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Gut dysbiosis is defined as disorders of gut microbiota and loss of barrier integrity,

which are ubiquitous on pathological conditions and associated with the development of

various diseases. Kidney diseases are accompanied with gut dysbiosis and metabolic

disorders, which in turn contribute to the pathogenesis and progression of kidney

diseases. Microbial alterations trigger production of harmful metabolites such as uremic

toxins and a decrease in the number of beneficial ones such as SCFAs, which is the

major mechanism of gut dysbiosis on kidney diseases according to current studies.

In addition, the activation of immune responses and mitochondrial dysfunction by gut

dysbiosis, also lead to the development of kidney diseases. Based on the molecular

mechanisms, modification of gut dysbiosis via probiotics, prebiotics and synbiotics is a

potential approach to slow kidney disease progression. Fecal microbiota transplantation

(FMT) and genetic manipulation of the gut microbiota are also promising choices.

However, the clinical use of probiotics in kidney disease is not supported by the current

clinical evidence. Further studies are necessary to explore the causal relationships of

gut dysbiosis and kidney diseases, the efficiency and safety of therapeutic strategies

targeting gut-kidney axis.
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INTRODUCTION

Kidney disease is a major public health concern worldwide and is associated with the high
morbidity and mortality, with the various pathogenic mechanisms related to immune responses,
oxidative stress, inflammation, metabolic disturbance and so on (1–5). However, lack of effective
strategies for the prevention and management of renal disease is still an important issue urgently
needed to be addressed. For example, how to slow the progression of chronic kidney disease (CKD)
is tough due to the current therapeutic strategies just aiming at the decrease on proteinuria and the
control of elevated blood pressure (6). Thus, novel targets and treatments become the hot spot in
mitigating the growing burden of kidney diseases.

Human gastrointestinal (GI) tract contains more than 100 trillion microorganisms, which
forms a microbial community with abundance and diversity (7). Bacteria are one of
microorganisms and classified on the level of phyla, classes, orders, families, genera, and
species. The dominant bacteria on phylum level are Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia. Among these, Firmicutes and Bacteroidetes
predominate and represent 90% of the bacteria in gut (8). Gut microbiota composition
is highly variable and maintain dynamic balance in the physiologic condition. However,
gut microbiota variations tend to be one of the important implications in intestinal and
extra-intestinal disorders. These variations are defined as gut dysbiosis, which includes disorders of
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gutmicrobiota composition and loss of intestinal barrier integrity
(9–11). For examples, pathogenic bacteria were increased,
and uremia toxin levels were elevated under the condition
of CKD. The disruption of intestinal epithelium integrity
enhances harmful gut-derived metabolites into circulation, in
turn, aggravating kidney injury (9). Gut dysbiosis have dual
identities as not only the contributing factors to kidney disease
progression, but also increasing the risk for various kidney
diseases especially in individuals with genetic predisposition (12–
16). Therefore, understanding the complex relationships between
gut dysbiosis and kidney diseases may provide us with potential
therapeutic strategies.

Recent technological advances in omics have arisen our
knowledge of gut microbiota. The next generation sequencing
technologies, including 16S ribosomal RNA (rRNA) or DNA
and metagenomics sequencing analysis identified a large
number of gut microorganisms and differential species between
healthy subjects and diseased individuals (11). In addition,
metabolomics sequencing has become the most common
technique to explore the alterations of gut metabolites, while
single-cell sequencing is widely used to dig out the specific
molecular mechanisms (17, 18).

In this review, we aimed to describe the manifestation of

gut dysbiosis in kidney diseases according to numerous clinical

studies and animal experiments. Furthermore, we discussed
the molecular mechanisms of gut dysbiosis contributing to the
pathogenesis and progression of kidney diseases. Finally, we
focused on the potential therapeutic strategies targeting gut
dysbiosis on kidney disease treatments.

