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Abstract: Lacripep is a therapeutic peptide derived from the human tear protein, Lacritin. Lacripep
interacts with syndecan-1 and induces mitogenesis upon the removal of heparan sulfates (HS) that
are attached at the extracellular domain of syndecan-1. The presence of HS is a prerequisite for
the syndecan-1 clustering that stimulates exosome biogenesis and release. Therefore, syndecan-1-
mediated mitogenesis versus HS-mediated exosome biogenesis are assumed to be mutually exclusive.
This study introduces a biosynthesized fusion between Lacripep and an elastin-like polypeptide
named LP-A96, and evaluates its activity on cell motility enhancement versus exosome biogenesis.
LP-A96 activates both downstream pathways in a dose-dependent manner. HCE-T cells at high
confluence treated with 1 µM LP-A96 enhanced cell motility equipotent to Lacripep. However, cells
at low density treated with 1 µM LP-A96 generated a 210-fold higher number of exosomes compared
to those treated at low density with Lacripep. As monovalent Lacripep is capable of enhancing cell
motility but not exosome biogenesis, activation of exosome biogenesis by LP-A96 not only suggests
its utility as a novel molecular tool to study the Lacritin biology in the corneal epithelium but also
implies activity as a potential therapeutic peptide that can further improve ocular surface health
through the induction of exosomes.

Keywords: lacritin; peptide biosynthesis; corneal epithelium; exosome; syndecan-1; elastin-like
polypeptides

1. Introduction

The lacrimal gland-corneal axis plays a critical role in maintaining ocular health. The lacrimal
gland is the major organ responsible for the secretion of essential proteins and electrolytes into the tear
film that overlays and protects the cornea and conjunctiva [1]. One of these essential tear proteins that
confer anti-microbial and anti-inflammatory defense at the ocular surface is Lacritin [2]. A 12.3 kDa
secreted glycoprotein found in human and non-human primates, Lacritin exhibits prosecretory activity
in lacrimal gland acinar cells (LGAC) and mitogenic activity in corneal epithelial cells [3]. Originally
discovered by the Laurie laboratory [3], several studies have revealed that the active monomeric
form of Lacritin is significantly downregulated in patients suffering from chronic blepharitis [4],
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aqueous-deficient dry eye [5], contact-lens related dry eye [6], and dry eyes associated with primary
Sjögren’s syndrome (SS) [7]. It remains unclear if Lacritin monomer down-regulation (in part through
tissue transglutaminase-dependent cross-linking at the syndecan-1 binding domain [8]) is a symptom
or a direct cause of these ocular surface diseases; however, Lacritin has shown potential as a therapeutic
molecule. Its supplementation enhanced tear secretion from rat LGAC [3] and monkey LGAC [9],
increased basal tear secretion in rabbit LGAC [10] and dry eye mouse eyes [11], and stimulated human
corneal epithelial (HCE-T) cell proliferation [12]. This composite of preclinical evidences supports
the continued development of Lacritin as an ocular therapeutic. Currently, its peptide derivative,
LacripepTM, is under clinical evaluation for protein replacement therapy for dry eye disease (DED)
and SS-associated DED (NCT03226444).

Syndecan-1 present in corneal epithelium is a known receptor for Lacritin. The cleavage of
heparan sulfate (HS) chains at the extracellular domain of Syndecan-1 by an enzyme called heparanase
enables Lacritin binding to syndecan-1 [13]. Heparanase exists in inactive (proheparanase) and active
(heparanase) forms. Each of these forms has been shown to engage with syndecan-1 and to mediate
distinct downstream signaling events. Heparanase cleaves HS and promotes association of Lacritin
and syndecan-1 [14]. This interaction promotes cell proliferation and increases the motility of corneal
epithelial cells by activating PKCα and NFAT-related pathways [12]. Proheparanase can cluster
syndecan-1 by binding to intact HS chains attached to syndecan-1 [15–17]. The consequent clustering
and internalization of syndecan-1 is known to activate the exosome biogenesis pathway by recruiting
related molecules, including ALG-2-interacting protein X (ALIX), syntenin, and endosomal-sorting
complex required for transport (ESCRTs). Therefore, HS-mediated activation of mitogenic signaling
(requiring removal of HS from syndecan-1) and exosome biogenesis (requiring attachment of HS to
syndecan-1) in the corneal epithelium are assumed to be mutually exclusive.

This study explores a newly generated self-assembled multivalent Lacritin peptide nanoparticle
named LP-A96, that may activate both pathways in corneal epithelial cells. Specifically, 1 µM LP-A96
enhanced cell motility at a high cell density, whereas its ability to promote exosome biogenesis was
more prominent at a low cell density. The enhancement of cell motility by LP-A96 at 1 µM was
equipotent to that of the monovalent Lacripep but its ability to induce exosome biogenesis was markedly
higher, enabling the production of 210-fold higher number of exosomes in a given period of time
compared to 1 µM Lacripep and 58-fold higher number of exosomes compared to the complete medium.
Both actions of LP-A96 occurred in parallel with mobilization of intracellular Ca2+ and syndecan-1
internalization. With increasing interest in Lacritin and in exosome biology at the ocular surface,
this study serves as a foundation for understanding ocular surface homeostasis, pathophysiology,
and possible therapeutic interventions.

2. Results

2.1. Biosynthesized LP-A96 Fusion Proteins Self-Assemble into Multivalent Nanoparticles

For clarity, ‘LP’ refers to the lacritin-derived peptide used to generate LP-A96, and ‘Lacripep’ refers
to the peptide equivalent to the one currently in clinical trials (NCT03226444). Both the LP and Lacripep
used in this study are derived from the active fragment at the C-terminus of the human Lacritin:
GKQFIENGSEFAQKLLKKFSLLKPWA. While both LP and Lacripep share an identical 19 amino acid
sequence as a core (Table 1), LP contains five additional amino acids: the N-terminal methionine
encoded by the start codon followed by a glycine (MG), which is found in human lacritin. LP also
contains at the C-terminus, a leucine-tryptophan-alanine (LWA). During the optimization of expression,
three amino acids, leucine-lysine-proline (LKP), were removed because this region was prone to
autocleavage. This cleavage was reported previously [18] and reconfirmed by an independent mass
analysis (data not shown). The WA, which is also found at the next two amino acids of the endogenous
Lacritin protein, was included at the C-terminus of the 19-mer core to aid in the spectroscopic estimation
of concentration due to the high absorbance of the included tryptophan. Although the LP contains



Int. J. Mol. Sci. 2020, 21, 6157 3 of 22

several additional amino acids compared to Lacripep, the 19-mer core that exhibits activity remained
unaltered. The regions that contain those five additional amino acids were confirmed to have no
activity related to syndecan-1 binding and mitogenic activity exhibited by the 19-mer core [12].

Table 1. Molecular information of LP-A96, A96, and Lacripep.

Proteins Amino Acid Sequence MW (kDa)

Expected a Measured b

LP-A96 MGKQFIENGSEFAQKLLKKFSLWAG(VPGAG)96Y 39.6 39.5
A96 MG(VPGAG)96Y 37.0 37.0

Lacripep KQFIENGSEFAQKLLKKFS 2.2 2.1
a Calculated based on the indicated amino acid composition. b Exact MW of LP-A96, A96, and Lacripep were
determined by MALDI-TOF-MS (Appendix A Figure A1D), reported previously [19], and provided by the Laurie
Laboratory, respectively.

