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Brd2/4 and Myc regulate alternative
cell lineage programmes during early
osteoclast differentiation in vitro
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and Anastasios Karadimitris1,2,5,6,*

SUMMARY

Osteoclast (OC) development in response to nuclear factor kappa-B ligand
(RANKL) is critical for bone homeostasis in health and in disease. The early and
direct chromatin regulatory changes imparted by the BET chromatin readers
Brd2-4 and OC-affiliated transcription factors (TFs) during osteoclastogenesis
are not known. Here, we demonstrate that in response to RANKL, earlyOC devel-
opment entails regulation of two alternative cell fate transcriptional pro-
grammes, OC vs macrophage, with repression of the latter following activation
of the former. Both programmes are regulated in a non-redundant manner by
increased chromatin binding of Brd2 at promoters and of Brd4 at enhancers/su-
per-enhancers. Myc, the top RANKL-induced TF, regulates OC development in
co-operation with Brd2/4 andMax and by establishing negative and positive reg-
ulatory loops with other lineage-affiliated TFs. These insights into the transcrip-
tional regulation of osteoclastogenesis suggest the clinical potential of selective
targeting of Brd2/4 to abrogate pathological OC activation.

INTRODUCTION

Osteoclasts (OCs) are hematopoietic lineage-derived, bone-resorbing cells that in conjunction with bone-

forming osteoblasts regulate bone homeostasis in physiology and in disease (Charles and Aliprantis, 2014;

Teitelbaum, 2000). Aberrant hyper-activation of OCs underpins common and serious morbidity in osteopo-

rosis and in cancers such as multiple myeloma, metastatic breast, and prostate cancer (Edwards et al., 2008;

Le Pape et al., 2016).

OC lineage commitment requires binding of the lineage defining cytokine receptor activator of nuclear fac-

tor kappa-B ligand (RANKL) to its receptor RANK expressed in myelomonocytic progenitors in the bone

marrow. RANKL-RANK interaction activates a cascade of downstream signal transduction pathways that

converge to transcriptional programmes that initiate differentiation and the acquisition of OC-specific pro-

cesses of cell fusion and polylkaryon generation (Kukita et al., 2004; Yang et al., 2008). This is followed by

the maturation events of cytoskeleton re-organization and secretion of collagen-degrading enzymes and

hydroxyapatite-dissolving proton ions that enable OCs to resorb organic and inorganic bone (Azuma et al.,

2000; Soysa et al., 2012; Teitelbaum, 2000).

OC-specific lineage commitment and differentiation requires a compendium of transcription factors (TFs)

that are upregulated in response to RANKL, such as the Fos family, Nfkb, NFATc1, Spi1/Pu.1 (Franzoso

et al., 1997; Takayanagi et al., 2002; Wagner, 2002). OC commitment also requires a simultaneous repres-

sion of existing macrophage/monocytic, inflammatory transcriptional programmes that involve downregu-

lation of TFs such as Irf8, Mafb, and Bcl6 (Kim et al., 2007; Zhao et al., 2009). These TFs in turn are under the

repressive regulation of Blimp1 (Prdm1) which is upregulated in response to RANKL (Kurotaki et al., 2020;

Miyauchi et al., 2010; Nishikawa et al., 2010).

Similar to other transcriptional processes that define cell lineage commitment, the OC-affiliated TF would

be expected to alter gene transcription through changes in the activity of proximal and distal regulatory
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DNA elements namely enhancers. The latter are often cell type specific, and their activity is regulated by

Brd2-4, the bromodomain and extraterminal domain (BET) proteins which act as chromatin readers and

transcriptional activators by binding to acetylated histones (Hnisz et al., 2013) (Chiang, 2009; LeRoy

et al., 2008; Rahman et al., 2011).

Previous work demonstrated the requirement for Brd4 for OC activation in response to RANKL while BET

protein inhibitors inhibit OCs in vivo as well as in vitro and protect from malignancy- or ovariectomy-

induced bone disease (Lamoureux et al., 2014; Park-Min et al., 2014). Further, Brd4 binds to the promoters

of lineage-defining TFs, such as Nfatc1, cFos, and NF-kB, while pharmacological inhibition by BET inhibi-

tors represses transcription of these TFs (Lamoureux et al., 2014). More recently, the role of Myc in OC dif-

ferentiation was highlighted and was shown to be required for OC development by regulating transcription

of Nfatc1 and Erra (Bae et al., 2017; Lamoureux et al., 2014) (Park-Min et al., 2014).

Despite this progress, how individual BET proteins, singly or in combination, regulate commitment to

OC lineage genome-wide at the chromatin level and their interplay with Myc have not been addressed

(Baud’huin et al., 2017; Lamoureux et al., 2014; Park-Min et al., 2014). Here, we first identify the initiating

regulatory events leading to OC lineage commitment and demonstrate a prominent and non-redundant

role of Brd2 and 4 in the chromatin changes underlying these processes. We provide high resolution

analysis and integration of the genome-wide binding profile of BET proteins in conjunction with chro-

matin accessibility maps and early dynamic transcriptome changes in response to RANKL and to BET

protein inhibitors. We thus define the combinatorial cross-talk between BET proteins and their interac-

tion with proximal and distant chromatin regulatory areas to define the early stages of OC lineage

commitment. Further, we generate the gene regulatory networks (GRNs) driving OC lineage commit-

ment and identify critical TF components defining OC fate determination. We validate the role of Myc

as a major hub in these OC-specific GRNs and discover the range of its transcriptional targets and their

predicted functions.

RESULTS

A dynamic map of early transcriptome changes in response to RANKL

To model OC lineage commitment in response to RANKL, we used the mouse macrophage cell line

RAW264.7 which upon RANKL exposure differentiates to fully bone-resorbingOCs (Collin-Osdoby andOs-

doby, 2012; Collin-Osdoby et al., 2003; Raschke et al., 1978). We confirmed that differentiation of

RAW264.7 cells, as well as of murine primary bone marrow and purified bone marrow (Lineage�CD115+-

cKit+) progenitor cells (Hu et al., 2011) toward OCs, was inhibited by the pan-BET protein inhibitor

I-BET151 (Figures S1A and S1B) (Baud’huin et al., 2017; Park-Min et al., 2014).

Transcriptome changes brought about 24h after RANKL treatment of RAW264.7 cells correlated highly with

those induced by RANKL on OC developing from primary bone marrow (BM) progenitors/precursors (Bae

et al., 2017) (Figure S1C), thus attesting further to the suitability of RAW264.7 cells as a model of OC

development.