GUT DYSBIOSIS IN KIDNEY DISEASES

16S rRNA or DNA sequencing is the common method to

evaluate microbial diversity and identify differential microbes

in patients compared with healthy control (HC) subjects.
Numerous observational clinical studies demonstrated that
patients with CKD, in general, exhibited a prominent reduction
in abundance and diversity of fecal microbiota (19–23).
At the phylum level, the abundance of Actinobacteria and
Firmicutes was reduced in the CKD groups compared with
the HC group, while that of Verrucomicrobia Fusobacteria
and Proteobacteria was increased (19, 24). Moreover, there
were some differences among the altered gut microbiota at
the genus and species level in individuals with CKD (23). The
individual differences caused by genetic and environmental
factors might account for the variety and inconsistence of
results. Beyond that, the severity and etiology of CKD in
clinical stages and pathological classifications also led to the
different manifestations of gut dysbiosis in the enrolled-in
patients. For patients with CKD of 3–5 stages, Lactobacillus,
Clostridium IV, Paraprevotella, Clostridium sensu stricto,
Desulfovibrio, and Alloprevotella were abundant in the fecal
samples, while Akkermansia and Parasutterella were enriched
in those of HC subjects (19, 23). Another study indicated
that fecal microbiota had significantly higher abundance of

Citrobacter, Coprobacillus and lower abundance of Prevotella
spp., Faecalibacterium prausnitzii, Roseburia spp. in patients
with CKD of 3b-4 stages compared to HC subjects (20). A
group of microbial species were enriched in patients with
end-stage renal disease (ESRD), including Eggerthella lenta,
Flavonifractor spp, Alistipes spp, Ruminococcus spp and
Fusobacterium spp, while several species were depleted,
including Prevotella spp, Clostridium spp, Roseburia spp,
Faecalibacterium prausnitzii and Eubacterium rectale (21). CKD
patients with dietary protein restriction showed an increase in
intestinal Escherichia, Shigella, and Klebsiella and a decrease
in Blautia (25). When accompanied with idiopathic nephrotic
syndrome (INS), patients with CKD held decreased Megamonas,
Megasphaera, Akkermansia, Lachnospira, Roseburia and
Fusobacterium compared with CKD patients without INS (24).
The significant gut microbiota disorders also varied among
kidney diseases with distinct pathological patterns. For examples,
Escherichia-Shigella and unclassified Defluviitaleaceae were
increased in IgA nephropathy (IgAN) compared with HC,
whereas Roseburia, unclassified Lachnospiraceae, sensu stricto
Clostridium, and Fusobacterium were decreased. Escherichia-
Shigella, Peptostreptococcaceae, Streptococcus, and unclassified
Enterobacteriaceae were increased in MN, whereas Lachnospira,
unclassified Lachnospiraceae, sensu stricto Clostridium, and
Veillonella were decreased. When comparing IgAN with MN,
Megasphaera and Bilophila were increased, while Megamonas,
Veillonella, Klebsiella, and Streptococcus were decreased in
IgAN (26). These results described the landscape of intestinal
flora in kidney diseases. Identification of differential bacteria
is the first step to dig out the potential gut-associated target on
treatments of kidney diseases.

Whether the altered gut microbiota is correlated with clinical
characteristics of kidney diseases is of much importance, which
determines the significance of gut dysbiosis in the diagnosis
and treatments of renal diseases. The correlation analysis
demonstrated that the butyrate-producing bacteria, such as
Faecalibacterium and Prevotella, were negatively related to the
serum level of C-reactive protein (CRP) and Cystatin C (CysC)
in ESRD patients (27). In addition, Akkermansia was negatively
correlated with inflammatory indicators like interleukin-10
production in CKD patients, suggesting Akkermansia might be
a novel biomarker of CKD (19, 22). In diabetic nephropathy
(DN), the genus Escherichia-Shigella and the genus Prevotella
9 levels in feces might be used to distinguish DN from diabetes
mellitus, which may contribute to the early diagnosis of DN
(28). Further, Anaerosporobacter might be a harmful factor and
Blautia might be a protective factor in DN due to the positive
and negative correlation with 24-h urinary protein content,
respectively (29). In individuals with IgAN, Prevotella was
positively correlated with serum albumin level, while Klebsiella,
Citrobacter, and Fusobacterium were negatively correlated.
Furthermore, Bilophila was identified positively correlating with
crescents in the Oxford classification of IgAN. Similarly, the
negative correlation was existed between Escherichia-Shigella
and proteinuria in individuals with MN. Bacteroides and
Klebsiella exhibited positive correlation with differentMN stages.

