epigenetic state and using
multidimensional scaling (MDS) represent the similarities
in 2D/3D reference maps. Emphasis is placed on inter-
pretability, computational feasibility and statistical con-
siderations to guarantee reliable representations and
integration of data from multiple sources (studies,
technologies, genetic backgrounds, etc.). A key feature
of the approach lies in its generality: rather than
producing a map in a specific condition, we provide a
map-generating tool applicable to a wide range of situ-
ations. We illustrate the potential with two specific types
of maps: chroGPSfactors, which describes similarities
between epigenetic factors based on their genomic distri-
bution profiles and informs about their functional associ-
ation, and chroGPSgenes, which integrates epigenetic
marks at the gene level and describes the epigenetic
context of gene expression and function. As a proof of
principle, we generated chroGPS maps using data from
the modENCODE project in Drosophila (10), which con-
stitutes the most comprehensive dataset on epigenetic
factors available to date.

MATERIALS AND METHODS

Data access

ChIP-chip data from the modEncode project are freely
available at www.modencode.org. Supplementary Tables
S1 and S2 provide the sample identifiers. ChIP-seq data
were obtained from the NCBI GEO repository at http://
www.ncbi.nlm.nih.gov/geo/ (GSE19325, GSE24115 and
GSE27078). See Supplementary Section S1 for details on
data acquisition and formatting.

Generation, integration and annotation of chroGPS maps

chroGPS is based on two steps. First, numeric distances
between objects are measured with a user-specified metric.
Second, MDS is applied to generate a low-dimensional
map where Euclidean distances between objects approxi-
mate the calculated distances. Therefore, the main chal-
lenges are defining an appropriate distance metric and
generating a high-quality map in a reasonable computa-
tional time. Below we address these issues separately for
chroGPSfactors and chroGPSgenes. Another important chal-
lenge is integrating data from different sources, as strong
source-specific biases that hamper analysis are usually
present. We propose methods to adjust these biases.
Finally, it is important to annotate the maps to
maximize their usefulness. We discuss multivariate statis-
tical techniques such as projections, clustering or non-
parametric density estimation that help interpreting the
maps. The practical use of these methodologies is
described in the ‘Results’ section, pointing to detailed de-
scriptions in the Supplementary Materials whenever
appropriate.

We provide the open-source Bioconductor package
chroGPS (11) (http://www.bioconductor.org). The
manuals illustrate the functionality, data import and

export for integration with Cytoscape (12), and the code
required for our analyses.

RESULTS

Generating chroGPS maps for epigenetic factors

The inputs for chroGPSfactors are lists of genomic intervals
with predicted binding sites for each epigenetic factor, e.g.
inferred from ChIP-chip or ChIP-seq experiments. We
also allow using continuous scores (e.g. probe intensities,
sequencing coverage) as input data. By default we use
genomic intervals, as these are comparable across
technologies and usually provide similar maps to those
from continuous scores. Furthermore, genome annota-
tions (genes, promoters, transposons, etc.) are also ex-
pressed as genomic intervals, facilitating data integration.
The first step in chroGPSfactors is defining a similarity

measure between two factors based on their genomic
profile overlap. Although in principle MDS can be used
with any similarity measure, it is important to assess its
performance and effects on the final results. To address
this question, we considered three metrics: interval
Tanimoto (iTanimoto), average interval overlap
(iOverlap) and chi-square (Supplementary Section S3).
When the input are continuous scores we defined distances
as d=(1�r)/2, where r is the Pearson correlation between
two genome-wide profiles. Continuous scores were also
used to perform Principal Component Analysis (PCA).
The second step is generating 2D/3D maps where dis-

tances between elements are as similar as possible to the
calculated distances. Obviously, the larger the number of
elements the harder it is to represent all distances accur-
ately. We focused on two popular MDS techniques: clas-
sical metric MDS (13) and isoMDS (14). The former
produces a map where pairwise Euclidean distances
between elements approximate the original distances in
squared norm. isoMDS is a non-metric MDS that con-
siders monotone transformations of the input distances.
We measure the map accuracy with the squared Pearson
correlation (R2) between original and approximated
distances and the classical stress-1 function (s)
(Supplementary Section S2).
Based on simulation studies and observations in experi-

mental data, by default we recommend iOverlap combined
with isoMDS. This choice exhibited a robust behavior
when the number of binding sites was unbalanced across
factors, and gave good representation accuracy and bio-
logical meaningful maps. See Supplementary Section S3.2
and Supplementary Figures S1–S3.