While transcriptome analysis of developing OC has been previously reported at >24h post-RANKL expo-

sure (An et al., 2014; Bae et al., 2017; Davidson et al., 2020; Park-Min et al., 2014), the immediate transcrip-

tional responses triggered by RANKL have not been explored yet. Therefore, to capture the first transcrip-

tional waves during RANKL-driven OC lineage commitment, we performed RNA-seq of RAW264.7 cells at

0, 4, 14, and 24h upon RANKL, I-BET151, and RANKL + I-BET151 treatment (Figure 1A). In addition, we

investigated the genome-wide recruitment dynamics of the Brd2-4 proteins that are associated with early

transcriptional changes at 4h after treatment (Figure 1A).

Upon RANKL treatment, we identified 12 clusters (C1-C12) of differentially expressed genes (DEGs; Figures

1B and 1C) temporally categorized as early (4hr) and late (14 and 24hr). The largest, C6 (late repressed),

comprises 780 genes and includes TFs (e.g. Irf8, Mafb, and Bcl6) whose repression is required for extin-

guishment of the non-permissive macrophage/monocytic transcriptional programmes, thus allowing OC

lineage commitment (Figure 1C and Table S1). The early activated C10 contains the OC differentiation

master regulators Nfatc1, Fos, and Myc, followed by the upstream repressor of macrophage lineage

Blimp1/Prdm1. Using quantitative PCR (qPCR), we confirmed this dynamic, contrasting Myc and Irf8

mRNA expression pattern in murine primary bone-marrow-derived pre-OCs (Figure S1D).
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Principal component (PCA) and intesity-ratio (MA) analysis showed a profound impact of I-BET151 in abro-

gating RANKL-dependent transcriptome changes as early as 4hr after treatment (Figure S1E). These find-

ings confirm the exquisite sensitivity of the RANKL-dependent OC-defining transcriptional programme to

BET inhibitors and its dependency on BET proteins. A high-resolution dynamic analysis of Nfatc1 expres-

sion further exemplified the dramatic impact of BET inhibitors in the transcriptional regulation of OC line-

age commitment (Figure S2A).

Pathway enrichment analysis of early activated clusters C7-C10 was consistent with effects of RANKL-medi-

ated osteoclastogenesis and activation of downstream pathways such as NF-kB, TNFa, and AP-1 (i.e., c-

Jun/c-Fos). Of note, among the early activated clusters, and in particular in C7, gene repression at 14

and 24 hr is preceded by increased expression at 4 hr. Pathway enrichment analysis of the 156 C7 genes

showed enrichment for putative gene targets of Irf8 in bone marrow macrophages and for genes that

define macrophage identity (Figure S2B). This suggests that before definitive repression of the macro-

phage transcriptional programme occurs, RAW264.7 cells assume a state of transient transcriptional tran-

sition to an immature macrophage identity.

Late repressed genes reflected loss of phagocytic capacity and notably decreased expression of genes

predicted to be regulated by Irf8 in mouse macrophage cells (Figure 1D).

Notably, genes such as Dcstamp, Ocstamp, and Atp6v0d2 that are required for polykaryon formation, a

cellular process that starts at least 48 h after RANKL exposure (Kukita et al., 2004; Wu et al., 2009; Yang

et al., 2008), also map to the same early cluster as the master TF (Figure 1B and 1C). In addition, genes

such as Ctsk and Mmp9, which are associated with acquisition of OC bone resorptive capacity, a cellular
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Figure 1. Profiling the dynamics of transcriptional responses underlying early osteoclast development in

response to RANKL

(A) Schematic representation of the study outline. RNA-seq analysis performed at 0, 4, 14, and 24 hr after RANKL induction

in RAW 264.7 cells. Gene clusters (C1-C12), comprising four main modes of transcriptional response: early repressed; late

repressed; early activated; late activated.

(B–D) Heatmap (B) and line graphs (C) illustrate for the transcriptional patterns observed in the 12 clusters; the expression

patterns of genes with prominent role in osteoclastogenesis are also highlighted here. Overrepresentation analysis (D)

using EnrichR online tool depicts the involvement of key pathways in the four modes of responses.
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feature present in developing OC after 3 days (Boyce, 2013; Hsu et al., 1999; Sundaram et al., 2007; Troen,

2006), are upregulated at 4–14 hr (Figures 1B and 1C). Therefore, our early post-RANKL transcriptome anal-

ysis reveals that transcription of genes required for functions of maturing or mature OC is already active

within a few hours following RANKL exposure, a finding that we validated by qPCR Sin primary pre-OCs

for Dcstamp and Ocstamp (Figure S1D).

Overall, inspection of all 12 clusters reveals that transcriptome analysis at 14 h after RANKL treatment cap-

tures both the early and late transcriptional events that define RANKL-induced OC lineage commitment

and differentiation that entails activation of the osteoclastogenic program followed by repression of the

macrophage program.

Of note, while double RANKL/I-BET151 treatment reverses the RANKL-induced transcriptional changes,

I-BET151 alone represses both alternative cell fate programmes (Figure S2C; OC C10, C12 gene clusters

and macrophage C6 cluster) consistent with the role of BET proteins in determining cell fate decisions in

development (Huijbregts et al., 2019) (Fernandez-Alonso et al., 2017; Hnisz et al., 2013; Lee et al., 2017).

We validated this effect of RANKL/I-BET151 and I-BET151 treatment in primary pre-OCs by measuring

expression of genes of interest (Figure S2D). Indeed, while expression of Irf8 increased significantly after

4 hr of treatment with RANKL/I-BET151 and I-BET151, that ofMyc,Dcstamp, andOcstampwas significantly

decreased, consistent with the repressive role of BET proteins in the regulation of Irf8 and activating role in

the regulation of the other three genes.

Impact of RANKL and I-BET151 on early chromatin recruitment of Brd2-4

To map RANKL- and I-BET151-induced changes in Brd2-4 chromatin binding, we obtained the genome-wide

binding profile of the three BET proteins at steady state (S) and at 4h after RANKL (R), RANKL plus I-BET151

(RI), or I-BET151(I) treatment using Chromatin Immunoprecipitation followed by sequencing (ChIP-seq).

By first plotting the average ChIP signal against fold change between R and S conditions (R/S), we identified the

differentially enhanced or decreased peaks in R condition for each of the BET proteins. This analysis (Figure 2A

and Table S2) demonstrated that RANKL induces mostly increased binding of Brd2 and 4 with minor and nearly

equal increase and reduction in binding of Brd3. Overall, 45% of Brd2 and 52% of Brd4 peaks in RANKL-treated

cells represented enhanced differentially binding sites (DBSs), while the corresponding fraction for Brd3 was

<21% (Figure 2B). However, I-BET151 induced a profound reduction in the binding of all three BET proteins,

more pronounced for Brd4 (99%) and less so for Brd2 (75%) and Brd3 (71%) (Figure 2B). Of note, in contrast

to Brd3 and 4, a preferential increase in biding of Brd2 was observed in I-BET-only treated cells but not in

RANKL+I-BET cells (Figures 2A and 2B). Interestingly, among BET protein genes, expression of Brd2 is the

only one that increases in response to I-BET151 treatment (Figures S3A and S3B).

