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Abstract: Polycyclic aromatic hydrocarbons (PAHs) have been a problem in the environment for an
extended period. They are mostly derived from petroleum, coal tar and oil spills that travel and are
immobilized in wastewater/water sources. Their presence in the environment causes a hazard to
humans due to their toxicity and carcinogenic properties. In the study, coal tar was analyzed using Gas
Chromatography–Mass Spectrometry (GC–MS) and a concentration of 787.97 mg/L of naphthalene,
followed by 632.15 mg/L of phenanthrene were found to be in the highest concentrations in the
various water sources such as sewage, alkaline and acid mine drainage. A design column was used
to investigate the leaching process and assessments were conducted on 300 mL of the various water
sources mentioned, with 5 g of coal tar added and with monitoring for 4 weeks. The influence of the
physiochemical properties of the receiving water sources, such as sewage, and acid and alkaline mine
drainage, on the release of PAHs from the coal tar was assessed. The acidic media was proven to have
the highest release of PAHs, with a total concentration of 7.1 mg/L of released PAHs, followed by
1.2 mg/L for the sewage, and lastly, 0.32 mg/L for the alkaline mine drainage at room temperature.

Keywords: PAH pollutants; acid mine drainage; alkaline mine drainage; sewage wastewater

1. Introduction

The world’s largest energy consumption is produced by coal, making it the second-
largest energy source [1]. South Africa (SA) has been ranked the fifth producer and
consumer of coal and 86% of the energy produced in SA is derived from it [1]. In SA, coal
has been one of the reasons behind the country’s improved financial and economic growth
due to its availability and cost-effectiveness. The rise in energy demand has exposed the
use of coal as a sustainable energy source which causes a potential health hazard to humans
and the environment due to the release of a by-product known as coal tar [2]. Thousands of
coking processes are responsible for the release of coal tar and gas fuel production, which
are being derived from coal transformation [3].

Figure 1 represents the usage of coal in SA from the year 1980 to 2015 and it has the
potential to release a by-product that consists of polycyclic aromatic hydrocarbons (PAHs).

Coal tar is a by-product of coal that is released from various processes of the coal gas
and coking process. It is semi-liquid in nature with a density of 1.15 to 1.4 g/cm3 and has a
foul smell [4].

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that are
life-threatening because of their chemical structures, that consist of benzene rings bonded
in a linear and angular position [5]. Though there are hundreds of PAH compounds, only
16 PAHs are commonly identified in various wastewater and water sources [6]. See also
Table 1.
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Figure 1. Coal Consumption in SA from 1980 to 2015. 
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tants in the various water sources contain PAHs with different chemical properties and 
concentration ranges from 46 to 70 g/d. Świetlik et al. [9] investigated the photodegrada-
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moved from the river water using a nylon membrane with an opening size of 0.45 µm to 
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Table 1. Acronyms of the PAHs investigated in this study.

Polycyclic Aromatic Hydrocarbons (PAHs) Acronyms

Naphthalene NAP

Acenaphthylene ACY

Acenaphthene ACE

Fluorene FL

Phenanthrene PHE

Anthracene ANT

Fluoranthene FLU

Pyrene PYR

Chrysene CHY

Benzo(a)anthracene BaA

Benzo(b)fluoranthene BbF

Benzo(k)fluoranthene Blkf

Benzo(a)pyrene BaP

Dibenzo(a,h)anthracene DahA

Indeno(1,2,3,c-,d-)pyrene IP

Benzo(g,h,i)pyrene BghiP

PAHs are released from various industries, from petroleum, coal tar and oil spills that
end up settling in the environment and water streams, making them hazardous due to their
toxicity level [7]. According to Wlodarczyk-Makula [8], the leaching of the pollutants in the
various water sources contain PAHs with different chemical properties and concentration
ranges from 46 to 70 g/d. Świetlik et al. [9] investigated the photodegradation of PAHs
in distilled water and river water. Before the experiment, solids were removed from the
river water using a nylon membrane with an opening size of 0.45 µm to prevent any
reaction that may occur between the PAHs and the water. It was found that the PAHs were
more concentrated in river water compared to distilled water. This was attributed to the
physiochemistry of the river water, the temperature and the pH level [9].