chroGPSfactors describes main functional chromatin states

Figure 1A shows iOverlap distances between factors in
Drosophila S2 cells (rows and columns sorted by hierarch-
ical clustering). While the plot suggests several clusters,
interpretation is not straightforward and the relative simi-
larity between clusters is unclear. Instead, representing the
distance matrix in 2D/3D reference maps (Figure 1B and
C, Supplementary Figure S14 and Video S1) provides a
directly interpretable representation. isoMDS maps show
higher R2 than their classicMDS counterparts, and for
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Figure 1. chroGPSfactors visualizes functional associations between epigenetic factors. Similarity between 76 individual epigenetic factors
(Supplementary Table S1), as determined from their genomic profiles with iOverlap, is represented in a heatmap with hierarchical clustering den-
drogram (A) or 2D (B) and 3D (C) reference maps using classical MDS (left) or isoMDS (right). R2 and stress (s) are indicated. Factors are colored
according to their biological activity: RNApol II (purple), regulation of transcription (green), boundary/insulator function (gray), HP1-(blue) and
Polycomb (PC)-dependent silencing (yellow). See also Supplementary Video S1 for visualization of the 3D-map in motion (Supplementary Section
S10.1).
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both metrics 3D maps provide a non-negligible accuracy
improvement. Therefore, although for convenience we use
2D representations throughout the manuscript, we gener-
ally recommend 3D maps for better visualization.

The map describes main functional chromatin states. To
facilitate interpretation, we colored factors according to
their biological activity: RNApol II (purple), regulation
of transcription (green), boundary/insulator function
(gray), HP1-dependent (blue) and Polycomb (PC)-depend-
ent silencing (yellow). As shown in Figure 1B and C, the
map has a characteristic funnel configuration. Factors
involved in transcription regulation seat at the apex and
define the ‘active chromatin’ domain, while boundary/in-
sulator, HP1- and PC-chromatin domains localize in the
wider zone. In the core of the ‘active chromatin’ domain
resides RNApol II (purple), and several branches emerge
from there (Supplementary Section S8).

chroGPSfactors integrates data from different sources

The practical usefulness of chroGPS strongly depends on
its ability to integrate data from different sources; an
extreme case being datasets obtained using completely dif-
ferent methodologies. For instance, at present genomic
profiling of epigenetic factors is largely determined
through ChIP-seq experiments, which identify binding
sites at higher accuracy than ChIP-chip. Due to intrinsic
technical differences, ChIP-seq and ChIP-chip data tend
to appear on separate layers in the map (Supplementary
Figure S5).

We propose two bias-adjustment methods: Procrustes
and peak width adjustment (PWA). Procrustes superim-
poses two sets of points by altering their center, scale and
orientation, while preserving relative distances within each
set. It is a general adjustment that accounts for fairly
general biases. A limitation is requiring the datasets to
share common points (in practice, �3), which may not
be available. As an important difference across
methodologies lies in peak-calling resolution, we propose
PWA as an alternative. PWA selects the source with
widest peaks and increases the peak width in the remain-
ing sources until the mean and standard deviation of the
peak width distribution are equal. See Supplementary
Section S5.1 for further details and results.