Genomic feature annotation of the DBS revealed that dynamic changes of Brd4mostly take place in intronic and

intergenic areas, while Brd2 and 3 binding changes are mainly enriched in promoter-overlapping areas (Fig-

ure 2C). This distribution chimes with the previously described role of Brd4 as amarker of intergenic and intronic

enhancers (Loven et al., 2013; Roe et al., 2015). Gain of Brd2 or Brd4 binding occurs with, but mostly without,

concurrent Brd4 and Brd2 increased binding, respectively, and in either case, it does not involve changes in

Brd3 binding (Figures 2D–2F). We therefore obtained the union of these Brd2 & 4 peak sets to form four DBS

categories for further analysis (i.e., unaltered, Brd2&4 common, Brd2 specific, Brd4 specific; Figure 2F).

Feature annotation demonstrated preferential differential binding of sole Brd4 in intergenic and intronic

areas, likely enriched in putative enhancers, while Brd2 DBSs alone and in combination with Brd4 DBSs

were enriched preferentially in promoter-overlapping areas (Figure 2G).

Overall, these findings show that RANKL brings about changes in the BET protein chromatin-binding land-

scape at the very first stages of OC commitment (4h), chiefly detected as enhanced binding of Brd2 and

Brd4, and such changes are exquisitely sensitive to pharmacological inhibition.

Enhanced Brd2&4 chromatin occupancy and super-enhancer reprogramming in early

osteoclastogenesis

To gain further insights into how dynamic changes in Brd2&4 chromatin binding affect the RANKL-induced

transcriptome changes, by annotating DBSs to the nearest DEG, we plotted dynamic transcriptional
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changes associated with each BET protein DBS categories, i.e., common, Brd2 specific, or Brd4 specific.

This analysis revealed that for each group, enhanced binding was associated with the same pattern of tran-

scriptional changes that included up- as well as down-regulated genes (Figure S4A).

Functional annotation of DEGs upon RANKL treatment shows that each of the three DBS categories con-

tributes to the same or unique pathways and TF networks that define OC development (Figure 3A). These

included up-regulation of genes involved in Myc, TNF, Nfkb, MAPK, and other OC differentiation path-

ways, as well as repression of genes involved in commitment to the alternative monocyte-macrophage line-

age, e.g. Runx1, Spi1, and Irf8 pathways.

To explore how the dynamic changes in Brd2 and 4 binding might interact with the TF in mediating RANKL-

induced transcriptome changes for each of the three DBS categories, we correlated changes in TF expres-

sion with proportion of DBS enriched in TF motifs (Figure 3B and 3C). This analysis predicted that at 4 hr,

sole Brd2 and Brd4 rather than their combined enhanced binding was associated with motif enrichment of

TFs that determine alternative cell fates, i.e., Irf8, Fli1, and Mafb, which are downregulated in response to

RANKL versus the RANKL-activated, OC-activating TF Fosl1/2, Junb, Myc, Nfkb2, Spi1, and Relb.

Figure 2. Early epigenomic alterations in chromatin binding of Brd2,3, and 4 in response to RANKL & I-BET

Differential binding of Brd2, Brd3, and Brd4 in response to RANKL (R), I-BET (I), or a combination of the two (RI) was

analyzed 4 h after treatment. S: steady state

(A) Ratio-intensity plots of average ChIP signal and differential binding between conditions (log2 scale) are displayed for

each BRD (columns) across treatment contrasts (rows).

(B) Number of differentially bound sites (DBSs) for BET proteins across pairwise treatment comparisons (from A). All DBS

are colored by associated condition; non-significantly altered regions are colored gray.

(C) Genomic annotation for all DBS per condition.

(D) Relative enrichment of Brd2,3,4 on Brd2 (top) and Brd4 (bottom) DBSs. Fold change over input in a 20kb window around

peak center was plotted for each BRD in S and R conditions, direction of change in Brd2/4 is indicated in lower left corner.

(E) Distribution of DBSs with increased Brd2, Brd4, or dual Brd2,4 enrichment upon RANKL induction.

(F) Average signal profiles for Brd2 and Brd4 across combined differential binding categories, direction of change in Brd2/

4 is indicated in top left corner of each group.

(G) Genomic annotation of Brd2/4 binding locations relative to gene features in Brd2/Brd4 common or specific binding.
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Together, these data suggest a non-redundant epigenetic role of Brd2 and Brd4 in OC lineage commit-

ment and differentiation in co-operation with lineage-defining TFs.

Next, by charting the chromatin H3K27ac enrichment load, we sought to identify super-enhancers (SEs),

i.e., the regulatory elements that determine cell fate decisions by regulating and being regulated by

Figure 3. Differential Brd2 and Brd4 chromatin occupancy is linked to early transcriptional responses and super-

enhancer reprogramming in osteoclast differentiation

(A) Top 10 enriched pathways for up- and down-regulated genes (4, 14, and 24hr after RANKL induction) associated with

each Brd2/4 binding category (Brd2 specific, Brd4 specific, or shared); color indicates database source for gene set.

(B) Relativemotif enrichment per Brd2/4 binding category against either unaltered regions to identify commonly enriched

factors (top) or against common regions (middle, bottom) to identify Brd2/4-specific factors. Enriched motifs were

grouped by similarity and assigned to putative TFs based on the expression level and differential expression at 4h. Size

indicates proportion of regions containing the motif, and color indicates significance of expression change.

(C) Differential expression patterns (RANKL-treated vs untreated) for top 10 TFs predicted to be involved in Brd2/4

regulation of osteoclastogenesis.

(D) Super-enhancer (SE) calling in S, R, RI, and I conditions using H3K27ac ChIPseq.

(E) Epigenomic alterations in genetic loci of the hallmark osteoclastogenesis genes Irf8 and Myc, across treatments.

(F) Relative occupancy (R vs S, RI vs S, and I vs S) of Brd2,3,4 on SE sites (top); time course transcriptional changes associatedwith

differential Brd2,4 binding after RANKL induction (bottom). One-way ANOVA test: ****,p < 0.0001; n/s, not significant.
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lineage-affiliated TFs (Figure 3D) often in co-operation with Brd4 (Bae et al., 2017; Loven et al., 2013; Whyte

et al., 2013). In total, we identified 728 SEs across different treatments, more than half of which were shared

in all four conditions (Figures 3D and Table S3). The majority of SEs which regulate critical TFs (e.g. Irf8, Fos;

Figures 3E and S4B) remained unaltered in terms of H3K27ac load across treatments; however, in a few SEs

(including the one of Myc), H3K27ac load was reduced upon I-BET151 treatment (Figures 3D and 3E). By

contrast, analysis of the BET protein binding load at these SEs confirmed significantly increased binding

of both Brd2 and 4 (but not of Brd3) upon RANKL treatment, while I-BET151 treatment resulted in signifi-

cantly reduced binding of Brd2-4 proteins at SEs (Figures 3E, 3F, and S4B). This effect of I-BET151 was more

pronounced for Brd4 and is consistent with its previously described role in SEs (Loven et al., 2013).