Based on the major effluents that occur in various industries, PAHs have attracted
a lot of attention due to their presence in wastewater and other water sources. Their
deposition into the environment has led to major health concerns such as carcinogenic,
mutagenic and teratogenic symptoms. The solubility of PAHs is dependent on various
factors such as the temperature, pH, ionic strength and water matrix of the dissolved
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organic carbon [10]. It has been reported by Mojiri, Zhou, Ohashi, Ozaki and Kindaichi [5]
that the concentration of pyrene in water in South Africa is about 1,118,000 × 10−6 mg/L
and 8,310,000 × 10−6 mg/L for benzo(b)fluoranthene in sewage wastewater.

This study aims to assess the influence of the physiochemical properties of receiving
water sources, such as sewage, and acid and alkaline mine drainage, on the release of PAHs
from coal tar. Table 2 shows the molecular weight of the PAHs that are mostly found in
water sources and recognized by the World Health Organization (WHO). A few PAHs have
been identified to be life-threatening due to their extreme effects on humans, as established
by their chemical properties depicted in Table 2.

Table 2. Chemical and structural information of a few common PAHs compounds.
Reprinted/adapted with permission from [11]. Copyright 2020, copyright owner’s Van-Huy Nguyen.

PAHs Formula No. of Rings Molar Weight (g/mol) Geometry

NAP C10H8 2 128
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10−6 mg/L. Among these PAHs, the lower molecular weight species, such as naphthalene,
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Table 3 shows the PAHs content in various water sources. However, drinking water
was pointed out to have a higher PAHs presence compared to groundwater.

Table 3. The PAHs content in various water sources. Reprinted/adapted with permission from [11].
Copyright 2020, copyright owner’s Van-Huy Nguyen.

PAHs
(×10−6) mg/L ACE ACY ANT BaA BaP BbF Blkf BghiP CHY DahA FL FLU IP NAP PHE PYR

Drinking
Water

3.8 to
478 1.8 to 1210 1.4 to

71
2.29 to

10
1.3 to

8
2.1 to

24
4.6 to

24
2.0 to

8
1.8 to

27
2.0 to

9
4.0 to
41,000

6.5 to
1,430,000

1.6 to
3

4.6 to
14,000

13.1 to
139,000

4.2 to
92,000

Rivers and
Lakes

2.6 to
579,000 2.7 to 537,000 1.0 to

256,000
0.6 to
3200

0.5 to
1,239,000

1.2 to
7,800,000

0.8 to
3100

0 to
11,700

1.8 to
4300

4.0 to
11,400

5.6 to
2,480,000

4.2 to
2,498,000

1.0 to
7200.0

52.5 to
6900

13.3 to
126,000

2.9 to
1,138,000

Groundwater 0.4 to
149 0.8 to 13 0.1 to

196
0.1 to

6
3.0 to
123

1.9 to
39

5.1 to
30

0.4 to
9

0.1 to
71

0.1 to
4

0.4 to
168

2.0 to
51

3.6 to
12

2.1 to
281

2.0 to
179

0.3 to
42

Wastewater
28.8
to

100
16.6 to 66 42.0 to

295 46 71.6 to
1,447,000

82.0 to
8,310,000

100.0
to 204 92 20.7 to

112 0 20.0 to
234,000

14.0 to
2,340,000 21 40.0 to

47,000
33.0 to
6,495,000

19.1 to
1,186,600

Seawater 2.6 to
4200

4.5 to
4100

0.1 to
3350.0

0.0 to
17,490

0.0 to
17,490

0.2 to
28,490 0.0 to 32,050 0.2 to

14,790
0.1 to
42,710

0.0 to
32,340

0.2 to
1520

0.0 to
6610

0.0 to
46,600

75.9 to
7800

0.2 to
1080

0.0 to
987

Sediments 0.6 to
1821

1.7 to
13

2.0 to
658

0.2 to
152

0.0 to
739

<1 to
932 3.8 to 17,486 8.9 to

5153
0.9 to
193

1.8 to
999

0< to
52

<1 to
24,857

0.4 to
552

<1 to
69

5.7 to
410

2.8 to
27

During the leaching process, PAHs normally migrate into the soil surface and ground-
water where most of the PAHs are adsorbed or biodegraded in the existing minerals or
enzymes in the soil. The remaining PAHs then largely channel into the drinking water
resulting in it seeming to be more polluted than the groundwater [13,14].