Frontiers in Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 829349

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cao et al. Gut-Kidney Crosstalk

Thus, the alterations of gut microbiota might also serve as
implications of clinical and pathological severity of IgAN and
MN (26). These observations indicate that gut microbiota can be
used as a novel kind of biomarker for kidney diseases in diagnosis
and prognosis. However, large-scale prospective clinical studies
are needed to further confirm the reliability of setting the
microbial biomarkers.

Dialysis, as one of the effective therapeutic strategies
for patients with ESRD, has been showed to improve gut
dysbiosis. In patients treated with hemodialysis (HD), the
numbers of fecal Bifidobacterial and Lactobacillus acidophilus
were higher, while Escherichia coli and Enterococcus
faecalis numbers were lower than those of patients without
HD treatment. Compared with ordinary hemodialysis,
combination treatment with hemoperfusion dialysis could
further improve gut microbial disorders with higher number of
fecal Lactobacillus acidophilus and lower number of Escherichia
coli (30).

In addition, individuals with peritoneal dialysis (PD)
presented with different changes of gut microbiota compared
with patients with HD. Fecal Proteobacteria was decreased in
HD patients, while increased in PD patients (31). It also showed
that Bacteroidetes were significantly deceased in HD patients
compared with pre-dialysis patients. HD was observed reversing
the dysbiosis in pre-dialysis patients (32). Further analysis
demonstrated that Bacteroides and Phascolarctobacterium
were related to cardiovascular mortality in patients with
dialysis (32). The number of fecal Dorea, Clostridium, and
SMB53 were associated with peritonitis in PD patients,
suggesting gut dysbiosis predicts prognosis of patient with
PD (32). These findings imply that monitoring gut dysbiosis
in individuals with CKD is necessary for providing specific
treatment suggestions.

To determine the exact causations between gut dysbiosis
and kidney diseases, renal-injured germ-free or antibiotic-treated
rodents were transplanted with microbiota from CKD patients
or healthy controls. The results showed that CKD patient-
derived microbiota induced higher levels of serum uremic
toxins and aggravated renal fibrosis as well as oxidative stress
more than that from healthy controls (21). The pathogenic
role of gut microbiota from CKD patients was confirmed by
fecal microbiota transplantation. Moreover, microbiome changes
induced by CKD might be exacerbated in the process of renal
transplantation with immunosuppression (33). A study on renal
transplantation patients indicated that spousal pairs with similar
microbial composition had better 6-month allograft function and
lower morbidity of post-transplantation infection. Correlation
analysis showed that the pre-transplantation microbial similarity
in donors and recipients hold a fantastic accuracy in the
prediction of the estimated glomerular filtration rate (eGFR)
at 6-months post transplantation (21, 34). These data suggest
that gut dysbiosis is not only an intestinal manifestation
in kidney diseases but also an important factor that leads
to disease progression. Thus, it is necessary to explore the
molecular mechanisms of gut dysbiosis on aggravating renal
diseases and treat patients with kidney diseases by modifying
gut microbiota.

MOLECULAR MECHANISMS OF GUT
DYSBIOSIS ON KIDNEY DISEASES

It is obvious that kidney diseases are accompanied by gut
dysbiosis, which is a promotive factor involving in the
progression of diseases. However, as the manifestations appeared
in distal organs, how gut dysbiosis impacts on kidney disease
progression becomes an urgent demand. The development of
metabolomics sequencing helps us to explore the link underlining
molecular basis of gut-kidney crosstalk. Multi-omics combined
analysis showed that altered gut microbial species linked to
intestinal, circulating and renal metabolites, including uremic
toxins, short-chain fatty acids and trimethylamine (TMA) (21,
35–39).