We illustrate the power of chroGPSfactors to integrate
data from different sources using four factor profiles
obtained via ChIP-seq. For the three factors, ChIP-chip
data are also available (H3K4me3, H3K27me3 and
H3K36me3), the remaining one being the active
RNApol II form Pol IIoser5 (15) (see ‘Data Access’
section). A joint ChIP-chip/ChIP-seq map including
these data (Figure 2A) locates the three common ChIP-
seq elements as an external layer to their ChIP-chip coun-
terparts. As shown in Figure 2B, applying Procrustes to
Figure 2A using the three common elements effectively
matches ChIP-seq and ChIP-chip locations. The adjust-
ment also brings the Pol IIoser5 ChIP-seq position in
close proximity to whole RNApol II and other transcrip-
tion activation factors. Applying PWA to Figure 2A
provides similar results (Figure 2C).

chroGPSfactors assesses conservation of functional
co-operation and genomic location of epigenetic factors

Functional co-operation between epigenetic factors is
largely conserved, implying that chroGPSfactors maps
obtained separately in different cellular backgrounds
should present similar configurations. However, the
actual genomic locations of the factors under consider-
ation may well differ across backgrounds (e.g. binding
different genes). These observations prompt a direct use
of chroGPS maps to assess conservation of both genomic
locations and factor interactions, e.g. identify cell-type
specific interactions or disease-related alterations.
Whenever the genomic locations of a given factor are
conserved across backgrounds, directly merging all data
into a joint map reveals a similar location for that factor
across all backgrounds. If only interactions between
factors are conserved (but not factor-binding sites), back-
grounds appear separated in the map but the relative
factor positions within each background are conserved.
See Supplementary Section S5.2 for further details.
We integrated ChIP-chip data from Drosophila BG3 cell

line (Supplementary Table S2) with the S2 data shown
above. BG3 is a third instar larval stage CNS-derived
cell line while S2 is a late embryonic cell line. As
anticipated, a separate BG3 map (Figure 3A) retains the
general features of the S2 map, which indicates that func-
tional associations between factors are largely conserved.
Figure 3B merges the two datasets, calculating a joint S2/
BG3 distance matrix and representing it via isoMDS.
Remarkably, the joint map is biologically meaningful
and shows a similar configuration to the individual
maps. This finding indicates that genomic locations of
most factors are highly conserved, i.e. the S2/BG3
distance for each factor is relatively small. Indeed, S2/
BG3 distances are of the same magnitude as distances
between functionally related factors (intra-domain) and
much smaller than those between unrelated factors
(inter-domain) (Figure 3C). Furthermore, in the joint
S2/BG3 map intra- and inter-domain distances are
similar to those in the S2 map (Figure 3C), i.e. the joint
map describes functional domains as accurately as the
separate maps.
These results indicate that chroGPS maps identify cases

where genome-wide factor location is conserved. We now
investigate their ability to detect situations where func-
tional interplays are conserved but genomic locations
differ across backgrounds. We performed a simulation
study by artificially increasing/decreasing the similarities
between S2 and BG3, while not altering similarities within
each cell line (Supplementary Section S5.2). That is, we
emulated a situation where interplays within cell lines are
conserved but genomic locations are not conserved across
cell lines. The map preserved its general configuration
whenever S2/BG3 distances remained smaller than inter-
domain distances (Supplementary Figure S8). As desired,
when S2/BG3 distances grew further the map split S2 from
BG3 factors into two subsets, each with similar configur-
ation. These results show that chroGPSfactors maps assess
conservation of functional interactions and genomic loca-
tions in a straightforward manner.
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chroGPSfactors functionally catalogs novel epigenetic
factors

Here we use chroGPSfactors to interrogate about the func-
tions of novel factors in epigenetic terms. This operation is
straightforward when the novel factor is studied in an ex-
perimental system with abundant experimental data from
other factors. It simply requires including the new data
and generating a joint map. As an example, Figure 4A
highlights the position of JMJD2A, a histone demethylase
of unknown function that is capable of demethylating
both H3K9me3 and H3K36me3 (16,17). JMJD2A local-
izes in the active chromatin domain close to H3K36me3,
suggesting that in vivo it demethylates H3K36me3 and
contributes to transcription regulation.