Notably, increased binding of Brd2/4 at SEs was associated mostly with transcriptional repression (65% of

DEGs) rather than activation (35% of DEGs) of the predicted target genes at 14 and 24 hr (Figure 3F).

Pathway enrichment of DEGs predicted to be upregulated upon differential binding of Brd2&4 to en-

hancers and SEs confirmed activation of OC differentiation and TNF-a/Nfkb pathways, respectively, while

repression of Irf8 targets genes was predicted among down-regulated genes (Figures S4C and S4D)

Thus, in a non-redundant manner, Brd2 and Brd4 via their enhanced binding in response to RANKL and in

co-operation of lineage-affiliated TFs determine cell OC lineage commitment and fate by exerting dual,

repressive as well activatory transcriptional roles.

Myc is the epicenter of the OC lineage commitment gene regulatory network

By taking advantage of the ability afforded by ATAC-seq (Assay for Transposase-Accessible Chromatin using

sequencing) to identify footprints of DNAbinding factors, we obtained and annotated genome-wide footprints

of expressed TFs at promoters and enhancers in RANKL-treated RAW264.7 cells. This identified high confi-

dence footprints of several OC-associated TFs (Figure S5A) and allowed construction of a TF-focused GRN.

By displaying the highest expression change than any other TF in response to RANKL (Figure S5B), Myc

appears central in the TF-driven GRN of OC lineage commitment (Figure 4A). We confirmed by qPCR

that overexpression of Myc in response to RANKL is (a) higher than that of Nfatc1 and (b) it is BET protein

dependent, as shown by abrogation ofMyc overexpression (Figure S5B) and reduction in Brd2/4 binding at

the predicted Myc SE upon I-BET151 treatment (Figure 3E).

A closer inspection of the GRN reveals that Myc is regulated by Nfatc1, Fosl2, and Nfkb2 while it is pre-

dicted to repress Irf8 and Mafb (Figures 4A, 4B, and S5C). Notably, Myc is predicted to establish positive

feedback loops with TFs that promote OC differentiation (e.g., Nfatc1, Figure 4B) and a negative feedback

loops with TFs that activate the macrophage program (e.g., Irf8 and Mafb, Figure 4B). These findings are

consistent with previous low throughput analyses of the role of Brd2/4 proteins in regulating expression of

both Myc and Nfatc1 in OC and the Myc requirement for Nfatc1 upregulation in response to RANKL (La-

moureux et al., 2014; Park-Min et al., 2014).

Despite the critical role of Myc in OC development, its genome-wide regulatory landscape in response to

RANKL is not known. Herein, we first confirmed that Myc depletion by shRNA or by the Myc/Max dimeriza-

tion inhibitor 10,058–F4 (Yu et al., 2016) inhibited osteoclastogenesis (Figures S6A and S6B).

Next, weperformedChIP-seq againstMyc and its partnerMax 4h after RANKL treatment in RAW264.7 cells. Myc

bindingwas equally enrichedbetweenputative intergenic and intronic enhancers andproximal regulatory areas.

We identified 560 Myc areas also co-bound by Max (Figures 4C and 4D and Table S4); these areas were highly

enriched in Fli1, Fosl2, Pu.1/Spi1, Irf8, as well asMyc andMaxmotifs, supporting a co-operative function of these

TFs with Myc in OC development at the genome-wide level (Figure 4E). Over-representation analysis of DEGs

predicted to be regulated by Myc/Max binding showed activation of genes involved in ribosome-related path-

ways, as well as of previously known Myc/Max targets, and repression of Irf8, Runx1, and Spi1/Pu.1 targets (Fig-

ure 4F). Moreover, we identified theOCpioneer factor Spi1 and Fli1 as direct targets ofMyc, as predicted by the

presence of Myc footprints and ChIP-seq peaks at their corresponding SE (Figures 4A and 4G); interestingly,

binding of Irf8 and Spi1 on the sameSEwas previously described topromotemacrophage-lineage commitment

(Langlais et al., 2016), while the alternative Spi1/Nfact1 partnership favors OC lineage commitment (Carey et al.,

2018; Izawa et al., 2019) (Kurotaki et al., 2020).
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Integrative epigenomic analysis of the Myc chromatin binding sites revealed significant increase of

H3K27ac, Brd2, and Brd4 (but not Brd3) occupancy upon RANKL treatment (Figure S6C). Although no sig-

nificant change in H3K27ac signal was detected upon RANKL + I-BET151 treatment, Brd2-4 binding signal

significantly decreased on the same regions, more prominently for Brd4.

Finally, over-representation analysis of the post-RANKL variable genes predicted to be co-regulated by

Myc/Max binding and enhanced binding of BET proteins showed again among upregulated genes the

role of Myc in regulating previously identified Myc/Max target genes and in promoting ribosome biology

(Figure S6D). Genes predicted to be down-regulated by Myc/Brd2,4 are enriched for Spi1/Pu.1 targets in

macrophage cells (Langlais et al., 2016), further supporting a co-operative role of Spi1/Pu.1 with Myc in OC

lineage commitment.

Figure 4. Myc is a central component of the regulatory networks driving osteoclast-lineage commitment

(A) Chromatin accessibility-based construction of gene regulatory network that drives transcriptional changes during OC

lineage commitment. Directed TF network diagram: arrow width indicates footprint score for originating TFs at target

gene promoter/enhancer, and color indicates direction of expression change for originating TFs (red: upregulated and

blue: downregulated). Node size indicates strength of expression change (-log10(padj)*|log2FC|) and color indicates

direction of change at 14 hr after RANKL treatment.

(B) Individual TF modules comprising core components of the overall network.

(C–E) (C) Heatmap representation of ChIP-seq against Myc and Max, along with (D) genomic annotation of significantly

enriched areas and (E) thier motif analysis.

(F) Overrepresentation analysis of direct Myc gene targets (as predicted upon integrated cistrome-transcriptome

analysis) using EnrichR.

(G) IGV snapshots of Fli1 and Spi1 genetic loci. From top to bottom: showing Brd2/4, Myc, Max and H3K27Ac ChIP-seq,

ATAC-seq and Pu.1. and Irf8 ChiP-seq are from (Langlais et al., 2016).
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Together, these findings show a central role of Myc in OC lineage commitment in co-operation with Brd2/4

and lineage-defining TFs.