Phase Partition Equilibrium (Raoult’s Law) and Dissolution of Kinetics

Raoult’s law can be applied for the water samples and the non-miscible organic phase
(PAHs), both having an ideal behaviour [15] that best fits the study aim. The ideal behaviour
happens to be linear, whereby the more the coal is immersed in the water deposit, will
result in more PAHs released in that water. Raoult’s law [16] can best describe the influence
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on the leaching process of various parameters; however, only pH and contact time were
investigated in the study to determine their influence on the leaching process.

The distribution of the pollutant “coal tar”, that contains PAHs, into water sources
(sewage wastewater, acidic and alkaline mine drainage) is controlled by the molecular
diffusion of the coal tar interphase [17]. Since the viscosity of the coal tar is also considered,
the global mass transfer is controlled by the slowest rate [18]. This can be attributed to the
release of the PAHs in the water source by ageing. The slower the diffusion of the (coal tar)
water interface, the higher the concentration of PAHs in the water source [3,14].

2. Materials and Methods

In the present study, the acid mine drainage was collected at Witbank, South Africa,
from a river near a large mine; the alkaline mine drainage was collected at a water treatment
plant at Middleburg, South Africa; and the sewage wastewater was collected in Cape Town
Municipality, South Africa. The coal tar was obtained at a coking oven plant in New Castle
KwaZulu-Natal, South Africa.

2.1. Research Methodology

During the leaching process, 5 g of coal tar/water sources were inserted in the columns,
having dimensions of 300 cm by 8 cm internal diameter (Figure 1). The columns were
filled with 300 mL of the lixiviant of each water source for a 4-week period. Samples were
collected weekly using a 50 mL syringe with a syringe filter size of 0.45 µm, to prepare
the PAHs for analysis. The system was kept away from light, and it was covered with
aluminium foil to prevent light from penetrating. The results of the aliquot were triplicated
and analyzed using Gas Chromatography–Mass Spectrometry (GC–MS) with a Thermo
Scientific (TSQ 8000) (Cape Town, South Africa) Triple Quadrupole MS.

Figure 2 shows the leaching columns for the three water sources. The acid mine
drainage column was observed to have a strong visual colour change (yellowish) compared
to the alkaline and sewage water source. The colour shows that a strong interaction between
the coal tar and the acid mine drainage occurred, which strongly reveals the release of
the PAHs.
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Determination of PAHs from GC–MS

There are various techniques such as HPLC-UV, GC-FID and GC–MS–MS or GC–MS
that can be used to analyze PAHs. Since GC–MS has been regarded internationally as the
gold standard analytical technique, with the ability to analyze and detect tiny amounts of
particles in a substance, as reported by Wise, et al. [19], it was used in the study.

An SPE cartridge (SDBL-100 µm Styrene-divinylbenzene) was used to determine the
PAHs content in the coal tar and their presence in a leachate. Half volumes of 12 mL of
methanol and 10 mL of deionised water were used, and the remaining halves were added
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with the sample (coal tar) for calibration. Pressure was applied for about 15 min until the
solution with the sample was dried completely.

A standard solution was prepared:
Sodium sulphate was added to a 10 mL Pyrex tube and 2 mL of ethyl acetate was

eluted and pressure was applied until the ethyl acetate was transferred into the Pyrex tube.
The tube was closed, then vortexed, and 150 µL was measured and then transferred into
the GC vial, which was crimped and vortexed.