The 23-mer LP was genetically fused to the N-terminus of an elastin-like polypeptide (ELP)
termed A96 (Table 1). Emerging as an attractive recombinant protein–polymer choice for diverse
applications, ELPs are under exploration as a drug delivery platform since their biosynthesis
produces pharmacologically relevant, monodisperse, biodegradable, and biocompatible entities [20–22].
The sequence confirmed cDNA encoding the LP-A96 fusion protein was subjected to heterologous
expression via bacterial fermentation. The yield after the purification was ~30 mg/L with >95% purity,
as verified by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) (Figure 1A,B).
To determine the hydrodynamic radius (Rh) and colloidal stability, purified LP-A96 was analyzed
using dynamic light scattering (DLS) at days 0, 2, 4, and 7 (Figure 1C,D). Unlike A96 alone, the 23-mer
LP induces assembly of LP-A96 into a colloidally stable nanoparticle, which persists even below its
Tt. Purified LP-A96 remained stable for at least 7 days at 37 ◦C with average Rh of 90.1 nm (±7.2 nm,
SD). Size-exclusion chromatography followed by multi-angle light scattering (SEC-MALS) showed
that all LP-A96 monomers self-assembled to nanoparticles (Appendix A Figure A1A). The radius of
gyration (Rg) was 79.3 nm (± 0.6%, SEM). The estimated shape factor (ratio between Rg and Rh) of 0.88
(spheres ≈ 0.8 < Rg/Rh < 2.4 ≈ rods) suggests that the LP-A96 particles are spherical [23,24].

Given the thermo-responsive nature of ELPs, the optical density of an LP-A96 solution was
scanned at 350 nm (OD 350) over a range of temperatures (Appendix A Figure A1B) to determine its
phase transition temperature (Tt). ELPs or ELP nanoparticles become insoluble microparticles (in a
process called phase separation or coacervation) that can be measured by an increase in the OD 350 [27].
Based on the generated phase diagram (Appendix A Figure A1C), LP-A96 nanoparticles are expected
to remain stable colloids at physiological temperatures and not phase-separate at the concentrations
used in this study.
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Figure 1. Lacripep promotes assembly of LP-A96 into stable, multivalent spherical nanoparticles.
(A) Design of LP-A96 fusion. Through heterologous expression in Escherichia coli, the LP was fused
to the N-terminus of the elastin-like polypeptide (ELP), A96. (B) The identity and purity of A96 and
LP-A96 were analyzed by Coomassie blue staining of samples resolved by SDS-PAGE (sodium dodecyl
sulfate-polyacrylamide gel electrophoresis). Arrows indicate protein bands. A 20–30% upward shift in
MW (molecular weight) with respect to the expected MW for ELPs and ELP fusions in SDS-PAGE has
been observed by us and others [25,26]. The exact MW of LP-A96 was measured using MALDI-TOF-MS
(Appendix A Figure A1D). (C) Comparison of the hydrodynamic radius of monomeric A96 and
self-assembled LP-A96 nanoparticles at room and physiological temperatures. (D) The hydrodynamic
radius of LP-A96 remains stable at 37 ◦C for least 7 days in DPBS (10 µM, n = 3, mean ± SD).

2.2. LP-A96 Induces Ca2+ Mobilization, Enhances Cell Motility, and Stimulates Exosome Biogenesis in Corneal
Epithelial Cells

The central hypothesis of this study is that, because of its multivalent nanoparticulate nature
relative to Lacripep, LP-A96 may have the ability to elicit pathways that enhance cell motility and
stimulates exosome biogenesis in corneal epithelial cells. To test this, we started by exploring the
consequences of LP-A96 treatment in HCE-T cells on cell motility and Ca2+ mobilization.

Both LP-A96 and Lacripep enhanced cell motility at a dose of 1 uM in a cell monolayer scratch
assay (Figure 2A,B). Lacritin-mediated cell motility enhancement in corneal epithelial cells has been
associated with Ca2+ mobilization [12]. It has been shown that extracellular Ca2+ translocates into
the cytoplasm (influx), where it interacts with calcineurin and subsequently activates downstream
signaling related to cell motility. To measure Ca2+ influx, fluorescence intensity changes in individual
cells incubated with Fluo-4AM were monitored by fluorescence microscopy in real-time upon addition
of LP-A96 to culture media. LP-A96 induced a strong Ca2+ influx immediately after the addition
(Figure 2C,F). As there was no increase in fluorescence intensity upon addition of A96 (Figure 2D),
it was apparent that the LP component of LP-A96 was essential for inducing Ca2+ influx. However,
under identical conditions, Lacripep did not induce Ca2+ influx (Figure 2E).
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Figure 2. LP-A96 promotes scratch closure and induces Ca2+ influx in corneal epithelial cells.
(A) A scratch (gap) assay was used to observe the enhancement of cell motility. The velocity of cell
monolayer towards the remaining gap area (devoid of cells) was calculated as outlined in (B). (B) Gaps
were imaged before the treatment and at 12 h post-treatment, and used to construct (A). White dotted
lines indicate the outer edges of the monolayer adjacent to the wound gap. (C~E) Human corneal
epithelial (HCE-T) cells pre-incubated with Fluo-4 AM were incubated with either LP-A96, Lacripep,
or A96 (all at 1 µM). The dotted line at the 5th minute indicates when the treatment was added to
the culture medium. The fluorescence intensity of Fluo-4 AM was monitored as a marker for Ca2+

influx (n = 27~33 cells/treatment per experiment). A representative data set from the three independent
sets of the experiment is shown. (F) The area under the curve of each fluorescence intensity profile
shown in (C~E) showed that only LP-A96 extensively mobilized Ca2+. A one-way ANOVA followed by
multiple comparisons was used for statistical comparison. **** p < 0.0001, * p < 0.05, ns: non-significant.
Mean ± SD.

Although Ca2+ influx has previously been linked to lacritin-mediated cell motility, the degree of
Ca2+ influx required for cell motility alone may be below the limits of detection in this assay. If this is
the case, the superior Ca2+ influx induced by LP-A96 may represent evidence of activation of another
pathway that Lacripep does not activate. One possibility in the context of syndecan-1 biology would
be an activation of the exosome biogenesis pathway, which also requires Ca2+ influx [15,28].

To observe whether LP-A96 promotes exosome biogenesis, extracellular vesicles (EVs) secreted
into the culture media over a three-day period were collected and analyzed. Exosome biogenesis was
not prominent when cells were at a high confluence (Figure 3A). However, at subconfluence, cells
incubated with LP-A96 spawned a significantly higher number of EVs (Figure 3B) that were highly
enriched with exosome markers [29] (Figure 3C). The number of EVs collected from the culture media
from cells after LP-A96 treatment was 210-fold and 58-fold higher compared to the amount recovered in
basal media supplemented with Lacripep and in complete media, respectively. The mean diameter and
the size distribution of the purified EVs were similar among groups (Figure 3D). To observe the rate of
exosome biogenesis/release, exosomes were collected at 36 and 72 h post-LP-A96 treatment. The total
exosome number and exosome biogenesis/release rate during 36 h were found to be significantly
different from those during 72 h. This suggests the rate of exosome uptake/turnover exceeds the rate of
exosome biogenesis/release during the 36~72 h period (Appendix A Figure A4).