DISCUSSION

Here, we dissected the immediate early epigenetic and transcriptional events that are regulated by BET

proteins in response to RANKL during OC lineage commitment. Two main insights emerged from the dy-

namic analysis of the OC transcriptome. First, regulation of the two competing lineage programmes, i.e.,

repression of macrophage vs activation of the OC program is temporally dissociated, with the former

following the latter. This is consistent with the previously described role of Blimp1, a RANKL-activated

TF, in repressing Irf8- and Irf8-dependent macrophage-affiliated transcriptional programmes (Miyauchi

et al., 2010; Nishikawa et al., 2010). Second, transcriptional activation of genes regulating late functions

of OCs, i.e., cell-to-cell fusion and bone resorption, already takes place in the first 24 hr after RANKL expo-

sure, thus providing a paradigm of a cellular differentiation trajectory imprinted in the beginning of the pro-

cess. Future single-cell-based analyses of developing OCs would provide additional, high-resolution in-

sights into these transcriptional processes.

The non-redundant genetic roles of Brd2 and Brd4 in osteoclastogenesis have been previously shown as

has the ability of BET protein inhibitors to abrogate OC development by interfering with transcription of

individual critical TF (Baud’huin et al., 2017; Lamoureux et al., 2014; Park-Min et al., 2014). Here, we estab-

lish that RANKL induces changes primarily in the binding patterns of Brd2 and Brd4, with the latter mainly

focused on enhancers and SEs. While BET protein function has been primarily linked with gene activation

(Chiang 2009), our findings clearly show that enhanced Brd2/4 binding in response to RANKL is predicted

to mostly regulate repression of the existing macrophage program, highlighting the dual function of Brd2/

4 in gene regulation.

Brd2 and Brd4 are predicted to regulate critical pathways for OC development on individual or shared ba-

sis, alluding, in line with previous genetic studies (Baud’huin et al., 2017), to a non-redundant functional role

in osteoclastogenesis. Therefore, use of selective Brd2 or Brd4 inhibitors would be expected to abrogate

pathological, RANKL-dependent OC activation with a more favorable toxicity profile than pan-BET inhib-

itors such as I-BET151.

Construction of TF-focused GRNs highlighted the role of positive and negative feedback loops of TF cross-

regulation with Myc emerging as the most central TF in this process. Indeed, the BET protein-dependent

increase inMyc expression is the highest among TFs responding to RANKL.While transcriptome analysis of

Myc-deficient OC precursors suggested that Myc regulates metabolic processes such as oxidative phos-

phorylation in developing OC (Bae et al., 2017) whether relevant genes are directly regulated by Myc bind-

ing is not known. Here, we find that Myc is predicted to regulate pro-osteoclastogenic TF such as Nfatc1,

Fosl2, and Nfkb2 by establishing positive regulatory loops. In addition, through repression of Irf8 andMafb

and in co-operation with Spi1/Pu.1, Myc participates in the repression of the macrophage transcriptional

program required for OC development.

In summary, here we propose a non-redundant role of both Brd2 and 4 which cooperate with Myc to

orchestrate early chromatin events and TF regulatory networks that determine OC lineage commitment.

Limitations of the study

Although our study maps the dynamic changes in transcriptional regulation during early osteoclastogen-

esis in both cell line and primary OC precursor cells, these changes represent average regulatory events at

the cell population level and assume synchronous cellular responses upon cytokine stimulation and BET-

protein inhibition. Additionally, single-cell epigenomic and transcriptomic analyses could provide further

insights into understanding the dynamics of gene expression regulation during OC lineage commitment.
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1. Transparent Methods 

2. Supplementary Figures 
 
 
 
Transparent methods 
Cell culture 
RAW264.7 cells were maintained in DMEM media (Sigma) containing 10% FBS (Life 
technologies), 1000U/ml penicillin/streptomycin (Sigma). HEK293T cells were cultured 
in DMEM media (Sigma) supplemented with 10% FBS (Sigma). Cells were grown at 
370C under 5% CO2. 
 
Primary osteoclast and Osteoclast progenitors  
Bone marrow cells (BM) were harvested from murine tibias and femurs of C57BL/6 
male mice, washed with PBS. Red cells were lysed with RCL (eBioscience)  and 
washed again with PBS. To obtain osteoclast progenitors (OCP), BM cells were 
stained with anti-CD11b PerCP, -CD3e FITC, -CD115 PE, -B220 FITC and -cKIT APC 
(from BD Pharmingen) using standard protocols and flow-sorted as described in (Hu 
et al., 2011) using a BD FACSAriaII flow-sorter. 
 
BM cells were cultured in α-MEM (Life technologies) containing 10% FBS (Life 
technologies) and 1% penicillin-streptomycin (Sigma) and 20 ng/ml M-CSF 
(Preprotech) overnight at a density of 1×106 cells/ml. Non-adherent BM cells were 
harvested the next day as source of primary osteoclasts. 
 
Osteoclast assays  
Osteoclast progenitors (OCP) and non-adherent BM cells were seeded into 24/48 or 
96 well/plates in complete media with 20 ng/ml M-CSF (Preprotech) and 50 ng/ml 
RANKL (Preprotech) at a density of 1×106 cells/ml (1ml per 24 w, 500ul /48w and 200 
ul/ 96 well). RAW264.7 cell were seeded at a density of 1×106 cells/ml (1ml per 24 w, 
500ul /48w and 200 ul/ 96 well) and cultured in presence of 50ng/ml RANKL 
(Preprotec)  
 
For all the cultures, after 2-3 days of culture, media was changed. After 6-7 dyas the 
cells were fixed and stained for TRAP activity using the TRAP assay kit (Sigma). 
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Multinucleated cells with 3 or more nuclei were counted as  TRAP+ cells. Images were 
acquired using EVOS cell imagine system (Thermofisher) (Ersek et al., 2015). 
 
 
shRNA constructs and lentivirus production 
ShRNA oligoes were phosphorylated and annealed and cloned, using the AgeI and 
EcoRI sites into a modified lentiviral pLKO.1 vector (Sigma), in which the puromycin 
gene had been replaced with eGFP. A scrambled shRNA was used as control. The 
following oligoes were used for the shRNA cloning:  
-Sh Mm MYC Forward primer: 5’- 
CCGGGACTCCGTACAGCCCTATTTCCTCGAGGAAATAGGGCTGTACGGAGTCTTTTTG-3’ 
-Sh Mm MYC Reverse primer: 5’-
AATTCAAAAAGACTCCGTACAGCCCTATTTCCTCGAGGAAATAGGGCTGTACGGAGTC 
-3’  

 
Recombinant lentiviruses were produced by co-transfecting the pLKO.1-GFPshRNA 
plasmid with helper plasmids (pRSV.REV, pMDLgpRRE and pMD2.VSVG) into 
HEK293T cells using the calcium phosphate method. After 24h of transfection, the 
medium was replaced. Viral supernatant was collected at 48h and 72h post 
transfection. Lentiviruses were concentrated by ultracentrifugation at 23000rpm for 
1.5h at 40C. Cells were transduced in the presence of polybrene (8µg/ml final 
concentration; Sigma). Two days post-transduction, GFP positive cells were FACS-
sorted  using a BD FACSAriaII flow-sorter. 
 