The prepared standard solution was then used for PAHs analysis using GC–MS.

3. Results and Discussion

In Table 4, the results are shown for the water sources analyzed in the study.

Table 4. Acid mine drainage, alkaline mine drainage and sewage wastewater analysis.

Water Samples Physical/Aesthetic Parameters Unit Result Result

Acid mine drainage

Acidity as CaCO3 mg/L 672

Alkalinity-Total as CaCO3 mg/L <10.0

Dissolved Oxygen mg/L 8.00

Electrical Conductivity @ 25 ◦C mS/m 214

pH @ 25 ◦C pH units 2.77

Organic Parameters

Dissolved organic carbon mg/L 2.25

Alkaline mine drainage

Acidity as CaCO3 mg/L 12.0

Alkalinity-Total as CaCO3 mg/L 402

Dissolved Oxygen mg/L 8.30

Electrical Conductivity @ 25 ◦C mS/m 352

pH @ 25 ◦C pH units 7.95

Organic Parameters

Dissolved organic carbon mg/L 4.35

Sewage wastewater

Acidity as CaCO3 mg/L 216

Alkalinity-Total as CaCO3 mg/L 438

Dissolved Oxygen mg/L 0.50

Electrical Conductivity @ 25 ◦C mS/m 154

pH @ 25 ◦C pH units 6.70

Organic Parameters

Dissolved organic carbon mg/L 113

Figure 2 represents the PAHs content in the coal tar before the leaching process was
conducted. It was found that, from the coal mass of 116.3 mg with 2 mL of hexane
added as a solvent, when the PAHs were observed using the GC–MS technique, a total
of 16 PAHs were detected. Naphthalene, followed by phenanthrene, fluoranthene and
acenaphthylene, were found to be in the highest concentrations, compared to the remaining
PAHs. The overall PAHs concentration, identified from the coal tar used, was found to be
2916.47 mg/L.

Naphthalene and phenanthrene were the simplest and most water-soluble molecules
of the PAH group observed, and this serves as a model for the dissolution of the light
hydroxylated aromatic compounds. The highest dissolution occurred in the acid mine
drainage sample. The transfer kinetics of pollutants from the coal tar in the water was the
highest at the lower molecular weights of PAHs. The experimental results of this study
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also showed ageing between the coal tar and the various water samples, resulting in the
progressive release of PAHs. The deposit of coal tar in the acidic mine drainage should
be given more attention, as PAHs were proven to be released most effectively with the
acid mine drainage, which prompted the release of PAHs hazardous to the environment
and to humans. According to Sharma and Lee [20], naphthalene was found to be the most
abundant PAH in the coal tar, which was also proven in the present study, as can be seen in
Figure 3.
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Figure 3. The concentration of PAHs in the coal tar sample, as found in the present study.

According to Makelane et al. [21], pyrene was found to be most concentrated in sewage
wastewater, which was also proven in the present study.

All the results on the leaching process of the PAHs from the various water sources
are tabulated in Tables 5–7. A total of 16 PAHs were detected in the three water sources;
however, acenaphthene was not detected in any of the three water sources used in the
present study, albeit a concentration of 18.46 mg/L was found when the coal tar was
analyzed. It was noted that the concentration of the PAHs increased with the ageing
process. Ageing (or time) was noted to be a factor to be considered in the physiochemical
conditions between the water source and the PAHs. The presence of the PAHs in the
water source increases as ageing increases. The lower molecular weight PAHs, with two to
three rings, were identified to be highly soluble in the acidic media and slightly soluble in
the sewage wastewater, and less soluble in the alkaline media (Table 6). Since PAHs are
non-polar and have no charge, the electron pairs on the aromatic rings play a role in the
physiochemical reaction of the PAHs and the water forming radicals’ reaction that triggered
the PAHs to be released. Tables 5–7 represent the experimental results obtained during the
leaching process. It should also be noted that all experiments were conducted in triplicate.