Int. J. Mol. Sci. 2020, 21, 6157 6 of 22Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 21 

 

 

Figure 3. LP-A96 activates exosome biogenesis in corneal epithelial cells. (A) Nanoparticle tracking 
analysis was used to quantify extracellular vesicles (EVs) in the collected HCE-T cell culture media 
under each treatment at near maximum confluency. Cells cultured to 80~90% confluency were starved 
for another 24 h using basal media prior to the treatment. EVs in the culture media were purified after 
3 days of treatment. (B) EVs in the collected HCE-T cell culture media under each treatment at 
subconfluency (30%). Cells were supplemented with different agents upon seeding (0.5 × 105 cells/well 
in 12-well plate). EVs in the culture media were purified after 3 days of seeding. The raw increase in 
EV amount upon LP-A96 treatment was corrected based on the Western blot-based analysis 
(Appendix A Figure A2) before being analyzed for fold change. For (A,B), all treatments were at 1 
μM. (C) EVs collected after LP-A96 treatment were enriched in the exosome markers CD9 and 
TSG101. (D) Bar graphs show the size distribution of purified exosomes. The three parallel gray lines 
indicate 50, 150, and 250 nm, respectively. Representative data from three independent sets of the 
experiment is shown. Inserted numbers indicate mean hydrodynamic diameter of purified exosomes. 
(E) Zeta potential analyses of exosomes, LP-A96, and combinations of both at different ratios. The 
four parallel gray lines indicate −90, −60, −30, and 0 mV, respectively. Inset values are the mean zeta 
potentials reported by the built-in software. A one-way ANOVA followed by multiple comparisons 
was used for statistical comparison. * p < 0.05. Mean ± SD. 

To identify the presence of any residual LP-A96 particles that were not detected during the zeta 
potential analysis, collected exosomes (used to construct Figure 3A and magenta bar graph in Figure 
3E) were analyzed by Western blotting to detect ELPs using an anti-ELP antibody [30] along with a 
pre-determined amount of LP-A96 (Appendix A Figure A2). LP-A96 nanoparticles co-purified with 
the increased exosome yield were detected at low abundance as estimated by Western blotting, 

dPBS A96

Lacripep
LP-A96

Complete media
0.1

1

10

100

1000

Pa
rti

cl
es

/µ
g 

pr
ot

ei
n

(L
og

(fo
ld

 c
ha

ng
e)

)

* * * *

dPBS A96

Lacripep
LP-A96

Complete media
0.0

0.5

1.0

1.5
Pa

rti
cl

es
/μ

g 
pr

ot
ei

n 
(fo

ld
 c

ha
ng

e)
A

C

B

D E

Exosomes purified from
regular cell cultures

LP-A96 only

Exosomes:LP-A96
=1:1

Exosome<<LP-A96
(1:100)

Exosomes purified from
culture medium from 

cells grown with 
LP-A96 for 3 days

116.2 ± 3.1
(Mean ± S.D.)

115.0 ± 4.9

115.0 ± 1.0

118.7 ± 4.9

113.8 ± 1.5

Media
only

Purified
EVs

50

37

25

kDa

TSG101

CD9 20

Figure 3. LP-A96 activates exosome biogenesis in corneal epithelial cells. (A) Nanoparticle tracking
analysis was used to quantify extracellular vesicles (EVs) in the collected HCE-T cell culture media
under each treatment at near maximum confluency. Cells cultured to 80~90% confluency were starved
for another 24 h using basal media prior to the treatment. EVs in the culture media were purified
after 3 days of treatment. (B) EVs in the collected HCE-T cell culture media under each treatment at
subconfluency (30%). Cells were supplemented with different agents upon seeding (0.5 × 105 cells/well
in 12-well plate). EVs in the culture media were purified after 3 days of seeding. The raw increase in EV
amount upon LP-A96 treatment was corrected based on the Western blot-based analysis (Appendix A
Figure A2) before being analyzed for fold change. For (A,B), all treatments were at 1 µM. (C) EVs
collected after LP-A96 treatment were enriched in the exosome markers CD9 and TSG101. (D) Bar
graphs show the size distribution of purified exosomes. The three parallel gray lines indicate 50, 150,
and 250 nm, respectively. Representative data from three independent sets of the experiment is shown.
Inserted numbers indicate mean hydrodynamic diameter of purified exosomes. (E) Zeta potential
analyses of exosomes, LP-A96, and combinations of both at different ratios. The four parallel gray lines
indicate −90, −60, −30, and 0 mV, respectively. Inset values are the mean zeta potentials reported by
the built-in software. A one-way ANOVA followed by multiple comparisons was used for statistical
comparison. * p < 0.05. Mean ± SD.
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To confirm that this apparent increase in exosome amount was not due to residual LP-A96
co-purified during the purification, purified exosomes were subjected to zeta potential analysis. Firstly,
the zeta potential of the natural exosomes collected from regular cell cultures (blue bar graph in
Figure 3E) and the preparation of pure LP-A96 (red bar graph in Figure 3E) were compared, which
showed marked differences. Secondly, assuming that the residual LP-A96 in the culture media could
be co-purified, two mixtures were prepared with different ratios: exosome:LP-A96 at 1:1 and 1:100.
These mixtures were incubated at 37 ◦C for three days in basal media, subjected to the identical
column-based purification process and then analyzed for zeta potential. For the 1:1 mixture, instead
of a clear separation of two peaks, the profile was broadly distributed between −60~0 mV, exactly
overlapping the profiles of pure exosome and LP-A96. Two zeta potential values were reported for this
mixture: −46.4 mV and −24.5 mV (black bar graph in Figure 3E). For the 1:100 mixture, the highest peak
was observed at around −15 mV and the profile was narrowly distributed between −30~0 mV, which
highly resembled that of the pure LP-A96. Lastly, the zeta potential of exosomes purified after LP-A96
treatment was compared with the above four profiles. The mean value and the overall distribution
profile of purified exosomes after LP-A96 treatment (magenta bar graph in Figure 3E) highly resembled
those of the natural exosomes (blue bar graph in Figure 3E). Its mean zeta potential was −55 mV
and the major portion of the profile was narrowly distributed between −90~−30 mV (−48 mV and
−80~−20 mV, respectively, for natural exosomes). Therefore, it was apparent that the purified EVs after
LP-A96 treatment are dominated by exosomes, and not LP-A96 particles.

To identify the presence of any residual LP-A96 particles that were not detected during the
zeta potential analysis, collected exosomes (used to construct Figure 3A and magenta bar graph in
Figure 3E) were analyzed by Western blotting to detect ELPs using an anti-ELP antibody [30] along
with a pre-determined amount of LP-A96 (Appendix A Figure A2). LP-A96 nanoparticles co-purified
with the increased exosome yield were detected at low abundance as estimated by Western blotting,
comprising about 10% of the total particles purified. Based on this densitometric analysis, the pure
increase in exosome yield (210-fold and 58-fold increase compared to Lacripep and complete media
treatment, respectively) associated with LP-A96 treatment was corrected (Figure 3A). Before correction,
it was about 235-fold and 68-fold, respectively.

Exosomes mediate intercellular signaling. Their cargos, especially ribonucleic acids (RNAs), are
important mediators for intercellular communication [31]. As LP-A96 stimulates exosome production,
it was of interest to determine whether this important exosomal cargo was increased proportionally
to the exosome number increase. During a 36 h incubation, cells treated with LP-A96 produced
about 12-fold higher numbers of exosomes compared to cells exposed to complete media (Figure 4A).
This increase in exosome abundance was correlated with a commensurate increase in both the total
yield of non-coding small RNAs (9-fold) and miRNAs (17-fold) (Figure 4B,C). miRNAs are a subset
of non-coding small RNAs often enriched in exosomes. When content was normalized to particle
number, the amount of exosomal non-coding small RNAs and miRNAs per exosome particle was
similar between groups (Figure 4D,E). About 60% of exosomal small RNAs were miRNAs in exosomes
stimulated by LP-A96, which was slightly greater than that of exosomes stimulated by complete media,
but there was no statistically significant difference (Figure 4F). This indicates that LP-A96 treatment
produces exosomes that are likely functional and loaded with the proper amount of cargo RNA, similar
to those produced under physiological growth condition, and not ‘blank’ exosomes.
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Figure 4. LP-A96 induced exosomes are properly loaded with RNAs. (A) Exosomes purified
from subconfluent HCE-T cells after 36 h of incubation with either 1 µM LP-A96 in basal media
or complete media shows stimulated exosome biogenesis and release by LP-A96 treatment. These
exosomes were subjected to RNA isolation. (B,C) Elevated small RNA (0~270 nucleotides) and miRNA
(10~40 nucleotides) amount reflects an increase in total exosome amount shown in (A). (D) Small RNAs,
(E) miRNAs, and (F) miRNA-to-small RNA ratio per exosome particle under two different treatment
conditions are similar. n = 3. Mean ± SD. * p < 0.05, ns: non-significant.