Uremic Toxins
Excessive production of uremic toxins is a consequence of
gut microbiota alteration, including indoxyl sulfate (IS) and p-
cresyl sulfate (PCS) (11). Mice with depleted gut microbiota
were transplanted with microbiota from CKD patients, finally
detected higher levels of serum uremic toxins, suggesting that
altered gut microbiota might aggravate CKD progression by
increasing the production of uremic toxins. Moreover, two of
the species, Eggerthella lenta and Fusobacterium nucleatum,
were identified to increase uremic toxins productions and
deteriorate CKD progression (21). Protein post-translational
modifications in bacteria have been detected and characterized
associated with nitrogen metabolism (40, 41). Based on the fact,
Lior Lobel et al. found that microbial tryptophanase activity
was posttranslationally modified by a high sulfur amino acid-
containing diet, which reduced the activity of uremic toxin
production and ameliorated CKD progression in mice (35).
However, a study showed that serum uremic toxins levels were
upregulated in patients with different stages of CKD, while
remained the same in fecal and urine samples (36). Therefore, an
increase in these toxins cannot be entirely explained by increase
in bacterial generation in gut. The decrease of fractional clearance
due to the renal function decline in CKD patients appeared to
increase uremic toxins levels in serum.Meanwhile, the disruption
of intestinal epithelial barriers was also one of the important
causes to the influx of uremic toxins into circulation (36).
Nevertheless, daily medications for CKD patients also interferes
the metabolism of these uremic toxins. For examples, two-
week canagliflozin treatment for adenine-induced renal failure in
mice did not prevent the impaired renal function. However, it
significantly reduced the plasma levels of IS and PCS, meanwhile,
reversed gut dysbiosis (42). These data suggest that increased
production of uremic toxins caused by gut dysbiosis might
contribute to CKD progression despite the causes for the increase
of these toxins are various.

Short Chain Fatty Acids
SCFAs are generated from indigestible dietary carbohydrate
fibers by the intestinal microbiota, mainly including acetate,
propionate and butyrate (43). Depletion of gut microbiota using
antibiotics in diabetic rats markedly reduced serum acetate
levels. As expected, fecal microbiota transplantation from the
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healthy donor also effectively decreased serum acetate levels.
These animal experiments indicate tight correlations between
gut dysbiosis and SCFA level alterations. Furthermore, SCFAs
were showed to play a critical role in slowing CKD progression.
Butyrate was almost three times lower in serum of CKD patients
than that of HC. A negative correlation was observed between
butyrate level and renal function, which was improved by
supplementation with extra butyrate (44). Our previous study
confirmed that oral administration of the probiotics Lactobacillus
casei Zhang (Lac.z) increased SCFA levels in serum and kidney,
which prevented acute kidney injury (AKI) and delayed renal
fibrosis progression (45). Thus, regulation of gut dysbiosis,
manifested as inducing an increase in SCFA-producing bacteria,
may lead to higher levels of SCFAs in circulation and kidney,
further reducing tubular cell injury and tubulointerstitial fibrosis.

TMA and TMAO
Nutrient precursors, abundant in red meat and a Western diet,
such as phospatidylcholine choline and carnitine, were used
by gut microbiota as a carbon fuel source to generate TMA
as a waste product, which was subsequently absorbed into
circulation and converted within the liver to trimethylamine
N-oxide (TMAO) (46, 47). Dietary supplementation of TMAO
significantly aggravated the impairment of renal function and
the progression of renal fibrosis, reflecting as the decline of
eGFR, and the increase of CysC, albumin/creatinine and renal
tubulointerstitial fibrosis score (37). Transplantation microbiota
from CKD patients to rats were confirmed to accelerate CKD
progression by increasing TMAO production (44). The specific
medication like iodomethylcholine, a gut microbiota-dependent
choline TMA-lyase mechanism-based inhibitor, reversed choline
and adenine diet-induced gut microbial community composition
related to TMA and markedly suppressed TMA generation,
subsequently TMAO level, thus alleviating renal functional
impairment (37, 48). In addition, ranitidine and finasteride
also inhibited the synthesis and metabolism of TMAO to
exhibit potential protective effects on CKD and cardiovascular
complications (49). These data show that TMA and TMAO
production is dependent on gut microbiota and become a
potential target to attenuate renal disease progression.