 
Reverse transcription PCR and qRT-PCR 
Total RNA was isolated from cultured cells using the ReliaPrep RNA cell Miniprep 
System (Promega). cDNA was synthesized with RevertAid cDNA synthesis kit 
(Thermoscientific). qRT-PCR was performed with Taqman probes (Applied 
Biosystems) using an AB StepOne Plus Real-Time PCR (Applied Biosystems). Gene 
expression was normalized to the expression of HPRT housekeeping gene using the 
ΔCt method. Taqman probes:  Myc (Mm00487804_m1), Brd2 (Mm01271171_s1), Brd4 

(Mm00480394_m1), Nfatc1 (Mm00479445_m1), Irf8 (Mm00492567_m1), Ocstamp 
(Mm00512445_m1), Dcstamp (Mm04209236_m1) and Hprt (Mm00446968_m1). 

 
RNA-seq 
Total RNA was isolated from RAW264.7 cells at 0, 4, 14 and 24h after RANKL, 
RANKL/I-BET, I-BET- treatment (two independent experiments per time point and 
condition) using the Nucleospin RNA kit (Macherey-Nagel). RNA quantity was 
determined with Qubit using the Qubit RNA Assay kit (Life Technologies) and RNA 
quality was assessed on the Bioanalyser using the RNA pico kit (Agilent). Libraries 
were prepared using the NEBNext poly(A) mRNA Magnetic Isolation Module and the 
NEBNext Ultra RNA Library Prep kit for Illumina (NEB), following manufacturer’s 
instructions. Library quantity was determined using the Qubit High Sensitivity DNA kit 
(Life Technologies) and library size was determined using the Bioanalyser High 
Sensitivity DNA kit (Agilent). Libraries were quantified using the Universal Library 
Quantification Kit for Illumina (Kapa Biosystems) and run on AB StepOne Plus Real-
Time PCR (Applied Biosystems). Libraries were diluted to 2nM and sequenced using 
the Illumina HiSeq 2500 platform to obtain paired-end 100bp reads. Two replicate per 
time point and treatment were made. 
 
Chromatin immunoprecipitation 
Chromatin immunoprecipitation (ChIP)-qPCR was performed as described in (Caputo 
et al., 2013). Specifically, after 4 h treatment RAW264.7 cells were washed with PBS 
and crosslinked with 1% formaldehyde (SIGMA) for 15 min at room temperature. 
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Crosslinking was stopped by the addition of glycine (1.25M) to a final 125 mM 
concentration.  Subsequently, the cells were washed 3 times with ice cold PBS and 
pelleted at 300g. The crosslinked cells were lysed for 20 min on ice, and the nuclei 
were sonicated for 5 times for 5 min each time using a 30sec/30 sec off cycles,  at 40C, 
under high intensity in a Bioruptor UCD-200 (Diagenode).  
Sonicated fragments ranged 500-300bp in length. The sonicated chromatin was 
diluted at least ten times with ChIP dilution buffer (0,01%SDS, 1,1% Triton X-100, 
1,2mM EDTA, 16,7mM Tris-HCL pH 8, 167mM NaCl) with freshly added proteinase 
inhibitors (Sigma). To avoid unspecific binding, the diluted chromatin was pre-cleared 
for 1h at 40 C with magnetic beads (Dynabeads Protein A+G form Invitrogen).  3-5ug 
of antibody was added to pre-cleared chromatin aliquots and incubated overnight at 
40C on a rotating wheel. 
Immunoprecipitation was achieved by addition of protein A+G (50% each) magnetic 
beads and incubating for 2-4h at 40C on a rotating wheel. Immunoprecipitated 
complexes were washed for 5 min with salt buffer (0.1% SDS, 1% Triton X-100, 2mM 
EDTA, 20mM Tris-HCl pH 8, 150mM NaCl), high salt buffer (0.1% SDS, 1% Triton X-
100, 2mM EDTA, 20mM Tris-HCl pH 8, 500mM NaCl), LiCl buffer (0,25M LiCl, 1 % 
IGEPAL, 1% sodium deoxicolate, 1mM EDTA, 10mM Tris-HCl pH 8) and TE. All the 
washed were perform twice at 40C on a rotating wheel. 
Elution and un-crosslinking were achieved by incubating the immoprecipitated 

complexes with 150l elution buffer (50mM Tris-HCl pH 8, 50mM NaCl, 1mM EDTA 
and freshly added 1% SDS and 20mg/ml of RNaseA) at 650C overnight and again a 
second time for 30 min. Eluted complexes were treated with proteinase K 
(Thermoscientific) for 45 min at 450C. 
DNA was purified by phenol extraction and ethanol DNA precipitation. Q-PCR was 
performed using SYBR Select Master Mix (Lifetechnologies) on a StepOne Plus Real-
Time PCR (Applied Biosystems). Enrichment of the target sequence was assessed 
against INP DNA and IgG control (C1111), cMYC (sc764),  Max (SC197), Brd2 (Bethyl 
A302-582A). Brd3 (Bethyl A302-368A) and Brd4 (Bethyl A301-985150), H3K27ac 
(ab4729). 
 
ChIP-seq  
Treated and untreated cells were cultured using DMEM medium.107 cells per ChIP 
were cross-linked with 1% formaldehyde for 15min. Chromatin immunoprecipitation 
was performed as described above. The ChIP DNA was purified with AMPure beads 
(Beckman). ChIP and input DNA libraries were prepared using the NEBNext ChIP-seq 
Library Prep Master Mix for Illumina (NEB) following manufacturer’s protocols. The 
quantity was determined using the Qubit High Sensitivity DNA kit (Life Technologies) 
and library size was determined using the Bioanalyser High Sensitivity DNA kit 
(Agilent). Libraries concentration was quantified using the Universal Library 
Quantification Kit for Illumina (Kapa Biosystems) using a AB StepOne Plus Real-Time 
PCR (Applied Biosystems). Libraries were diluted to a final concentration of 2nM and 
sequenced at the MRC Imperial facility using the Illumina HiSeq 2500 platform to 
obtain single-end 50bp reads. 
 