Figure 4 represents the PAHs dissolution in various water sources and how effective a
role Raoult’s law plays in the leaching process. The immersion of coal tar in the various
water sources used, with their different physiochemistry, resulted in obtaining different
PAHs values, as shown in Figure 4. According to Boulangé, Lorgeoux, Biache, Michel,
Michels and Faure [3], there are factors such as temperature, ionic strength, pH and
dissolved organic carbon. However, in this study, the pH and the dissolved organic carbon
were considered in the leaching. There is a need to understand the driving forces of
these factors:

The dissolved organic carbon concentration can be influenced by pH [22]; the effect of
pH does not influence the neutral organic compound. Neutral organic compounds contain
functional groups such as hydroxyl, ether, ketone, lactone, aldehyde and ester because of
the oxygen present in them, which can easily react with water to form hydrogen bonds.
The presence of these functional groups increases the solubility in water [3].

This study does agree with Boulangé, Lorgeoux, Biache, Michel, Michels and Faure [3],
as it labelled the nature of the dissolved PAHs as being acidic by having them dissolved or
favored in an acidic mine drainage at a lower pH.
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Table 5. The recovery of PAHs in an acidic mine drainage @ 25 ◦C.

PAHs
Content

Week 1
(mg/L) Week 2 (mg/L) Week 3 (mg/L) Week 4 (mg/L) PAHs Concentration

(mg/L)

Acid Mine
Drainage

NAP 0 0 0.332402 0.254163 0.5877

ACY 0.00232 0.006527 0.023753 0.03721 0.0707

ACE 0 0 0 0 0

FL 0 0 0.005651 0.009247 0.0155

PHE 0.0074534 0.585888 0.0095059 0.0173442 0.620

ANT 1.548783 0.753182 0.763863 2.669656 5.7355

FLU 0.0015533 0.001267 0.00161 0.00473 0.0092

PYR 0.001593 0.001553 0.001507 0.003643 0.0083

CHY 0.013611 0.013096 0 0.001075 0.0288

BaA 0.0012033 0.0011733 0.0012 0.0018733 0.0054

BbF 0.000393 0.000347 0.00037 0.002063 0.0032

Blkf 0.0001967 0.0001367 0.0001643 0.0019023 0.0024

BaP 0.00331 0.002507 0.000253 0.002853 0.0098

IP 0 0 0 0 0

DahA 0 0 0 0 0

BghiP 0 0 0 0.002315 0.0023

PAHs Total 7.0944

Table 6. The recovery of PAHs in an alkaline mine drainage @ 25 ◦C.

PAHs
Content

Week 1
(mg/L) Week 2 (mg/L) Week 3 (mg/L) Week 4 (mg/L) PAHs Concentration

(mg/L)

Alkaline mine
drainage

NAP 0 0 0 0.000483 0.0005

ACY 0.002493 0.00264 0.002393 0.009223 0.0167

ACE 0 0 0 0 0

FL 0 0.000506 0.000633 0.004562 0.0057

PHE 0.0091672 0.0083211 0.00851 0.0233266 0.0493

ANT 0.019723 0.008446 0.013635 0.052464 0.0943

FLU 0.004533 0.004873 0.004317 0.010687 0.0244

PYR 0.004137 0.00459 0.00377 0.008077 0.0206

CHY 0.001077 0.00192 0.001702 0.004518 0.0092

BaA 0.0019267 0.00252 0.0022933 0.0046833 0.0114

BbF 0.001637 0.00322 0.002577 0.00884 0.0163

Blkf 0.00163 0.003142 0.002957 0.0090683 0.0168

BaP 0.001993 0.004723 0.004103 0.013353 0.0242

IP 0.001769 0 0 0 0.0018

DahA 0 0 0 0.002039 0.0020

BghiP 0.001521 0.003682 0.00409 0.012656 0.0219

Total PAHs 0.3152
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Table 7. The recovery of PAHs in sewage wastewater @ 25 ◦C.