A rigorous study was performed that patients with
CKD were highly selected with strict inclusion criteria to
eliminate the influence of the confounding factors on the
microbial composition changes. The results showed that gut
Lactobacillaceae family displayed a stepwise change in relative
richness responding to renal insufficiency from mild, moderate
to severe group. In addition, the uremic toxin pathway was
associated with microbial changes in CKD patients (50).
Despite that, the question remains to be answered whether
these metabolite alterations are the results of gut dysbiosis and
trigger kidney disease development or they just come with the
occurrence and progression of diseases. More designed studies,
larger-size samples and multidimensional analysis are needed
to clarify the causal or concomitant relationships among gut
dysbiosis, metabolite changes and kidney disease progression.

Gut is abundant in what called gut-associated lymphoid
tissue, suggesting gut dysbiosis and disease-related metabolite
alterations may impact on kidney diseases by activating immune

responses. TLR7-dependent translocation of Lactobacillus
reuteri was confirmed to induce the increase in plasmacytoid
dendritic cells (pDCs) and interferon signaling, which worsened
autoimmune responses in systemic lupus erythematosus (SLE).
While dietary resistant starch suppressed the abundance and
translocation of Lactobacillus reuteri, resulting in a decrease
in pDCs, which were benefit to patients with SLE (51). It
also mitigated inflammation via expansion of Tregs to slow
CKD progression (52). However, another study showed that
treatment with a mixture of five Lactobacillus strains skewed
the Treg-Th17 balance toward a Treg-dominant phenotype in
the kidney of MRL/lpr mice, suggesting that gut microbiota
protected against lupus nephritis by expanding Tregs (53).
Although the percentage of Tregs was not different between
CKD and control mice, pro-inflammatory/resident macrophages
increased in the colon of CKD mice. Moreover, probiotics
could restore the high percentage of pathogenic macrophages
and increased regulatory dendritic cells in the colon. These
immune-related changes suppressed systemic inflammation
and kidney fibrosis (54). Depletion of gut microbiota with
broad-spectrum antibiotics in mice induced lower levels of F4/80
and chemokine receptors CX3CR1 and CCR2 in renal resident
macrophages and bone marrow monocytes compared with
control mice. In addition, the migratory capacity of monocytes
was decreased in gut bacteria-depleted mice. These inflammatory
changes with gut microbiota depletion protected mice against
renal ischemia reperfusion injury (55). Our previous study
also confirmed that the reno-protective role of the probiotics
Lac.z was dependent on the decrease in renal macrophages,
including inflammatory subset, intermediate-stage subset, and
proliferating subset. Further, we used CCR2-KO mice to confirm
that the protection was partially dependent on inhibition of
CCR2+ macrophages. In addition, Lac.z-induced increase in
SCFA levels contributed to the reno-protective role by interaction
with the classical SCFA-related receptors, GPR43 and GPR109a
expressed on neutrophils, and macrophages, which resulted
in the anti-inflammatory effect (45). In mice with crescentic
glomerulonephritis, gut-derived Th17 cells were confirmed to
migrate into kidney via S1PR1-dependent CCL20/CCR6 axis and
trigger autoimmune responses in kidney. Depletion of intestinal
Th17 cells in germ-free and antibiotic-treated mice ameliorated
autoimmune-mediated renal disease, whereas expansion of
these cells on condition of Citrobacter rodentium infection
exacerbated pathology (56, 57). Therefore, gut dysbiosis may
deteriorate kidney diseases by interacting with immune cells.

The metabolic disturbances in CKD patients, such as
oxidative stress and inflammation, promote vascular damage,
which is potentially linked to the mitochondrial dysfunction
in the enterocytes. Many factors have been reported to
control mitochondrial function such as peroxisome proliferator
activated receptor gamma coactivator 1 alpha (PGC-1α), which
increases the mitochondrial electron transport chain and
DNA copy numbers (58). The disturbances in the biogenesis,
bioenergetics, morphology and degradation of mitochondria
were reported along with PGC-1α expression reduction in CKD
(59, 60). Bacterial infections were developed in parallel with
mitochondrial dysfunction, which hints that the relationship
of gut dysbiosis and mitochondrial dysfunction (61, 62). Gut
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FIGURE 1 | Molecular mechanisms of gut dysbiosis on kidney diseases. The molecular mechanisms of gut dysbiosis on kidney diseases were major focused on two

aspects. One was that gut dysbiosis-induced metabolic disorders, manifested as an increase in harmful metabolites such as TMA and uremic toxins and a decrease