Learning the function of a novel factor in a system with
limited experimental data poses a bigger challenge. To il-
lustrate the potential of chroGPS maps in this situation,
we used data generated in the Drosophila wing imaginal
disc that only contain seven factors, four common to the
S2 map (H3K4me3, H3K27me3, H3K36me3 and Pol
IIoser5) and three unique (Pol IIoser2, ASH2 and
dKDM5/LID) (18,19) (see ‘Data Access’ section). These
data were generated by ChIP-seq in a larval structure
formed by a heterogeneous population of cells and, thus,
differs strongly from embryonic S2 cells ChIP-chip data.
A raw map generated with these seven elements contains
very low structural information (Figure 4B). In Figure 4C
we merged these data with the S2 factors into a joint
distance matrix and used Procrustes to match the pos-
itions of the four common factors. The unique WING-
factors localize to the active chromatin domain, close to
other functionally related factors. For instance, elongating
Pol IIoser2 lies close to H3K36me3, a modification that is
enriched at the coding region of elongating genes.
Similarly, dKDM5/LID, which is involved in the regula-
tion of Pol IIoser5 at promoters (18), is close to Pol IIoser5.
On the contrary, ASH2, which has also been shown to
regulate Pol IIoser5 (19), maps at a more external
position, suggesting it plays additional roles. That is,
integrating wing imaginal disc and S2 factors into a joint
map provided a richer environment to study functions of
the former.

Generating chroGPS maps for genetic elements

chroGPSgenes maps display the epigenetic state of genes, as
well as their expression and function. The maps are based
on measuring similarity between genes according to their
shared epigenetic factors. The input is a binary matrix
with genes in rows and factors in columns, where 1 indi-
cates that the factor binds that gene and 0 otherwise
(Supplementary Section S1). We considered three similar-
ity metrics: chi-square, Tanimoto and average overlap.

Figure 2. Integration of ChIP-chip and ChIP-seq data in
chroGPSfactors maps. ChIP-seq data (triangles) for H3K4me3,
H3K27me3 H3K36me3 and Pol IIoser5 is integrated into the
chroGPSfactors map generated from modENCODE ChIP-chip data
(circles). The joint ChIP-chip/ChIP-seq 2D-map is presented without
any adjustment (A) and after Procrustes (B) or PWA (C) adjustment.
ChIP-Seq elements and the corresponding ChIP-chip counterparts are

Figure 2. Continued
highlighted. Common factors in both technical backgrounds (replicates)
are joined by a red line. Maps were generated from iOverlap distances
and represented using isoMDS. R2 and stress (s) are indicated for both
the joint map and the ChIP-Seq map before (A) and after integration
(B and C).
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Figure 3. Integration of data from different cellular backgrounds in chroGPSfactors maps. (A) Map generated from modENCODE ChIP-chip data
obtained in BG3 cells for 46 different epigenetic factors (Supplementary Table S2). (B) Joint S2/BG3 map obtained by merging S2 and BG3 datasets.
Color code is as in Figure 1 and BG3 factors are highlighted. Maps were generated from iOverlap distances and represented using isoMDS. R2 and
stress (s) are indicated. (C) iOverlap distances between S2-BG3 replicates are compared to those between functionally related (within-domain) and
unrelated (between-domain) factors determined in both the S2 and the joint S2/BG3 chroGPSfactors maps.
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The former is the basis of correspondence analysis, a
standard dimensionality reduction technique for binary
matrices. The latter two measure overlap in an intuitive
manner and weight all epigenetic factors equally. As some
users might consider that sharing a scarce factor can be
more biologically meaningful than sharing a frequent one,
we defined a weighted Tanimoto distance as a fourth
metric. This metric weights co-occurrences inversely to
the number of genes with that factor (Supplementary
Section S4).