The appearance of cells treated with LP-A96 was also notably different from the cells treated
with other agents (Figure 5A) as characterized by the existence of perinuclear refractive organelles
(arrows). To confirm that the increase in exosome amount upon LP-A96 treatment was not a result
of secreted intracellular vesicles upon cell death, cells were treated with LP-A96 to see if it exhibited
any cytotoxicity. During the course of three days, LP-A96 did not appear to exhibit any cytotoxicity
(Figure 5B). The proliferation profile of LP-A96 treated cells was similar to that of the cells treated
with basal media, Lacripep, or A96. The rate of proliferation was less than that achieved in complete
media. At 24 h, the proliferation rate with LP-A96 treatment compared to that with A96 treatment
was statistically significant, suggesting a mitogenic effect during the initial 24 h period. However,
a mitogenic effect of LP-A96 was not prominent after this period. The difference in cell appearance
may be an indirect indication of a change in the intracellular membrane machinery associated with
exosome biogenesis and increased vesicular accumulation in multivesicular bodies or other membrane
compartments prior to secretion.

Based on the above analyses, we concluded that: (i) the cellular response to exosome biogenesis is
more prominent when cell density is low; (ii) purified EVs are exosomes and their increase is dominated
by exosomes; and (iii) this increase is not related to the release of membranes upon cell death.
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Figure 5. LP-A96-mediated exosome biogenesis does not affect cell viability in corneal epithelial
cells. (A) Brightfield images of HCE-T cells at 48 h post-treatment. The appearance of LP-A96
treated HCE-T cells at 48 h was typical of that observed throughout the 3-day incubation period,
while all other treatments did not affect the appearance of the cells. Yellow arrows indicate possible
perinuclear compartments. (B) Cell viability upon 1 µM LP-A96 treatment was quantified alongside
other treatments. 50 µM Digitonin was used as a cytotoxic agent. All experiments were performed
when cells were subconfluent (30%). At 24 h, LP-A96 vs. A96 treatment: p = 0.012*; LP-A96 vs. dPBS:
p = 0.052. A one-way ANOVA followed by multiple comparisons was used for statistical comparison.
* p < 0.05. Mean ± SD.

2.3. LP-A96 Is Internalized via Dynamin-Mediated Endocytosis and Colocalizes with Syndecan-1 in Corneal
Epithelial Cells

Syndecan-1 is known to be internalized upon clustering at the cell surface [32]. As LP-A96 is
expected to cluster syndecan-1 on the cell surface and induce its endocytosis, internalization and
subcellular colocalization with syndecan-1 would be expected. First, the internalization of LP-A96 was
explored. Cells were treated with either amiloride or dynasore before the addition of LP-A96, which
respectively inhibit pinocytosis or receptor-mediated endocytosis [33]. After 15 min of incubation,
a significant fraction of LP-A96 is internalized (Figure 6A), partly in an amiloride (Figure 6B) and
completely in a dynasore-dependent manner (Figure 6C,D). Dynasore treatment did not affect cell
viability and inhibition of LP-A96 endocytosis was restored after dynasore was removed (Appendix A
Figure A3). Further confirmation was sought to observe if internalized LP-A96 colocalize with
syndecan-1. After 15 min of incubation, LP-A96 colocalized intracellularly with syndecan-1 in the
vicinity of the nucleus (Figure 6E). Therefore, it is highly likely that LP-A96 is internalized through a
receptor-mediated pathway associated with syndecan-1.
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Figure 6. LP-A96 is internalized via dynamin-dependent endocytosis and colocalized with syndecan-1
in corneal epithelial cells. (A–D) HCE-T cells were treated with either DMSO (vehicle control), amiloride
(1 mM), or dynasore (80 µM) prior to addition of 1 µM rhodamine-labeled LP-A96. (D) Quantified
fluorescence intensity per cell under each treatment. n = 39 for DMSO, n = 49 for amiloride, n = 48
for dynasore. Representative images are shown from the three independent experiments. (E) LP-A96
was colocalized with syndecan-1 in HCE-T cells. (Pearson’s correlation = 0.8, n = 32). 1 µM
rhodamine-labeled LP-A96 were incubated with the cells for 15 min at 37 ◦C prior to fixation. Secondary
immunofluorescence revealed apparent colocalization of rhodamine-labeled LP-A96 and Syndecan-1.
Anti-syndecan-1 antibody was further detected by Alexa Fluor 488 conjugated secondary antibody.
Nuclei were stained with DAPI (4′,6-diamidino-2-phenylindole). A one-way ANOVA followed by
multiple comparisons was used for statistical comparison. **** p < 0.0001, *** p < 0.001. Mean ± SD.

2.4. LP-A96 Delivered by Contact Lens Enhances Cell Motility in Corneal Epithelial Cells

Eyedrops are the most convenient and frequently used route of administration for ocular surface
drug delivery. Although it is convenient and effective, a frequent need for topical administration is
associated with lower patient compliance. Thus, strategies to enable sustained release of drugs that are
effective when given topically are of great interest. Such strategies may maintain an active drug on the
ocular surface for a longer period of time. One such method is to use contact lenses as a drug depot.
Contact lenses have been studied as a therapeutic platform to manage ocular anterior segment disorders
beyond their primary function of providing millions of people with glasses-free vision correction [34,35].
Based on the previous demonstration of adsorption of ELPs to and their delivery to the corneal epithelial
cells upon release from the commercially available contact lenses [18], the ability of contact lenses
to deliver functional LP-A96 to corneal epithelial cells was tested. To begin with, the adsorption
and release kinetics of LP-A96 in contact lenses was determined using a fluorescence-based method.
Fluorescein-labeled LP-A96 was incubated with contact lenses to analyze the concentration-dependent
adsorption (Figure 7A), time-dependent adsorption (Figure 7B), and time-dependent release kinetics
(Figure 7C). Parameters estimated from the fit are reported in Table 2.
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Figure 7. Contact lens-delivered LP-A96 maintains its activity in corneal epithelial cells.
(A) Concentration-dependent adsorption of LP-A96 to contact lenses over a 24 h period.
(B) Time-dependent adsorption of 2 mg/mL LP-A96 to contact lenses. (C) Time-dependent release
of LP-A96 from contact lenses. (D) Study design of the contact lens-mediated delivery of LP-A96 to
a scratch (gap) generated corneal epithelial cell monolayer. (E) Gap closure activity of HCE-T cells
incubated with contact lenses loaded with different agents. (F) After gap closure activity measurement,
exosomes were purified from culture media and quantified using nanoparticle tracking analyzer.
(F) Exosome abundance in the culture media after 24 h period. A one-way ANOVA followed by
multiple comparisons was used for statistical comparison. CM indicates complete media. * p < 0.05, ns:
non-significant. Mean ± SD.

Table 2. Adsorption and release kinetics of LP-A96 in Proclear CompatiblesTM contact lenses.