in beneficial metabolites such as SCFAs, which might directly promote the pathogenesis and progression of kidney diseases. The other was related to immune

response activation. Gut dysbiosis and metabolic disorders could expand or activate immune cells by binding specific receptors. For examples, SCFAs regulated

macrophages in kidney in a GPR43 and GPR109a-dependent manners, and the activation of pDCs were dependent on TLR7 to induce IFN production on the

condition of gut dysbiosis. In addition, another novel perspective has arisen recently that gut dysbiosis-induced the increase of ROS production resulted in

mitochondrial dysfunction, which was also important for CKD progression. SCFAs, short chain fatty acids; TMA, trimethylamine; pDC, plasmacytoid dendritic cell;

Treg, regulatory T cell; Th17, type 17 of T helper cell; IFN, interferon; ROS, reactive oxygen species; TLR7, toll-like receptor 7; S1PR1, sphingosine-1-phosphate

receptor 1; CCR6, chemokine receptor 6; CCL20, C-C chemokine ligand 20; CX3CR1, CX3C chemokine receptor 1; CCR2, C-C chemokine receptor 2; GPR43,

G-protein coupled receptor 43; GPR109a, G-protein coupled receptor 109a; SLE, systemic lupus erythematosus; CKD, chronic kidney disease.

dysbiosis-induced bacterial metabolites like hydrogen sulfide,
uremic toxins, bile acids and lipopolysaccharide interfered with
mitochondrial dysfunction by increasing ROS production. Thus,
the gut microbiota-mitochondria axis is also important for
CKD treatment (63). However, the profound mechanisms are
needed to be further explored. In summary, gut dysbiosis affects
kidney diseases in the manner of metabolite alterations, immune
response activation and mitochondrial dysfunction, which is
shown in Figure 1.

THERAPEUTIC STRATEGIES TARGETING
GUT DYSBIOSIS ON KIDNEY DISEASES

Based on the data from 16S rRNA or DNA sequencing and
metagenomic sequencing, microbial dysbiosis can be corrected
by exogenous probiotics supplementation to prevent kidney

diseases. Among that, Lactobacillales and Bifidobacteri are the
most common probiotics. In patients with stable CKD stage
3a, compared to placebo group, probiotics treatment increased
fecal Lactobacillales and Bifidobacteria concentrations, induced
significant improvements of CRP, iron status, intact parathyroid
hormone (iPTH) and β2-microglobulin with possible beneficial
effects on cardiovascular outcomes, particularly when the
early treatment was performed (64). We found that Lac.z
intervention on individuals with CKD in stage 3–5 resulted
in a lower serum CysC. Supplementation with Lactobacillus
restored the abundance of SCFA-producing bacteria, leading to
increased SCFA levels in gut, circulation, and kidney (45, 65).
Another group gavaged the CKD rats with Bifidobacterium
animalis A6 and found that the abundances of two toxin-driving
species, E. lenta and Fusobacterium spp were significantly

decreased even though the overall microbial composition was
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TABLE 1 | The studies on the effects of probiotics on CKD.

Probiotics Methods Effects References

Bifidobacte-rium

adolescentis or B. longum

The animals were

treated with the probiotics and

subjected to kidney IRI.

The probiotic treatment protects mice from IRI-induced CKD:

lowered serum levels of creatinine and urea

lowered levels of cytokines and chemokines in serum

increased acetate production.

(69)

L. casei Zhang

(Lac.z) or

L. acidophilus

(Lact)

The mice were

treated with the

probiotics for 4

weeks and then

subjected to kidney

IRI.

The probiotics protect mice from IRI-induced

CKD and the effects of Lac.z are more

outstanding: reduced serum creatinine and BUN

alleviated renal fibrosis

improved gut dysbiosis

increase the levels of SCFAs and nicotinamide

regulated immune responses.

(45)

Lactobacillus paracasei and

Lactobacillus plantarum

The mice were

treated with low

dosage or high

dosage of probiotics for 6 weeks and

then

fed adenine to

induce CKD.