ATAC-seq 
ATAC seq was performed as described in (Buenrostro et al., 2015). Briefly, 50.000 
cells were collected and washed at 500g at 40C for 5 min with PBS. The cell pellet was 
resuspended in ATAC lysis buffer and immediately spun for 10 min at 500g at 40C. 
The nuclei were then subjected to Tn reaction for 30 min at 370C; the reaction was 
terminated and the DNA purified immediately using a MinElute Kit (Qiagen). The 
purified DNA was amplified with NEBNext High-Fidelity 2x PCR Master Mix (NEB). 
The PCR amplified product was cleaned with AMPure beads (Beckman). The quality 
of the libraries was assessed with the Bioanalyser High Sensitivity DNA kit (Agilent). 
The library was quantified with using the Universal Library Quantification Kit for 

http://www.thermofisher.com/us/en/home/life-science/pcr/real-time-pcr/real-time-pcr-reagents/sybr-green-real-time-master-mixes/sybr-select-master-mix.html
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Illumina (Kapa Biosystems) on a StepOne Plus Real-Time PCR (Applied Biosystems). 
The libraries were sequenced at the Genomics Facility at MRC/LIMS of ICL using the 
Illumina HiSeq 2500 platform to obtain paired-end 100bp reads. 
Bioinformatic analysis 
 
ChIP-Seq  
ChIP-Seq normalisation and analysis 
Bowtie 2.3.4.1 (64 bit) was used to map ChIP-Seq reads to the mm10 mouse reference 
genome using default parameters and samtools 1.2 was used to convert SAM files, 
sorting and indexing BAM files. The Picard package was used to remove duplicated 
reads and the reads mapped on unknown and random chromosomes, in BAM files. 
MACS2 (v2.1) was used for peaks calling for each sample (Brd, Myc, Max, and 
H3K27ac) against their corresponding control input DNA. Significant peaks were 
obtained by applying an appropriate q-value cutoff (Brds, broad peaks calling at 
q<0.05; Myc, narrow peaks calling at q<0.1; Max, narrow peaks calling at q<0.01; 
H3K27ac, broad peaks calling at q<0.01). The significant ChIP-Seq peaks from 
MACS2 were annotated using the ChIPpeakAnno (Zhu, 2013; Zhu et al., 2010) and 
Homer package against the built-in mm10 mouse genome with the default settings. 
The R/Bioconductor package Diffbind (Ross-Innes et al., 2012) was used to obtain 
differential binding sites (DBS) across different conditions (R, RI, I, S) for samples (Brd 
and H3K27ac). For this purpose, three pseudo-replicates per ChIPseq sample were 
obtained by down-sampling to the minimum read depth; only peaks detected 
consistently in 2 out of 3 pseudo-replicates were used for DBS analysis. Furthermore, 
bedops tools were used on Brd2 and Brd4 DBS to generate Venn diagrams (Figure 
2E) for different comparisons. The ChIPpeakAnno package was also used to annotate 
all significant DBS (FDR<0.05) and identify overlaps between H3K27ac annotated 
regions with the Brds significant DBS (FDR<0.05).  
 
In addition, the Homer tools findMotifsGenome function was used to perform known 
and de-novo motifs analysis against the built-in mm10 mouse genome for the 
significant ChIP-Seq peaks (Figure 4E). 
 
Super-enhancer calling 
To identify the list of super-enhancers (SE) for each condition (S,R,RI,I), the 
significantly enriched H3K27ac peaks obtained from MACS2 were analysed further 
using the  Ranking Of Super Enhancers (ROSE) package (Whyte et al., 2013) (Loven 
et al., 2013) (Figure 3D). Correspondingly, the SE regions were annotated using the 
ChIPpeakAnno package 
 
Genomic regions visualization 
The IGV Genome Browser was used for genomic regions visualization. The DeepTools 
toolkit (Ramirez et al., 2016) was used to generate heatmaps and metagene plots of 
the Brd2,3,4 signal over the significant DBS(FDR<0.05: -10kb - +10kb region around 
the peak center) (Figure 2D), and the choromatin analysis and exploration (ChAsE) 
(Younesy et al., 2016) tool was applied to visualize Input, Myc and Max ChIPseq 
signals (±2 kb around the peak center) (Figure 4C).  
 
RNA-Seq  
The pair-end reads from the RNA-Seq experiments for all the 4 conditions (S/R/Ri/I) 
across the different time points (0, 4, 14 and 24h) were aligned to the GRCm38 (mm10) 
reference genome by STAR (version 2.5.3a) with 10,000 as the max number of 
different alignments per read to consider (--alignTranscriptsPerReadNmax 100000). 
To ensure the large reads files to be processed smoothly, the limits settings in STAR 
were increased (--limitGenomeGenerateRAM 20000000000). The “Rsubread” 
(version 1.24.2) R/Bioconductor package was used to obtain the raw read counts per 
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library using the GRCm38 reference genome.  The “DESeq2” (version 1.16.1)  (Love 
et al., 2014) R/Bioconductor package was used for normalising the counts and 
implementing the Differential Gene Expression (DGE) analysis across timepoints and 
treatments. The R package “pheatmap” was used to draw the initial clustered 
heatmaps for the selected differential expressed genes (|lfc|>0.8 and padj<0.05) of 
each contrast across conditions. The correlation was computed as the dissimilarity 
between the selected DEGs in order to capture their expression changes across all 
the time points (h0, h4, h14 and h24). Then an R package for performing Weighted 
Gene Co-expression Network Analysis (WGCNA) (Langfelder and Horvath, 2008) 
(Zhang and Horvath, 2005) was used to find clusters (modules) of highly correlated 
genes based on the dendrogram tree of the initial clustered heatmaps.  Comparative 
PCA and MA plots were generated using the PCA and maPlot functions in R. Gene 
set enrichment analysis (enriched GO, pathways, etc.) was performed for the clusters 
using enrichR (Chen et al., 2013; Kuleshov et al., 2016)  
 
ATAC-Seq 
ATAC-Seq reads were trimmed using TrimGallore (--paired -q 30 --nextera) and 
aligned against the mm10 mouse reference genome using Bowtie 2.3.4.1( -X 2000).  
SAM files conversion and BAM files sorting and indexing were performed using 
samtools. The picard and samtools packages were used to remove duplicate reads 
and reads mapped on chrUn, chr_random and chrM chromosomes, respectively. Peak 
calling was performed using MACS2 (-B –nomodel –call-summits -q 0.01) and 
deepTools functions were used to obtain pileup tracks. The ENCODE backlisted 
regions for mm10 were removed using bedtools 
(https://www.nature.com/articles/s41598-019-45839-z). The pyDNAse (Wellington) 
algorithm was used for TF footprinting; the genome-wide Tn5 cut site tracks (bigwig), 
the Tn5 signal per TF and the predicted TF biding sites were obtained using the default 
package parameters. TF motif calling on significant footprints (cutoff=20) was 
performed using Homer against HOCOMOCOv11 core database. To remove 
redundant and overlapping motifs, motif similarity was determined using TomTom from 
the MEME suite, and grouped into highly similar motif-classes (q<0.01). To predict the 
most likely candidate TF responsible for each footprint, all TF within the motif-class 
detected in the footprint region were ranked by an overall score of expression level 
and change in osteoclastogenesis (-log10(padj)*|log2FC|*log2(RPKM+1)), and highest 
scoring TF selected. Only TF genes were considered for GRN visualization, as plotted 
with the igraph package. 
 