Parameters

Concentration-
Dependent

Adsorption (Mean
(95% CI))

Parameters
Time-Dependent

Adsorption (Mean
(95% CI))

Parameters Time-DependentRelease
(Mean (95% CI))

Qm (mg/g) 78.6 (68.5–88.8) Plateau (mg/g) 55.8 (46.1–65.5) Fast Release
(%) 73.3 (65.8–80.9)

Kd (mg/L) 0.78 (0.35–1.21) Fast binding (%) 25.6 (15.8–35.4) kfast (h−1) 0.068 (0.055–0.082)
R2 0.84 kfast (h−1) 2.36 (0.0–4.86) kslow (h−1) 0.0011 (0.0–0.0044)

kslow (h−1) 0.041 (0.0–0.069) t1/2, fast (h) 10.1 (8.4–12.7)
t1/2, fast (h) 0.29 (0.14-Inf.) t1/2, slow (h) 645.5 (157.3-Inf.)
t1/2, slow (h) 16.9 (10.1–51.1) R2 0.99

R2 0.95

Based on these parameters, contact lenses were incubated with 0.4 mg of LP-A96 for 24 h; release
from lenses adsorbed under this condition was expected to increase LP-A96 concentration in culture
media up to 1~2 µM over 24 h. After in solution adsorption, LP-A96 loaded contact lenses were
transferred to HCE-T cell cultures and incubated for 24 h. Just before the contact lens transfer, a scratch
was generated on HCE-T monolayers (Figure 7D). The cells incubated with LP-A96 loaded contact
lenses showed equipotent cell motility enhancement to the cells incubated with an intact contact lens
in complete media (Figure 7E), which was significantly higher than that observed with A96 loaded
contact lens treatment. However, exosome production during this 24 h period was not significantly
different (Figure 7F). This may be because LP-A96-mediated exosome biogenesis is not prominent
under conditions of maximum HCE-T cell confluency (Figure 3A) and the duration of incubation was
only 24 h. Nevertheless, the data clearly show that the contact lenses can deliver functional LP-A96 to
corneal epithelial cells.
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3. Discussion

This study describes the construction of a multivalent Lacritin-derived peptide nanoparticle
named LP-A96 and its biological effects in corneal epithelial cells. Under different conditions in
corneal epithelial cells, LP-A96 enhanced cell motility and stimulated exosome biogenesis in parallel
with intracellular Ca2+ mobilization. Of these functions, only the ability to enhance cell motility is
shared with the monovalent Lacripep, while the stimulation of exosome biogenesis was unique to the
multivalent nanoparticle. When cells are sparse and not in contact with each other, LP-A96 appears
to be able to direct the intracellular machinery to evoke exosome biogenesis instead of cell motility.
On the other hand, LP-A96 did not activate exosome biogenesis when the cells were confluent but
were capable of enhancing cell motility. This cell density-dependent differential activation can be
explained by the activation of different cellular mechanism that ensures cell-to-cell communication.
When cells are confluent, there is no need for cells to initiate another intercellular communication
mechanism, i.e., stimulate production and release of extracellular vesicles for their communication,
because cells are able to directly communicate through physical contacts. However, when cells are
sparse, the most effective way to communicate with each other would be to stimulate production
and release of extracellular vesicles including exosomes containing signaling mediators which can be
internalized. This study only tested these two opposing conditions, near-maximal confluency and
low cell density. Future studies identifying the conditions under which cells become unresponsive to
signaling to evoke exosome biogenesis would allow a better understanding of the syndecan-1 biology
in the corneal epithelium.

With this, several aspects should also be explored regarding ocular surface physiology.
First, LP-A96 treatment stimulated exosome biogenesis/release during the three-day period (Figure 3B).
Within a three-day period, the amount of total exosome and the rate of exosome biogenesis/release
was higher during the 0~36 h period compared to those of the 0~72 h period (Appendix A Figure A4).
This indicates that the exosome uptake/turnover rate may exceed the exosome biogenesis/release
rate during the 36~72 h period. As this study focuses on the discovery of the enhancement of
exosome biogenesis upon LP-A96 treatment, biogenesis-release-uptake and other biological aspects of
ocular exosomes in corneal epithelial cells will be explored in future studies. Second, since LP-A96
stimulates exosome biogenesis, it is possible that the expression and activity profiles of heparinase and
proheparanase may change upon addition of LP-A96. As this enzyme is known to be heavily involved
in homeostasis [16], a more comprehensive examination of its expression and activity upon LP-A96
treatment in corneal epithelium will allow better insights regarding the biological influence of LP-A96.
Third, the involvement of ocular exosomes in corneal wound healing is well documented [36,37].
As a significantly higher number of exosomes that carry RNAs are produced and secreted upon LP-A96
treatment, deep sequencing of miRNAs might shed insights regarding the molecular mechanisms
targeted on the ocular surface and possibly the draining lymph nodes by LP-A96-evoked exosomal
shedding. Fourth, LP-A96 was colocalized with syndecan-1 in corneal epithelial cells, possibly via
association of LP-A96 with syndecan-1 [14]. Further studies addressing direct binding of LP-A96 to
syndecan-1 and to other proposed co-receptors, such as G-protein coupled receptors (GPCRs) [12],
and their internalization/activation in corneal epithelial cells will be of great importance to understand
Lacritin biology at the ocular surface.

The optimal concentration for Lacritin’s mitogenic activity is reported to be 1~10 nM in human
salivary gland ductal cells [12]. At this concentration, however, neither Lacripep nor LP-A96 enhanced
cell motility in corneal epithelial cells. The chosen concentration for this study was 1 µM, for
both Lacripep and LP-A96, based on a dose-dependent scratch closure assay (Figure 2E). As similar
concentrations were reported for corneal-lacrimal gland axis in rabbit (0.8~8µM) [10], mouse (4µM) [11],
and monkey (0.1~1 µM) [9] models, corneal epithelium seems to require a higher dose of Lacritin
or its derivative Lacripep compared to salivary gland ductal cells. At 1 µM, only LP-A96 induced
Ca2+ mobilization but Lacripep did not. Although Lacritin (3.2 nM) was able to evoke Ca2+ influx in
HCE-T cells [3], it is possible that the structural differences between the full-length versus derivatized
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peptide fragment affect the binding affinity as well as the degree of Ca2+ mobilization at this lower
dose. Thus Lacripep-mediated Ca2+ mobilization may be transient or under the limits of detection.
Another possibility would be that the chosen dose (1 µM) is sub-optimal to detect significant changes
based on the ‘bell-shaped’ dose-response curve observed in the parent molecule. Lacritin. Since the
current study was conducted with a single dose (1 µM) and is focused on highlighting differences
between the free peptide and its multimeric form in eliciting exosome biogenesis, further studies will
be needed to define the dose-dependency between Lacripep and Lacritin with respect to both cell
motility and calcium signaling.

In addition to actions on the cornea which have been described, Lacritin is a known tear
secretagogue. Upon expression and secretion from LGAC (lacrimal gland acinar cells), Lacritin
promotes tear secretion from lacrimal glands to sustain the tear film and maintain ocular surface
homeostasis [10]. Upon the development of the LP-A96, its secretagogue activity was tested in primary
rabbit LGAC. However, LP-A96 did not show any meaningful secretagogue activity. For this reason,
our research efforts were focused on elucidating biological effects in corneal epithelial cells rather than
in LGAC. Despite several observational reports of Lacritin’s secretagogue activity, the intracellular
mechanisms that promote increased tear secretion are not well understood. Comparison of Lacritin’s
secretagogue activity to the well-characterized cholinergic agonist, carbachol, in primary monkey
LGACs by Fujii et al. showed that Lacritin stimulated tear secretion in a Ca2+ and PKCα independent
manner while carbachol required both for its activity [9]. Based on the fact that Ca2+ and PKCα are
essential molecules for Lacritin-mediated signaling in other epithelial cells, Lacritin’s receptor and
intracellular signaling pathway in LGACs seem to be different from what is generally accepted in
corneal epithelial cells. Identification of its receptor(s) and its respective intracellular signaling as
well as how LP-A96′s multivalency may impact tear secretion, the spectrum of proteins secreted,
and exosome production in LGAC will provide more information on how LP-A96 may be used
therapeutically in lacrimal glands.