The mixed lactic acid strains protect mice from

adenine-induced CKD:

improved the kidney function

reduced kidney injury and fibrotic-related

proteins decreased oxidative stress and proinflammatory

reactions

elevated immune responses in the kidney reversed gut

dysbiosis and restored the abundance of commensal bacteria

improved intestinal barrier integrity.

(65)

Bifobacterium

bifidum A218,

Bifidobacterium

catenulatum A302,

Bifidobacterium longum A101,

and Lactobacillus plantarum

A87

A randomised, double-blind,

placebo-controlled trial: PD patients in

the intervention group received one

capsule of probiotics daily for six

months. The placebo group received

similar capsules with maltodextrin for

the same duration.

The mixed probiotics are beneficial to PD

patients:

significantly reduced the serum levels of

endotoxin and proinflammatory cytokines

(TNF-α, IL-6 and IL-5)

increased the serum levels of anti-inflammatory cytokine

(IL-10) preserved residual renal function.

(70)

Synbiotics A randomized, double-blind,

placebo-controlled, crossover trial:

synbiotic therapy over 6 weeks

(4-week washout)

The synbiotics did not significantly reduce

serum IS in patients with CKD.

The synbiotics did decrease serum PCS.

The synbiotics favorably modified the stool

microbiome with enrichment of Bifidobacterium and depletion

of Ruminococcaceae.

(71)

Bifidobacterium

longum in gastro

resistant seamless

capsule (Bifina) or

Bifidobacteria in

powder formulation

(Lac B)

HD patients were

treated with Bifina

for 5 weeks, and

another group HD

patients were treated

with Lac B for

5 weeks.

Bifina administration to HD patients is effective

in reducing serum IS by correcting the intestinal

microflora.

(72)

Synbiotics

(Lactobacillus casei strain

Shirota and Bifidobacterium

breve strain Ya kult as

probiotics and

galacto-oligosaccharides as

prebiotics)

HD patients

received synbiotics

three times a day for 2

weeks after 2-week pretreatment

observation.

Synbiotic treatment resulted in normalization of

bowel habits and decrease of serum PCS in HD patients.

(73)

L. casei Zhang

(Lac.z)

Individuals with

CKD in stages 3–5

(n = 62) were underwent

randomization to receive either a

placebo (n = 29) or L. casei Zhang (n

= 33) as a supplement For 3 months.

Lac.z treatment delayes progression of CKD:

did not altered the levels of creatinine, BUN

did not altered the safety and tolerability

decreased CysC and PTH level

The increase in urine albumin-to-creatinine ratio was milder.

eGFR decline was much slower.

(45)

not significantly altered. Meanwhile, serum levels uraemic
toxins, creatinine and urea were decreased and renal fibrosis

and glomerulosclerosis were reduced (21). In hyperuricemic

animals, probiotics containing uricolytic bacteria lowed serum

uric acid with benefit on blood pressure and renal disease (66).
In obese-induced kidney injury, Lactobacillus paracasei HII01

supplementation alleviated kidney inflammation, endoplasmic
reticulum stress, and apoptosis, resulting in improved kidney
function. In addition, the probiotics also induced the attenuation
of hyperlipidemia, systemic inflammation, and insulin resistance,
along with gut dysbiosis improvement (67). Moreover, a mixture
of five Lactobacillus strains (Lactobacillus oris, Lactobacillus
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rhamnosus, Lactobacillus reuteri, Lactobacillus johnsonii,
and Lactobacillus gasseri) contributed to decreased IL-6
and increased IL-10 production with an anti-inflammatory
environment in the gut and circulation. Moreover, Lactobacillus
treatment increased IL-10 and decreased immune deposit in
the kidney of MRL/lpr mice (53). However, the safety and
dosage of probiotics need to be strictly controlled due to the
liveness of probiotics. Despite that the efficiency of probiotics
administration on various renal diseases was confirmed by
numerous animal experiments, the placebo-controlled, two-
blind, and randomized clinical trials are in serious lack, and
current studies show few direct efficiencies such as preventing
eGFR decline or serum creatinine increase and urea, which
are the stumbling block of applications of probiotics (68). The
studies on the effects of probiotics on CKD were listed at Table 1.