Representing tens of thousands of points via MDS is a
high-dimensional problem posing two important chal-
lenges. First, classical MDS may fail to numerically
minimize the stress function and result in poor R2 coeffi-
cients. Second, the required computation time for alterna-
tive solutions can be substantial. To overcome these
limitations we propose BoostMDS, a novel two-step pro-
cedure (Supplementary Section S6). Briefly, BoostMDS
finds an initial solution by splitting the distance matrix
into smaller overlapping sub-matrices. The sub-problems
are computationally tractable, can be run in parallel and
the solutions are stitched into an overall map using
Procrustes. This initial solution is then refined by
formally maximizing the R2 coefficient via a gradient
search algorithm with automatic step size selection. By
default we recommend applying BoostMDS to
Tanimoto distances, as this option achieves high represen-
tation accuracy at a substantially reduced computation
time (Supplementary Figure S4).

Annotating chroGPSgenes maps

chroGPSgenes maps contain thousands of points, which
hampers interpretation. Fortunately, they can integrate
genetic data to visualize the relationship between epigen-
etic states and gene functions. For instance, gene expres-
sion or other continuous measurements can be shown by
coloring the map. Another basic operation is to highlight
genes bound by a given epigenetic factor, related to some
genetic pathway or function. We use non-parametric
contours to indicate high-density regions for any given
gene set. Contours indicate the overlap between gene
sets in a manner analogous to Venn diagrams, with the
advantage of providing a functional context. See
Supplementary Section S7 for details.

Beyond representing individual gene sets, we provide
tools to display the results of clustering analyses to help
interpret each area in the map. Clusters not showing good
separation in the map are merged using posterior expected
correct classification (CCR) and probabilistic overlap
(PO) criteria. We provide an automatic procedure to
stop merging clusters based on change-point analysis.

Figure 4. Using chroGPSfactors maps to analyze novel epigenetic
factors of unknown function. (A) The position corresponding to
JMJD2A is highlighted in the map integrating S2 ChIP-chip and
ChIP-seq data, and BG3 ChIP-chip data. The positions of three differ-
ent datasets for H3K36me3 are also indicated. (B) chroGPSfactors map
generated from ChIP-seq data obtained in the wing imaginal disc
(WID) for the seven indicated factors. The map was generated from

Figure 4. Continued
iOverlap distances and represented using isoMDS. R2 and stress (s) are
indicated. (C) Joint S2/WID chroGPSfactors map integrating WID
ChIP-seq data, and S2 ChIP-chip and ChIP-seq data. The map was
generated from iOverlap distances, represented using isoMDS and
adjusted using Procrustes. Pearson correlation (R2) and MDS stress
function (s) values are indicated for both the joint map and the WID
map after integration. Color code is as in Figure 1.
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Finally, the robustness of the map interpretation afforded
by the clusters is assessed via bootstrap. See Supplemen-
tary Section S7 for details.

chroGPSgenes describes the epigenetic context of gene
function

Figure 5A (left) shows the chroGPSgenes map of
Drosophila S2 cells based on BoostMDS and Tanimoto
distances (for a 3D representation see Supplementary
Video S2). Contours in Figure 5A indicate clusters of
genes with similar epigenetic profiles (average between-
cluster distance threshold=50%). These clusters overlap
strongly and do not provide a clear description of the
map. Accordingly, the CCR is low (Supplementary
Figure S12). Complexity of the map is highly reduced
after merging clusters until their PO drops swiftly
(Figure 5A, middle and Supplementary Figure S11). The
37 clusters merged to 12 that are specifically enriched/
depleted in particular epigenetic factors (Figure 5B) and
describe distinct epigenetic states. This 12-clusters config-
uration was found to be reproducible in a bootstrap
analysis (Supplementary Figure S9 and Supplementary
Section S7). Clusters 1–2 correspond to the ‘active chro-
matin region’, clusters 3 and 4 to the ‘HP1-chromatin
region’, clusters 5, 6, 7, 8 and 10 to the ‘PC-chromatin
region’, and clusters 9 and 11 show a peculiar combination

of ‘silencing’ and ‘active’ factors, and cluster 12 has both
PC and HP1 silencing marks. We decreased the between-
cluster distance threshold <50% and obtained smaller
clusters (Supplementary Figure S10). After cluster
merging the CCR was high (>75%) and largely independ-
ent of the distance threshold (Supplementary Figure S13).
The chroGPSgenes map can be used as the canvas to