Multivalency was achieved by genetically fusing LP to ELP recombinant polypeptides. Compared
to unimeric ELP A96, the hydrodynamic radius of LP-A96 indicate that the amphipathic peptide,
LP, drives nano-assembly of LP-A96. Similar assembly by another amphipathic peptide-ELP fusion
named L4F-A192 was reported previously [38]. Cryo-TEM imaging revealed that L4F-A192 forms a
vesicular structure with a wall thickness of 8.4 nm. Based on the similar amphipathic nature between
LP and L4F peptides, it is possible that LP-A96 nano-assembly may form vesicles. Investigating the
nanostructures formed by LP-A96 as well as other amphipathic peptide-ELP fusions will allow a better
understanding of polymer-mediated nano-assembly.

Drugs that are currently prescribed for the treatment of various ocular surface and anterior
chamber disorders have been investigated for contact lens-based delivery to enhance their therapeutic
performance. These include drugs for ocular infection (Ciprofloxacin), corneal injury (EGF), allergic
conjunctivitis (Ketotifen fumarate), dry eye (Re-wetting agents/hyaluronic acid, Cyclosporin A) and
glaucoma (Acetozolamide, Timolol) [39]. Despite these advances, it would be desirable to provide
a contact lens drug delivery device which is relatively simple in design; which does not require
complicated and expensive manufacturing processes; which does not significantly impair or interfere
with the patient’s vision; and which would not require a substantial change in the practice patterns of
eye physicians and surgeons. As LP-A96 released from the contact lenses was functional, delivery
of LP-A96 through contact lenses could serve as an alternative route of administration to improved
ocular surface health.

To conclude, this study demonstrates a simple yet effective peptide modality that is capable
of stimulating both cell motility and exosome biogenesis in corneal epithelium, mediated through
Lacritin biology. As exosomes mediate cellular communication, signaling, and immune modulation,
the biological and therapeutic effects of both exosomes and LP-A96 in the context of dry eye diseases
(DED) [40,41] will greatly advance our knowledge towards the pathophysiology of DED and aid in
providing a better way to improve daily lives of DED patients.
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4. Materials and Methods

4.1. Synthesis, Expression, and Purification of LP-A96 and A96

The pET-25b(+) vector (#69753, Millipore-Sigma, Burlington, MA, USA) was purchased and further
modified for ELP fusion cloning [19]. A chemically synthesized oligonucleotide cassette encoding the
amino acids MGKQFIENGSEFAQKLLKKFSLWA was ligated to the N-terminus of ELP A96 to generate
LP-A96. The resulting fusion plasmids were sequenced, transformed into, and expressed in ClearColi®

BL21(DE3) Electrocompetent Cells (#60810, Lucigen, Middleton, WI, USA). Cells were fermented in
terrific broth media supplemented with 1 mM NaCl for 24 h at 37 ◦C without IPTG induction. After
centrifugation, 1 g of biomass (cell pellets) was resuspended in a 4 mL of 1:1 mixture of 1-butanol and
ethanol (i.e., mixture of 8 mL 1-butanol and 8 mL ethanol was directly added to 4 g of cell pellet) [42].
Cell pellets were resuspended thoroughly by vortexing (10 s) and left under constant agitation at room
temperature for 15 min. After transferring to 50 mL conical tubes, the suspension was centrifuged at
4000 rpm for 10 min using a Sorvall RC-3C Plus Centrifuge. Only the organic phase (upper phase) that
contains LP-A96 was collected and transferred to a clean 50 mL conical tube with 5 mL Dulbecco’s
phosphate-buffered saline (dPBS, without Ca2+ and Mg2+). The whole solution was placed under
a mild focused air stream with constant stirring, and left overnight to passively evaporate organic
solvents. Collected samples were then dialyzed against dPBS for 24 h under sink condition to remove
residual organic solvents. Purified proteins were sterile filtered (200 nm pore, #PN 4612, Pall Corp., NY,
USA) after dialysis and used for subsequent assays. Lacripep was provided by the Laurie Laboratory.

4.2. Biophysical Characterization of LP-A96 and A96

The purity of A96 and LP-A96 fusion proteins was analyzed using SDS-PAGE. The molar extinction
coefficients (ε) of A96 and LP-A96 were calculated at 1285 and 6970 M−1

·cm−1 [43]. Serial dilutions
in Edelhoc buffer were prepared, measured and averaged to acquire the best estimate of protein
concentration in dPBS using Equation (1) [43,44].

Cprotein =
A280− (A330× 2)

ε
. (1)

The hydrodynamic radius (Rh) at 25 ◦C and 37 ◦C was determined using dynamic light scattering
(DLS). Proteins in dPBS (50 µL at 10 µM) were loaded onto a 384-well plate followed by layering with
two drops of mineral oil to prevent evaporation, and the whole plate was centrifuged for 1× g min
at 1000 rcf to remove any remaining air bubbles. Triplicate samples were analyzed using a Wyatt
Dynapro plate reader and by built-in software DYNAMICS V7 (Wyatt Tech. Co., CA, USA). Rh was
measured first at 25 ◦C and then the temperature was immediately increased to 37 ◦C, where the
second measurement was made. The plate was subsequently incubated at 37 ◦C for 7 days, while Rh
was measured at days 2, 4, and 7 to observe the stability.

Size exclusion chromatography followed by multiangle light scattering (SEC-MALS) was used to
determine the radius of gyration (Rg), absolute molecular weight, and oligomeric state of the sample.
10 µM sample in 100 µL dPBS was injected onto a Shodex size exclusion column (KW-803, Showa
Denko K.K, Tokyo, Japan) at 0.5 mL/min. The eluents were analyzed on a Helios system (Wyatt Tech.
Co., CA, USA) maintained at 25 ◦C and the data were fit to a Debye model, which best explained the
data to determine the Rg.

The transition temperature (Tt) of proteins were obtained using an optical density. The absorbance
at 350 nm, A, was measured in a DU800 UV-Vis spectrophotometer (Beckman Coulter, CA, United
States) under a temperature gradient of 0.5 ◦C/min. The Tt at each concentration was defined as the
temperature at which the maximum first derivative, dA/dT, was achieved using Equation (2). The Ai is
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defined as the absorbance recorded at Ti temperature. The Tt from each concentration was used to plot
the phase diagram and fit with Equation (3) to obtain slope, m, and intercept b (Table A1).

dA
dT

∣∣∣∣∣
i
=

Ai+1 −Ai

Ti+1 − Ti
(2)

Tt = b−m log10

[
Cprotein

]
(3)

4.3. Cell Culture, Scratch Assay, and Cytotoxicity

Human corneal epithelial SV40-transformed cells (HCE-T, Riken Cell Bank, Japan) were cultured in
KSFM media (#17005042, Life Technologies, Rockville, MD, USA) supplemented with bovine pituitary
extract (BPE) and epidermal growth factor (EGF) according to the manufacturer’s recommendation
(‘cells’ hereafter). Complete media refers to KSFM supplemented with EFG and BPE and basal media
refers to KSFM media alone without EGF and BPE. Cells in passage number 4~7 were used for all
cell-based assays. For imaging, a Zeiss LSM880 Confocal Microscope (Carl Zeiss AG, Oberkochen,
Germany) equipped with Airyscan, was used (‘confocal microscope’ hereafter). For image analysis,
ZEN2 Blue Edition software (Carl Zeiss AG, Oberkochen, Germany) was used (‘ZEN2′ hereafter).