Prebiotics is the organic matter that promote the metabolism
and proliferation of beneficial bacteria in host. Synbiotics is
the combination of probiotics and prebiotics. Prebiotics diets,
such as butyrate-releasing high-amylose maize starch diet, were
proved to be highly effective for protection against kidney injury
(74). Beneficial polyphenols and fructooligosaccharide, as the
essential prebiotics in our regular diet, inhibited pathogenic
bacteria, and improved inflammation, thus preventing CKD
progression (75, 76). In a mouse kidney ischemia/reperfusion
model, D-serine, one of the prebiotics, was identified to mitigate
AKI via suppressing hypoxia-induced tubular damage and
promoting posthypoxic tubular cell proliferation. Meanwhile,
D-serine levels in circulation was significantly correlated
with renal function decrease in AKI patients (77). Butyrate
prevented proteinuria by preserving podocytes of adriamycin
nephropathy model in a GPR109a-dependent manner (74). In
addition, dietary fiber protected against diabetic nephropathy
by SCFAs-mediated activation of GPR43 and GPR109a (78).
Synbiotics diets containing prebiotics (glutamine, dietary fiber,
and oligosaccharide) and probiotics (Bifidobacterium longum
strain) preserved renal function decline and lowed serum IS.
Moreover, this kind of synbiotics was proved without serious
adverse effects (79). Bupleurum polysaccharides ameliorated
diabetic nephropathy induced by STZ (80). Prebiotic–gum acacia
(GA) treatment successfully reversed CKD-induced gut dysbiosis
and increased butyrate production (81, 82).

In summary, probiotics, prebiotics and synbiotics can be
widely applicated to treat kidney diseases by improving gut
dysbiosis and metabolic disorders. The species-related selection
of these treatments should be dependent on variety of diseases
and individuals. Large numbers of rigorous clinical trials are
needed to further confirm the effects and safety and optimize
the methods and durations of treatment. In addition, bacteria
are essentially living organisms and regulated by genes. An
interesting research was reported to introduce the targeted
genetic manipulation of Bacteroides species in the human gut,
which provides a brand-new perspective for gut microbiota
interventions to prevent kidney diseases (83).

Different from probiotics treatment to supply several specific
bacteria, FMT consists of fecal infusion from healthy donor. So

far, the recurrent Clostridium difficile infection has been the
only condition on which FMT is accurately efficient with more
than 80% of efficiency rate (84). However, no clear evidence
supporting a FMT approach in CKD. In CKD mice, FMT
decreased PCS accumulation in circulation and improved glucose
tolerance, but there was no alteration in renal function (85).
FMT and probiotic treatments both targeting on microbiome
reconstitution, partly. Suez J et al. found that post antibiotic
perturbation, FMT arose a rapid and near-complete recovery
within days after administration, while probiotics induced a
delayed and persistently incomplete one due to the imperfection
of colonization (86). The term and accompanied treatments,
especially antibio-therapies, impact on the FMT application.
Further studies, especially double-blind, placebo-controlled, are
needed to explore the FMT efficiency and adverse events, donor
selection and feces management, the timing course and feces
amount to ensure that FMT can be a promising option in
CKD treatment.

CONCLUSIONS

In this review, we described that gut dysbiosis existed in various
kidney diseases, generally manifesting as imbalance between
beneficial bacteria and pathogenic bacteria. In many conditions,
gut dysbiosis was also accompanied by metabolic disorders,
which were the important mediators in gut-kidney axis.
Metabolite alterations not only directly impact on kidney disease
progression but also indirectly regulate immune responses. Gut-
derived immune cells might also migrate to kidney where they
served as pathogenic factors. The regulation of gut dysbiosis by
probiotics, prebiotics, synbiotics is confirmed to be beneficial
to kidney diseases. While the value of FMT remained to
be verified.

Nevertheless, there are still several questions to be solved.
Firstly, the exact causal relationship between gut dysbiosis
and kidney diseases are needed to be confirmed to consider
the specific dysbiosis as the target to treat diseases. Secondly,
the deeper understanding of the mechanisms of the crosstalk
between gut and kidney is needed to explore. Finally, the further
clinical trials are needed to confirm the efficiency and safety of
probiotics, prebiotics, synbiotics and FMT.
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