paint other ‘omics’ information, delivering a global picture
of the biological scenarios. As an illustration, Figure 5A
(right) shows gene expression and Supplementary Figure
S15 the distribution of certain epigenetic factors. Highly
expressed genes concentrate in clusters 1–2, lowly ex-
pressed in clusters 3–9, while clusters 10–12 show a
wider expression range. In good agreement, genes bound
by RNApol II and marked with ‘active’ histone modifica-
tions (H3K4me3 and H3K36me3) concentrate in clusters 1
and 2, while silenced clusters 3–9 are generally enriched in
‘repressive’ factors [HP1a/Su(var)3–9 and PC/EZ] and
clusters 10, 11 and 12 appears to correspond to intermedi-
ate states, as they contain both ‘active’ and ‘repressive’
marks (see Supplementary Section S9 and Supplementary
Figure S15 for details).
chroGPSgenes complements the information provided by

chroGPSfactors on the function of novel epigenetic factors,
facilitating interpretation of the biological context of their
action. Figure 6A shows contours for genes bound by
JMJD2A and JHDM1 (16,17,20). These two histone

Figure 5. chroGPSgenes map of S2 cells. The map was generated using Tanimoto distances and BoostMDS for representation. (A) Analysis of the
map based on hierarchical clustering with average linkage. Clusters corresponding to 50% between-cluster distance before (left) and after unsuper-
vised merging (center). On the right, the average log2 gene expression level is indicated. For each cluster, the 75% density contour is shown. The
number of elements in each cluster is indicated. (B) The epigenetic profiles of the 12 merged clusters in Figure 5A (center) are presented. For each
cluster, the log2 enrichment/depletion ratio of each factor with respect to its average distribution in the whole map are indicated. See also
Supplementary Video S2 for visualization of the 3D-map in motion (Supplementary Section S10.1).
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demethylases target H3K36me3 (an ‘active’ mark) and
were anticipated to act as repressive factors. Opposite to
this hypothesis, they map to cluster 1, suggesting that they
regulate H3K36me3 in active genes, likely during tran-
scription elongation.

Although chroGPSgenes maps are cell-type specific, they
can also provide useful information for data generated in
a different cell-type. For instance, genes bound by
dKDM5/LID in the wing imaginal discs are active (18)
and they mostly locate in the active cluster 1 in the S2
map (Figure 6B), indicating that they maintain the
active state in S2. However, some of them are also
distributed across other clusters, which likely represent
genes that are bound by dKDM5/LID and active in the
wing disc but are repressed, or less active, in S2 cells.
Interestingly, this set of genes mostly concentrates in the
PC-clusters 5 and 6, suggesting that dKDM5/LID-target
genes tend to be repressed by PC.

chroGPSgenes allows epigenetic analysis of complex
biological networks

Locating genes involved in Toll signaling in the map
provides an integrated view of the network’s epigenetic
state. We consider 15 genes involved in the extracellular
Toll cascade, whose expression would eventually
change depending of the cell type and developmental
stage. Figure 7B (top) evidences their complex and
diverse epigenetic regulation, since seven lie in the active
chromatin clusters 1–2, three locate at PC-chromatin
cluster 5, three at the HP1-chromatin clusters 3–4 and
two in the interphase between clusters 11, 8 and 10.
Importantly, this analysis provides additional information
beyond the experimental data on the factors binding each
gene. For instance, only a few epigenetic factors have been
experimentally found to bind the three genes lying at
cluster 5 (necrotic, spheroide and sphinx2). For necrotic
only H3K27me3 has been detected, for sphinx2 Su(Hw)
and for spheroide both H3K27me3 and Su(Hw). The al-
gorithm maps these three genes in cluster 5 which is not
only enriched in H3K27me3 and Su(Hw), but also in PC
and MOD2. These findings are interesting in that, despite
the little factor binding information for the three genes,
they suggest testable hypotheses.