For evaluation of cell motility, cells were cultured in 24 well plates. At 80% confluency, cells were
cultured with basal media for another 24 h. A scratch was generated on the cell monolayer using
a 200 µL pipette tip. After washing twice with dPBS, cells were cultured with 2 mL of fresh basal
media supplemented with 1 µM Lacripep, A96, or LP-A96. These doses were chosen from preliminary
studies evaluating optimal dosages of Lacripep and were kept constant in subsequent functional
assays. The area that was devoid of cells was imaged under the confocal microscope at 0 and 13 h
post-treatment and analyzed using ZEN2. Cells treated with basal media and complete media served
as negative and positive controls, respectively. Identical sets of HCE-T cells were also prepared to
measure cell motility upon contact lens-mediated delivery of LP-A96. Contact lenses incubated with
400 µg of either LP-A96 or A96 in dPBS (or 10 µM in 1 mL) for 24 h at room temperature under constant
agitation were briefly washed in dPBS and transferred to cultures. After 24 h incubation at 37 ◦C, the
cell monolayer was imaged to measure cell motility and cell culture media was collected and processed
for exosome purification.

For cell cytotoxicity/proliferation upon LP-A96 treatment, cells were seeded with basal media at
0.1 x 104 cells/well in 96-well plate one day prior to the experiment. On the next day, cells were washed
with dPBS and incubated with 1 µM Lacripep, A96, or LP-A96 in basal media. 50 µM Digitonin (#D141,
Sigma-Aldrich, St. Louis, MO, USA) was used as a cytotoxic agent. At 24, 48, and 72 h post-treatment,
cell proliferation was measured using WST-1 reagent (#5015944001, Sigma-Aldrich, St. Louis, MO,
USA) per manufacturer’s protocol.

4.4. Confocal Fluoresence Imaging

For calcium signaling, cells at 50% confluency in 35 mm glass-bottom culture dishes were further
cultured with basal media for 24 h. Cells were rinsed with dPBS and incubated at room temperature for
20 min with fresh basal media supplemented with 2.5 µM Fluo-4 AM (#F14201, Invitrogen, Carlsbad,
CA, USA). After this period, the NaCl Ringer buffer (145 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM
KH2PO4, 1 mM MgCl2, 10 mM glucose, and 10 mM HEPES, osmolarity 300, pH 7.4) was used to rinse
and incubate cells at room temperature for another 30 min. After this period, NaCl Ringer buffer was
changed to Ca2+ deprived NaCl Ringer buffer (1 mM Ca2+ was replaced with 0.5 mM EGTA) and
incubated for 10 min. After this period, cells were excited at 488 nm and their emission was recorded
in real-time at 510 nm under the confocal microscope. The fluorescent intensity profile was recorded
upon addition of 1 µM Lacripep, A96, or LP-A96. The fluorescence profile from each cell was converted
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to fold-change using Equation (2). F0 is the average fluorescence intensity measured during the first
5 min (before the addition of the treatment) and Ft is the measured fluorescence intensity at every sec.

Fold_change =
(Ft − F0)

F0
. (4)

To observe cellular uptake of LP-A96, cells were cultured in 35 mm glass-bottom culture dishes
(#P35G-0-10-C, MatTek Corp. Ashland, MA, USA) in 1.2 mL of basal media supplemented with 10 µL
of either DMSO, 1 mM amiloride (#A7410, Sigma-Aldrich, St. Louis, MO, USA), or 80 µM dynasore
(#D7693, Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37 ◦C. Cells were washed with dPBS
twice and then incubated at 37 ◦C for 10 min with 50 µL of solution that was comprised of 1 µL of
NucBlueTM Live Cell Stain ReadyProbesTM reagent (#R37605, Molecular Probes, Eugene, OR, USA),
0.5 µL of rhodamine-labeled LP-A96 (1 µM final concentration), and 48.5 µL of basal media. After a
10 min incubation period, cells were washed with dPBS twice and incubated with Live Cell Imaging
Solution (#A14291DJ, Molecular Probes, Eugene, OR, USA). The fluorescence was imaged under the
confocal microscope and the intensity was analyzed using ZEN2.

To assay for cell viability upon dynasore treatment, cells cultured in 35 mm glass-bottom culture
dishes with either complete medium, 80 µM dynasore, or 50 µM digitonin for 1 h were incubated with
annexin V-FITC and propidium iodide (#V13242, Thermo Fisher, Waltham, MA, USA) and imaged per
manufacturer’s recommendation.

To colocalize LP-A96 and syndecan-1, 1 µM rhodamine-labeled LP-A96 in 400 µL basal media was
incubated with cells at 37 ◦C for 20 min and fixed/permeabilized with ice-cold methanol:acetone (1:1)
mixture for 10 min at −20 ◦C, and then processed for blocking (1% BSA), anti-Syndecan-1 antibody
incubation (1:30 dilution, #SAB1305542, Sigma-Aldrich, St. Louis, MO, USA), and secondary antibody
incubation (1:200 dilution, #A21202, Invitrogen, NY, USA). Nuclei were stained with DAPI solution
(1:500 dilution, #62248, Thermo Fisher, Waltham, MA, USA) during secondary antibody incubation.
Cells were imaged using a confocal microscope and analyzed with ZEN2.

4.5. Exosome Purification and Analysis

Cells were seeded into 12-well plates at a density of 0.5 × 105 cells/well. 1 µM of either Lacripep,
A96, or LP-A96 were added during seeding. Cells seeded with dPBS or complete medium served as
negative and positive controls, respectively. Cells were then incubated at 37 ◦C for 72 h, undisturbed.
After this period, culture media were collected and subjected to exosome purification. After removal
of culture media, cells were immediately collected in 50 µL radioimmunoprecipitation assay (RIPA)
buffer supplemented with protease inhibitor cocktail (#78430, Thermo Fisher, Waltham, MA, USA) to
measure total protein concentration.

To purify exosomes, collected culture media under each condition was cleared of cell debris
and microparticles. To do this, the media was spun down at 300 g for 5 min. Collected supernatant
after this centrifugation was then spun down at 2000× g for 10 min. Collected supernatant after this
centrifugation was then spun down at 10,000× g for 30 min. Collected supernatants after these three
centrifugations were concentrated and subjected to column purification (#qEVoriginal/70 nm, iZon
Sciences, Medford, MA, USA) that is optimized for exosome purification. The purified exosomes were
analyzed for the amount and the size using ZetaView® nanoparticle tracking analyzer (PMX-120,
Particle Metrix GmbH, Meerbusch, Germany). The number of exosomes was normalized to the protein
concentration in cell lysates measured using the Micro BCA™ Protein Assay Kit (#23235, Thermo Fisher,
Waltham, MA, USA). Exosomes in 0.1X dPBS were used for zeta potential analysis in ZetaView®.

Exosomes were resolved by SDS-PAGE and blotted with antibodies to CD9 (1:250 dilution,
#MA1-80307, Invitrogen, NY, USA), TSG101 (1:500 dilution, #ab3071, Abcam, Cambridge, MA, USA)
and Alix (1:500 dilution, #2171, Cell Signaling Technology, Danvers, MA, USA). Primary antibodies
were incubated overnight at 4 ◦C. Donkey anti-mouse (#925-68072, 1:5000 dilution) and goat anti-rabbit
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(#925-32211, 1:5000 dilution) secondary antibodies were purchased from LI-COR (Lincoln, NE, USA)
for fluorescence imaging.