Integrative Analysis 
  
Integrative analysis on ChIPseq and RNAseq data 
The Beta package (Binding and Expression Target Analysis) was applied to integrate 
the Myc ChIP-Seq data with Differential Expressed (DE) genes from RNA-Seq data 
across different time points (4, 14, and 24 h). Also, ChIP-Seq data (Brd, and H3K27ac) 
and their differential binding sites (Brd DBS and H3K27ac DBS) were annotated to the 
closest differentially expressed gene. 
  
Published datasets usage 
The previously published RNA-Seq data (SRP096890) and Irf8/Pu.1 ChIPseq were 
used for additional comparisons and validation (Langlais et al., 2016).  
 
Data availability 
 All data are accessible from Gene Expression Omnibus database (Acc. Number:   

GSE160840).  

  
 

https://www.nature.com/articles/s41598-019-45839-z
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Supplementary Figure Legends  
 
Figure S1, Related to Figure 1. Transcriptional and cellular responses of 
RAW264.7 and primary precursor cells to RANKL and I-BET151. (A) Flow 
cytometry strategy for identification and isolation of osteoclast progenitors.  (B) Top: 
TRAP staining of RAW264.7, bone-marrow OC precursors (BM OCP) and purified 
osteoclast progenitors upon treatment with RANKL (50ng/ml) and RANKL/I-BET151 
(500nM); n=2-6 independent experiments in triplicates.  Bottom: quantification of 
TRAP+ cells/well per condition. Results represent mean and SEM t test; ***, p=0.0001; 
****, p< 0.0001 (C) Correlation matrix comparing overlap between significantly up- and 
down- regulated genes identified in RAW264.7 cells 24h post RANKL-induction with 
those of primary OC at 48h (WT Myc R vs S, (Bae et al., 2017)). Color key represents 
corresponding odds ratios. (D) Time course qPCR profiling of Myc, Irf8, Dcstamp and 
Ocstamp expression in murine primary bone marrow-derived pre-osteoclast cells; (n=3 
mice). Results represent mean and SEM (One-way ANOVA: **, p<0.01; ***, p<0.001; 
****, p<0.0001). (E) RNA-seq analysis in RAW264.7 cells. Top: PCA analysis of 
differentially expressed genes (12 clusters derived from R vs S analysis) across time 
points (4,14,24hr) and comparisons (RvsS, IvsS, RvsI and RvsRI); bottom: MA plot of 
12 gene clusters across comparisons at 24h after treatments.  
 
Figure S2. Related to Figure 1. Dynamic transcriptional alterations during early 
osteoclast development in response to RANKL and I-BET151. (A) Time course 
profiling of Nfatc1 expression after RANKL-, I-BET151- or RANKL/I-BET151 treatment 
(left, qRT-PCR; right, RNAseq); values were normalized to time 0. (B) Enrichment 
analysis (left: ChEA, right: Mouse Gene Atlas) on 156 genes included in Cluster 7 
(displayed in Fig1B). (C) Heatmap illustration of pairwise treatment comparisons (R vs 
S, I vs. S, RI vs R) at 0,4,14 and 24h, as analysed by RNA-Seq in RAW 264.7 cells. 
(D) qPCR profiling of Myc, Irf8, Dcstamp and Ocstamp expression in murine primary 
bone marrow-derived pre-osteoclast cells 4h after no treatment (S), treatment with 
RANKL (R), RANKL/I-BET151 (RI) or I-BET151; (n=3 mice). Results represent mean 
and SEM (One-way ANOVA: *, p<0.05; **, p<0.01) 
 

Figure S3, related to Figure 2. Time course profiling of BET proteins expression 
after RANKL-, IBET151- or RANKL/I-BET151 treatments. (A) RNA-Seq and (B) 
qRT-PCR time course experiments. 

 
Figure S4, related to Figure 3. Functional annotation of transcriptional 
responses associated with Brd2,4 chromatin binding. (A) Line plots indicating 
expression patters of all predicted target genes with increased associated Brd2,4 
binding in RANKL treated cells. (B) IGV snapshot illustrating the Brd4 and H3K27ac 
enrichment, along with the identified super-enhancer, across S,R,I conditions on the 
Fos genetic locus. Overrepresentation analysis of differentially expressed genes at 4 
(C) and 14h (D) associated with super-enhancer (SE) and typical enhancer (E) 
regulation. EnrichR analysis using databases: ChEA, KEGG pathways, Gene 
ontology, WIKI pathways and NCI nature. 

 
Figure S5, related to Figure 4. The gene regulatory network of the early 
developmental events during osteoclast development. (A) Genome-wide Tn5 
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footprinting profiles for each transcription factor. (B) Time course profiling of Myc 
expression at 0, 4, 14 and 24h after RANKL, I-BET151 or RANKL/I-BET151 treatment 
using qRT-PCR and RNA-seq (C). Individual regulatory modules for indicated TF. 
Arrow width indicates footprint score for originating TF at target gene 
promoter/enhancer, colour indicates direction of expression change for originating TF. 
Node size indicates strength of expression change (-log10(padj)*|log2FC|) and colour 
indicates direction of change at 14h post-RANKL treatment, (Red=upregulated and 
blue=downregulated).  

 

Figure S6, related to Figure 4. Phenotypic and epigenomic characterization of 
Myc at the early stages of osteoclast development. Myc mRNA, TRAP OC assay 
and TRAP+ OC numbers/well after treatment shRNA-mediated Myc knock-down 
(shMyc) in RAW 274.7 cells (A) or (B) their treatment with the Myc-Max inhibitor 
10058-F4 (F4 50mM). Myc expression is shown relative to Hprt and scrbl or un-treated 
cells, respectively; n=3-5 independent experiments with triplicate technical replicates. 
(C) The epigenomic landscape of the 560 Myc-bound regions in developing 
osteoclasts. Violin plots displaying the relative enrichment (log2 scale) of H3K27ac and 
Brd2-4 on the Myc-bound regions across S, R, RI and I conditions. (D) EnrichR 
overrepresentation analysis of differentially expressed genes (14h post RANKL-
induction) with associated Myc and Brd2,4 binding sites. EnrichR analysis (ChEA, 
KEGG pathways, Gene ontology, WIKI pathways and NCI nature). *, p<0.05; 
***, p<0.001; ****, p<0.0001.  
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