Genes of the intracellular signaling cascade, known to
be ubiquitously expressed, concentrate at the active chro-
matin cluster 1 characterized by high expression and
multiple epigenetic factors (Figure 7B, center). Finally,
Toll immunity pathway target genes show a complex
pattern (Figure 7B, bottom). None map to the active chro-
matin cluster 1, in agreement with the expected weak en-
gagement of Toll pathway in ideal cell-culture conditions.
Interestingly, several target genes lie in the interphase
between clusters 9 and 10, which corresponds to an inter-
mediate epigenetic state sharing marks of both active and
repressed chromatin.

DISCUSSION

Large efforts are currently devoted to describing the
epigenome (21–30). The development of tools to integrate,

Figure 6. Using chroGPSgenes maps to analyze novel epigenetic factors of
unknown function. (A) The distribution of JMJD2A (top) and JHDM1
(bottom) are shown on the 12-cluster configuration of the S2
chroGPSgenes map. (B) The distribution of genes bound by dKDM5/LID
in the wing imaginal disc is shown on the 12-cluster configuration of the S2
chroGPSgenes map. For each factor, concentric density contours (from 10%
to 95%) are presented. For each cluster, the 75% density contour is shown.
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analyze and visualize large amounts of epigenetic and
genetic data is a priority in the field. In particular,
hidden Markov models have been used to describe and
characterize epigenetic states in chromatin (24,31). While
these approaches are useful, they only focus on combin-
ations of epigenetic factors and setups where all data are
of the same kind and no systematic biases are present. An
approach based on self-organizing maps, again aimed at
portraying associations between epigenetic factors based
on single-type data, has also been proposed (8). Instead,
chroGPS is the first dimensionality reduction technique
specifically designed to explore combinations of multiple
data types, accounting for systematic biases and can focus
both on genetic elements and epigenetic factors. Our main

contribution is enabling the integration and interpretation
of massive heterogeneous epigenetic data in a visually
appealing and context-rich manner. We assessed the
adequacy of multiple distance metrics, provided algo-
rithms to represent a large number of objects at high reso-
lution and a computational effort manageable by a
desktop computer, and strategies to annotate the maps
in order to enhance their interpretability.
chroGPS maps proved useful in a variety of situations,

such as understanding functional interplays between epi-
genetic factors in Drosophila, assess conservation across
S2 and BG3 cells, deriving testable hypotheses for novel
factors, studying chromatin states at genes and the epigen-
etic regulation of complex pathways. While these

Figure 7. Using chroGPSgenes maps for the epigenetic analysis of the Toll innate immune pathway. (A) Schematic overview of the pathway.
(B) Extracellular (top), intracellular (center) and nuclear-target (bottom) genes of the pathway are highlighted on the 12-cluster configuration of
the S2 chroGPSgenes map.
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examples illustrate the broad potential, we envision
further possible uses. For instance, chroGPS maps that
consider only overlaps at specific locations (e.g. pro-
moters, exons, origins of replication, transposons,
selected gene-sets, etc.) would inform about epigenetic
states and functional interactions occurring at the
investigated elements. In addition, integrating Hi-C data
would provide direct information about the relative
position of the analyzed elements. Another interesting
venue is to generate maps for a particular developmental
process or disease, as these would portray genetic/epigen-
etic changes in the analyzed conditions. For instance,
comparing chroGPSgenes maps from normal and affected
cells in a given disease condition (i.e. neurons in Rett
syndrome) could identify which genes are changing epi-
genetic status and in what direction(s). Similarly, a joint
chroGPSfactors plot containing data from normal and
disease status could identify altered interactions between
epigenetic factors (i.e. MeCP2 in Rett syndrome), at the
whole-genome level or in specific genomic regions.
Overall, chroGPS maps should prove a valuable

approach to explore these complex questions by
combining large amounts of data, serving as a hypothesis
generating tool and the starting point for further in-depth
analyses.
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