Exosomal RNAs were isolated using miRNeasy Serum/Plasma Kit (#217184, Qiagen, Hilden,
Germany) and analyzed with 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA).

4.6. Adsorption and Release Kinetics of LP-A96 from Contact Lenses

Commercially available ProclearTM 1 Day disposable contact lenses (CooperVision, Inc.,
Lake Forest, CA, USA) were washed three times with dPBS prior to any studies. To measure
the concentration-dependent adsorption of LP-A96 to the contact lenses, excised contact lens pieces
(5 mm × 5 mm, about 1~2 mg in weight) were incubated with 100 µL of fluorescein-labeled LP-A96
(#46410, Thermo Fisher, Waltham, MA, USA) for 24 h. After the incubation, contact lens pieces were
gently and briefly washed three times in dPBS to remove any unbound material and the fluorescence
intensity was measured in 96-well plate using Synergy H1 Hybrid Multi-Mode Reader (BioTek
Instruments, Inc., VT, USA). The data were fit with the Langmuir isotherm model (Equation (3)).
The Qe (mg/g) and Ce (mg/mL) are the amount of adsorbed protein per gram of contact lens and protein
concentration at equilibrium, respectively. The Qm (mg/g) is the maximum amount of protein adsorbed
per gram of contact lens. The Kd (mg/L) is an equilibrium binding constant.

Qe =
Ce × Qm

Ce + Kd
. (5)

To measure the time-dependent adsorption of LP-A96 to the contact lens, the fluorescence
intensity of excised contact lens pieces that were incubated in 100 µL LP-A96 (2 mg/mL) was
retrieved at pre-determined time points, gently and briefly washed three times in dPBS to remove any
unbound material, and then measured in 96-well plate using Synergy H1 Hybrid Multi-Mode Reader.
The acquired data were fit with the two-phase association model.

To determine the release profile of LP-A96 from the contact lenses, intact contact lenses were
incubated with 1 mL of fluorescein-labeled LP-A96 (50 µM) overnight at room temperature in a 24-well
plate. On the next day, the contact lens was gently and briefly washed three times in dPBS to remove
any unbound material and then placed in 4 mL dPBS (pH 7.4) inside a 50 mL conical tube under
constant agitation (70 rpm, 37 ◦C). During the first 24 h, 100 µL dPBS was sampled at predetermined
intervals. The dPBS was replaced completely with fresh dPBS after 24 h and for every 24 h thereafter.
Collected samples were stored at 4 ◦C until further analysis. The amount of fluorescein released into
the dPBS and the remaining fluorescence intensity on the contact lens after 96 h were measured using a
Synergy H1 Hybrid Multi-Mode Reader (BioTek Instruments, Inc., Winooski, VT, USA; Ex: 485 nm/Em:
528 nm). The acquired data were fit the two-phase dissociation model.
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line according to the right Y-axis). (B) The ELP-mediated phase separation is monitored using optical 
density at 350 nm as a function of temperature using UV–Vis spectrophotometry (10 μM in dPBS). 
ELP phase separation increases the optical density. Transition temperatures were identified using 
Equation (4). (C) A log-linear relationship between transition temperature and concentration was fit 
using Equation (3). Parameters of the fit are reported in Table A1. Dotted lines indicate 95% CI. (D) 
MALDI-TOF-MS analysis of LP-A96. The molecular weight of 39,521 Da (black arrow 1) is consistent 
with expected molecular weight reported in Table 1. Minor species identified at 79,187 Da (black 
arrow 2) and 118,797 Da (black arrow 3) are consistent with the masses expected for transglutaminase-
mediated dimers and timers of LP-A96 [8]. 

Table A1. Parameters of LP-A96 and A96 phase separation. 
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(Mean [95% CI]) 
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(Mean [95% CI]) 
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Figure A1. Biophysical characteristics of LP-A96. (A) LP-A96 elutes from size exclusion chromatography
followed by multiangle light scattering (SEC-MALS) as a single peak (solid line according to left Y-axis)
consistent with a nanoparticle with a radius of gyration of 79.3 nm (red dotted line according to the
right Y-axis). (B) The ELP-mediated phase separation is monitored using optical density at 350 nm as
a function of temperature using UV–Vis spectrophotometry (10 µM in dPBS). ELP phase separation
increases the optical density. Transition temperatures were identified using Equation (4). (C) A log-linear
relationship between transition temperature and concentration was fit using Equation (3). Parameters
of the fit are reported in Table A1. Dotted lines indicate 95% CI. (D) MALDI-TOF-MS analysis of
LP-A96. The molecular weight of 39,521 Da (black arrow 1) is consistent with expected molecular
weight reported in Table 1. Minor species identified at 79,187 Da (black arrow 2) and 118,797 Da (black
arrow 3) are consistent with the masses expected for transglutaminase-mediated dimers and timers of
LP-A96 [8].

Table A1. Parameters of LP-A96 and A96 phase separation.

Proteins
Phase Diagram a

Slope, m [◦C/log10(µM)]
(Mean [95% CI])

y-intercept, b [◦C]
(Mean [95% CI])

LP-A96 −8.2
[−10.7–−5.7]

58.3
[55.3–61.3]

A96 −21.7
[−29.0–−14.4]

119.5
[105.9–133.2]

a Fit according to Equation (3).
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Figure A2. Western blot-based densitometric analysis for residual LP-A96 in purified EV samples.
Purified EVs from three independent experiments (Experiments #1~3, lane 1~3) were blotted for ELPs
using anti-ELP antibody AK1 [30] to detect and quantify residual LP-A96 co-purified with exosomes.
To determine this, firstly, particle concentration of pure LP-A96 was determined (particle number/mL)
using nanoparticle tracking analyzer. Secondly, serial dilutions of LP-A96 were prepared and their
particle concentration was correlated to the band intensity in Western blot (ELP Standard #1~3, lane
4~6). Lastly, the standard curve generated based on this correlation was used to extrapolate the LP-A96
particle amount co-purified in EV samples after LP-A96 treatment (lane 1~3). This calculation was
used to reflect the raw increase in exosomes in Figure 3B.
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Figure A3. Dynasore inhibits endocytosis of LP-A96 without cytotoxicity. (A–C) Cell viability under
each treatment was visualized using annexin V and propidium iodide. Cells were incubated for 1 h with
complete media, 80 µM dynasore, or 50 µM digitonin. Cells treated with dynasore did not experience
cell death. (D–F) Endocytosis of LP-A96 is restored after dynasore has been removed. Cells pre-treated
with (D) DMSO or (E) dynasore were further incubated with 1 µM rhodamine-labeled LP-A96 for
15 min and imaged. (F) Cells incubated for additional 4 h in basal media after dynasore was removed
were further incubated with 1 µM rhodamine-labeled LP-A96 for 15 min and imaged. (G) Fluorescence
intensity changes show restoration of LP-A96 endocytosis after 4 h. **** p < 0.0001, ns: non-significant.
Mean ± SD.
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This suggests the rate of exosome uptake/turnover exceeds the rate of exosome biogenesis/release 
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Figure A4. Time-dependent differential release rate of exosomes from HCE-T cells. (A) Exosome
amounts in culture media were quantified and (B) the rate of release was calculated at 36 and 72 h
post-treatment. HCE-T cells were treated with 1 µM LP-A96. The total amount of exosomes and the
rates of exosome biogenesis/release were higher during the 0~36 h period compared to 0~72 h period.
This suggests the rate of exosome uptake/turnover exceeds the rate of exosome biogenesis/release
during 36~72 h period as cells reach confluence. *** p < 0.001, ** p < 0.01. Mean ± SD.
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