PAHs Content Week 1 (mg/L) Week 2 (mg/L) Week 3 (mg/L) Week 4 (mg/L)
PAHs

Concentration

(mg/L)

Sewage
Wastewater

NAP 0 0.00096 0.02564 0.02579 0.0524

ACY 0.001167 0.008353 0.014387 0.016147 0.0401

ACE 0 0 0 0 0

FL 0 0 0.004661 0.005021 0.0097

PHE 0.005983 0.012669 0.015708 0.012209 0.0466

ANT 0.013944 0.688642 0.033595 0.128699 0.8649

FLU 0.001 0.00263 0.002653 0.002507 0.0088

PYR 0.001223 0.00338 0.001847 0.00194 0.0084

CHY 0.001336 0.01732 0 0.000317 0.0190

BaA 0.001 0.00318 0.001023 0.001303 0.0066

BbF 0.000343 0.00235 0.00035 0.00064 0.0037

Blkf 0.0001347 0.002133 0.0001453 0.0004623 0.0029

BaP 0.00024 0.00511 0.000257 0.0006 0.0063

IP 0 0 0 0 0

DahA 0 0 0 0 0

BghiP 0 0 0 0 0

Total PAHs 1.0690
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Influence of Ageing of Coal Tar/Various Water Sources Interphase

Figure 5 represents how ageing influenced the release of the different PAHs and the
different water sources. The ageing phenomenon of the coal tar/water sources interphase
was found to be an important aspect that has a significant consequence for the long-term
fate of coal tar in various water sources, with an increase in the release of higher PAHs
concentrations. During the leaching process, anthracene was highly dissolved in the acidic
mine drainage and sewage wastewater at week 4. The ageing of PAHs in sewage wastewater
agreed with Cai, Ding, Zhang, Wang, Wang, Ren and Dong [14], who mentioned that the
longer PAHs are in water, the more they reach an unacceptable level over time. Since time
is directly proportional to ageing, as time increases, the PAHs concentration in the coal tar
availability reduces, resulting in a greater dissolution.
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Figure 5. Ageing of PAHs in acidic medium (a), alkaline medium (b), and sewage medium (c).

Since coal is still currently being used as one of the most substantial sources of energy
in SA, there is still a prediction of a large release of coal tar that also exhibits PAHs. An
intensive consideration should be implemented to avoid coal tar being channeled into
various waters. The processes involving the transformation of coal should be conducted
far away from water sources, allowing ageing to occur between the by-product (coal tar)
and the soil. In doing so, the exposure of PAHs on the surface will be no risk to humans, as
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it was reported by Patel et al. [23] that the concentrations of 1 ng/L and 11 µg/L of PAHs
in drinking water, as per the WHO regulations, are acceptable.

Since billions of rands have and still are being used on coal for energy consumption
and production, millions of rands also play a part in remediating the PAHs from the
environment and water.

4. Conclusions

In coal tar-contamination in various water sources, the main mechanism involved in
the PAHs release is known to be dissolution; this is described by Raoult’s law, which states
that the equilibrium concentration of a compound in a water source is a function of the
compound’s water solubility and its molar fraction in the initial phase in contact with water.
The acidic media was proven to have the highest release of PAHs, with a total concentration
of 7.1 mg/L, followed by 1.2 mg/L for the sewage, and lastly, 0.32 mg/L for the alkaline
mine drainage. Furthermore, it was found that the lower molecular weight PAHs were
more soluble in the acidic water as it resulted in releasing a higher PAH concentration.

During the leaching on the acidic mine drainage, it was observed that a pH of 2.77 and
dissolved organic carbon of 2.25 mg/L, resulted in the release of 7.1 mg/L of PAHs from
the coal tar. The reaction of the π–π bonding also plays a vital role in the reaction of the
aromatic compound of the PAHs with the acidic water molecules. PAHs happened to be
more soluble in the acidic mine drainage compared to the alkaline, and slightly soluble in
sewage depending on the pH and the dissolved organic carbon. Since PAHs are non-polar
and only expected to be soluble in an aromatic’s solvent however, the pH and dissolved
organic carbon are factors to be considered when anticipating the solubility of PAHs in
wastewater and water sources.
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